
Page 1 of 276

RobotBASIC Help File
V4.2.0

The Integrated Development
Environment

The RobotBASIC IDE consists of an Editor screen, a Terminal screen, a Help screen, and a Debugger
screen. Each screen has many buttons and menus that facilitate the various actions required in each screen.
This section will discuss each screen and what actions can be carried out in them.

The Editor Screen
The Editor screen has various buttons and menu items that facilitate the creation, editing, and running of
programs. If you place the mouse cursor on a button and wait for a second, a hint will pop up showing the
button’s intended function. In addition, each button has an icon that can be helpful in remembering the
button’s action.

It is also possible to perform any button's action by using drop down menus. Furthermore each menu action
has a keyboard combination (Short-Cut) that executes the action by pressing a function key or a
combination of Ctrl or Alt and a key. The edit menu can be dropped down by clicking the Edit option on
the main menu, or by pressing Alt+E. Each sub-action in the menu can be chosen by clicking that action or
by pressing the correct Alt combination.

Also, as you can see on the right of each option, there is a Short-Cut key that can invoke the menu action
without accessing the menu. For example, to invoke the Find option, you can press Ctrl+F.

Another feature of the Editor screen is the panel at the bottom of the window. This panel contains the name
of the file currently being edited. If the file is a new one that has not been previously saved and named, it
will hold the name NoName.Bas, otherwise it will have the file’s full name. To the left of the area where
the file name is displayed is an area that will either hold the word Modified if the file has been modified
but not yet saved, or it will be blank if the file has not been modified since the last save or since it was
loaded.

The first area in the panel at the bottom of the window will show the line number where the cursor is in the
editor area. The next area shows the character number where the cursor is. If the cursor is right at the start
of the line it will be 0. The next area will either say Ins or Ovr. Ins means that when you type, the text will
be inserted where the cursor is and any text to the right of the cursor will be moved to the right. Ovr means
the text will overwrite the text where the cursor is and move the cursor to the right. You toggle between the
two modes using the Insert key on the keyboard.

Below the Speed Buttons panel is a panel that on start up holds one Tab. The tab will also have the name of
the file being edited, but only the name of the file without the path. You can open other files and have

RobotBASIC V4.2.0

Page 2 of 276

many files open simultaneously. Each open file will have a corresponding Tab with its name in it. You can
swap between the open files by clicking on the Tab corresponding to the file. When you do that the panel
at the bottom of the window will reflect the information corresponding to the file you are currently editing,
and the text in the edit area will be the one for the file you have chosen. If the file has been changed then
the name of the file in the Tab will have a * in front of it to indicate that the file has been modified and not
yet saved. This can be helpful to see at a glance how many files have been modified without having to
click on each file's tab in turn and observing the status panel at the bottom of the screen.

To run the program currently loaded in the editor area either, click the Run / Run Program sub menu, or
press the speed button, or use the Ctrl+R shortcut on the keyboard. While a program is running the speed
button and its corresponding menus are disabled. They will be enabled when you halt the program or the
program is ended, or an error occurs during the program run.

Running a program will bring up the Terminal Screen and show any program interaction on this screen
(see the Terminal Screen section).

The menu and speed buttons allow for many helpful features. You can save and open files. You can search
and "search & replace". You can Cut, Paste, Copy, Undo, and Print. Additionally you can view a help file
that contains a full description of all the features of the language.

Also there is a Pop-Up menu when you right click the mouse over the editor area that holds similar options
as in the main menu. Also, if you right click the mouse button over any of the Tabs in the panel under the
Speed Buttons you will get another Pop-Menu that holds options relating to closing/saving the open files.
The same options are also in the main menu and some have a corresponding Speed button and/or Short-Cut
key.

When you do a search if you close the search dialog box you can still search for further occurrences of the
same search string by pressing the F3 key. If you want to enter a new search string then invoke the dialog
box again using the menu or Ctrl+F or by pressing the search speed button.

The default behavior of the editor is to automatically indent the next line you are typing to the level of the
previous line's first character. This is useful when typing programs where loop structures are automatically
formatted for you as you are typing. You can change this behavior where no automatic indenting is
performed, with the menu option Edit / Auto Indent (F5) (which checks and un-checks).

The sub-menu option Edit / Smart Tabbing (F4) allows you to swap between Fixed and Dynamic Tabbing.
When smart tabbing is on, the Tab keyboard key will move the cursor either 4 characters to the right, or to
inline with the word in the line above if there is a text that has been previously tabbed in the line above.
When smart tabbing is off then the cursor will move a fixed distance of 4 spaces regardless of the text
above it. The number of spaces is by default 4 spaces but you can change this through the Edit /
Preferences (F6) sub-menu option.

Two menu items Indent Block (or F8) and Un-Indent Block (or F7) from the Edit menu are very useful
for formatting programs. These allow for indenting a highlighted block of text or un-indenting it one space
at a time. The text will not un-indent if the first character of a line is not the space character (or a tab). That
means you will not lose any text. This is useful for lining up entire blocks to fit within indented formatting
of program structures. If you are using the normal tab then the indenting process may not show an indent
until enough spaces have been added to cause a tab to the next tab stop (see above about tabs).

The sub-menu item File/ Merge (Ctrl+G) facilitates the creation of subroutine libraries. It allows you to
select a RobotBASIC (or any text) file which will be merged to the end of the file currently residing in the

RobotBASIC V4.2.0

Page 3 of 276

editor. If the merged file contains a set of subroutines they will become part of your program. File/ Merge
At Cursor does the same action but inserts the text at the current cursor position.

The menu option File / Set Directory allows you to select a directory as a working directory. Normally
when you save or open a file (.BAS) the directory where the file is becomes the working directory. So
when you run the program currently in the IDE you will be running within this directory. This menu option
allows you set a working directory without having to open or save any files. However, whenever you Run a
file RB will automatically set the File's directory as the working directory. If in your programs you wish to
change the default directory then use DirSet().

Note: The Set Directory dialog allows you to select a directory by double-clicking the mouse over it and
will let you see the files contained in the directory, however, the selected directory will not be set as
the working directory until you click the Ok button.

Note: When you try to run a file within the Editor Screen that has been loaded from a disk file, and the file
on disk has been changed since you have loaded it into the editor, say, due to another edit program,
then RobotBASIC will automatically load the newer file from disk into the Editor Screen and then
run the file. This way you will be running the latest version of the program even if you have
modified it with another editor program outside of the RobotBASIC IDE. This action can be stopped
from being automatic with the File / Auto Load Newer File sub-menu option. This option is
checked to signify that automatic loading is performed. If you uncheck it RB will display a warning
message that allows you the option of either loading the newer file or not.

Note: All the optional stuff mentioned above and much more can be configured using the Edit /
Preferences dialog (F6). See The Preferences System section below.

The Terminal Screen
The Terminal Screen is where the program input and output take place. This screen has various buttons, a
prompt panel, an input box and a display screen. The display screen is where all the output from the
program will be displayed. Commands such as Print or Circle will display their results on the screen.

The display screen is 800x600 pixels (width x height). If you are using a Windows system where the
monitor limits are less than 1024x768 resolution, the Terminal Screen will resize to a smaller size. You can
find the limits of the X, Y coordinates by using the ScrLimits. You can also use programming statements to
resize the window to smaller than this size. The Terminal screen is not resizable, however you can change
this during the running of a program using ScrSetMetrics.

When the program ends the terminal screen will remain on top of the editor. You can close it or move it to
the background (see below). There is a short-cut key (Ctrl+T) while in the Editor to reopen the terminal
screen, or you can use the menu option or the speed button. The display from the previously run program
will not be cleared until the current program is executed again or a new program is run.

If a runtime error occurs a message will be displayed indicating the nature of the error and what line
number (in the program) it is on. The Terminal screen will go to the background and the Editor screen will
come to the foreground with the line where the error has occurred highlighted up to the point where the
error has occurred within the line. You can bring the Terminal screen back into view as described above.

The bottom of the screen is where all input is done using Input, Waitkey, GetKey and GetkeyE (see
Standard User Interfacing section). The edit box will only be activated when an Input is issued. Any entry
in the box must be terminated with an ENTER. The input box has a buffer that holds any previous inputs.

RobotBASIC V4.2.0

Page 4 of 276

To Access a previous input, press Ctrl+P or Ctrl+N to step through prior inputs. This facilitates easy
repetition of inputs.

When you issue an Input e_Prompt,v_Name statement, the e_Prompt will be printed just above the Edit
box as a prompt. If e_Prompt results in a zero length string then character > will be printed as a prompt
instead of the null string (See Standard User Interfacing section). Inputted data is treated as a number if it is
a legal number otherwise it will be returned as a string. You can use functions to manipulate inputs as
needed. This behavior can be changed to make Input do its interaction directly within the body of the
Terminal screen using InlineInputMode.

The buttons on the bottom right allow certain actions to occur. Each button, just as in the Editor screen,
shows a hint when you place the mouse cursor on it. The Editor button allows you to view the Editor
screen. The editor screen has a Terminal button to display the Terminal Screen again. The program will
continue to run when you swap between the terminal and the editor screen; it will not stop. The Print
button causes the screen area to be printed on the default printer. The screen area is printed as a graphic.
Only what is visible on the screen will be printed, any output that has scrolled off the screen will not be
printed, but see below for how to retrieve any text that has scrolled off the screen. You can also perform
this action programmatically using PrintScr (also see PrinterSetup). The Debug button will turn on the
debugging feature. See Debug.

The Stop button allows the user to abort the currently running program and return to the editor screen. You
can do the same action by closing the Terminal screen window (using MS Windows methods). The
behavior of this button (or closing the window) depends on a parameter that can be set within your
program. The standard behavior is for the Terminal screen to close and the editor screen becoming the
active window. Within the editor the cursor position will be where it was when you ran the program.
However, you can prevent the user from being able to use the Stop button or close the Terminal window,
or you can have the action cause the entire system to terminate, or you can have the action behave as if a
run time error has occurred. The way RobotBASIC will respond to closing the Terminal screen window (or
pressing the Stop button) can be changed programmatically with AbortMethod.

The buttons CutToBuffer and ClearBuffer facilitate the use of a special feature of the Terminal Screen
that can be a powerful tool:

Text printed with Print is stored in a buffer, regardless of whether it has scrolled off the screen or not.
Once the buffer is full (it holds 8Kb of text) it will clear and start to fill again. If this occurs in the middle
of your output the buffer will only be holding part of the output when you use the CutToBuffer button.

The buffer content can be sent to the Windows clipboard using the CutToBuffer button. Once you have
done this, the text in the clipboard can be used in any Windows program. The ClearBuffer button is used
to clear the buffer and the Windows clipboard at the same time. This is needed if you do not want any
output from previous program runs to be included when you copy the buffer to the clipboard. Remember
to clear the buffer between runs if you desire, but before you start the run.

You can also access the text buffer in a program using GetTextBuff(), TextBuffToCB and SetTextBuff.
Also see ClrCB, SetCBText and GetCBText().

Note: Normally the Terminal Screen window is not a sizeable window and the user will not be able to
modify the window width or height. However, in version 4.1.0 and later you can allow the user to
resize the window manually or move and resize the window under program control using
ScrSetMetrics and ScrGetMetrics. Also with these commands you can show/hide the control panel
at the bottom of the window.

RobotBASIC V4.2.0

Page 5 of 276

The Preferences System
The IDE can be configured in many ways and various options can be set as you like. The Preferences
configurations Dialog presents you with 3 different sections where you can set the various colors and so
forth as you prefer them. The dialog is self-explanatory. There is also a help feature where if you place the
mouse pointer over a field you will get a good explanation in a panel at the bottom of the screen. There is
also a page with some more instructions.

All the parameters configurable through the Preferences dialog will be saved to a file every time you
terminate RB. The next time you start RB the file will be read so as to set all the preferences as you had set
them. The file is called RobotBASIC.INI and must reside in the same directory as the RobotBASIC.EXE.
If this file does not exist or is corrupted RB will default to a default configuration. You can also set this
default setup through the Preferences dialog. Also if the .INI file exists you will not be presented with a
Licensing Screen since it would be obvious that you have accepted the licensing the first time you ran RB.

Another thing saved in the .INI file is a list of the most recent files you have opened or saved during the
last session. The number of files on the list is also configurable through the Preferences dialog.

The position and the height and width of the Editor Screen when you terminated RB will be save to the INI
and if you have chosen to do so the next time RB starts the Editor Screen will have the same setting. The
option to do so is again configurable through the Preferences dialog. The same also applies to the Help
screen.

The Preferences dialog can be invoked by pressing F6 or the Edit/Preferences menu option or the Speed
button on the Tool Bar. If you change any parameters in the dialog you would be able to either abandon the
changes and exit (Cancel button) or Apply all the changes and exit (Apply button). You can also set all the
parameters to the RB defaults by pressing the button at the bottom of the dialog. You can also set a subset
of the parameters (each section) to the defaults by pressing the Set All To Default button in each section.

The Help Screen
The Help Screen provides explanations about the use of RobotBASIC’s commands, functions and various
other aspects of the entire system. On the left side of the screen there is an expandable table of contents of
the headings in the help text displayed on the right side of the screen. When you select a heading in the
TOC by clicking on it the section on the right will jump to that particular location in the help file. These
sections cover every aspect of the system. The help text can be selected and copied to the Windows
clipboard using the Copy button (or Ctrl+C). The Search button (or Ctrl+F) allows you to search the text
in the help file.

The search dialog will remain open after it has found an occurrence of the search string. This is so that you
can keep searching for more occurrences. However, if you do remove it you can still use the F3 key to
search further just like in the editor screen.

In the Help Screen on the left side there is an expandable/collapsible Table of Contents that you can use to
click on any of the headings to jump to that heading's area in the help files text (right). Also at the top of
the screen are 4 drop down list boxes. These boxes contain all the Commands, the Functions, the
Commands & Functions, and the final one has the Constants. You can click on elements of these lists to
jump to the verb's main entry in the help file where the verb is described in detail.

The TOC panel's width can be changed by clicking and dragging the separator between the panels. This
size will also be saved to the Ini file so that when you start the next session the panel will have the size you
prefer. If the panel is too small to display all the text you can scroll it using the scroll bars. Also if you rest

RobotBASIC V4.2.0

Page 6 of 276

the mouse cursor on any of the entries and it is too long to display in the panel then the text will show like
a hint text showing the full text. When you click inside the panel it will keep the focus so that you can use
the Up/Dn arrows to scroll through it and the Help text will move to the selected topic area.

The help system utilizes a customizable separate file called RobotBASIC_HelpFile.RTF. This is an RTF
formatted file that has to reside inside the same folder where the RobotBASIC.exe is contained. The file
can be modified to include special help catered to your requirements in a section called Customized Help.
RobotBASIC has a reference to this section and as long as you maintain the section name you can have it
anywhere in the help file and RB will jump to that position whenever the user requests the section.

This feature can be of utility to teachers. A teacher may customize the help file to the needs and level of the
students. Moreover, the help file may be used to give extra information to students regarding coursework
materials.

Note: This file is best modified using the WordPad program provided in all MS Windows systems. It must
be saved as an RTF format file. MSWord can read and write RTF format files but it may not save
using the version of the RTF format required by RobotBASIC. If you find that the file is garbled
when you read it in the RobotBASIC help screen, then load and save the file again using the
WordPad program. The headings in the file have the character next or surrounding them. This is
important and the headings must remain as is for RB to be able to locate them within the help file.

The Debugger Screen
The debugging feature of RobotBASIC is discussed in detail under the descriptions for Debug and
Stepping. The buttons are self-explanatory. Refer to Debug and Stepping for more detailed information.

The debugger screen buffer will become full if there is too much output. To prevent this from causing an
error, use the Clear button to occasionally clear the buffer. You can resize and move the Debug Screen,
and you can swap between it, the Terminal screen and the Editor screen. The Debugger screen will always
stay on top of other windows. If you wish to see other windows in full then drag it to the side while
viewing other windows.

Another useful debugging feature is the ability to view a list of all the variables (Type, Name and Value)
that have been created during the execution of the code. The value will be whatever it was when the
program terminated (whether normally, due to an error or by a user initiated abort). The string values will
be surrounded by the characters "" (double quotes). If the string contains the character " it will still be
there. Surrounding the string with quotes enables you to see whether the string value has leading or trailing
spaces and whether it is an empty string.

You can view the variables by using the menu option Run / View Variables Table or by pressing Ctrl+B.
Also if the debugger screen is active you can see this same table by pressing the View Variables Table
button. The table shows all SIMPLE variables in the current running session, it does not show Array
elements. To view the values of array elements use the Expression Evaluation system provided at the top of
the Debug Screen.

At the top of the screen you will see an text box in which you can enter any valid RobotBASIC
expressions. You can enter more than one expression by separating them with the \ character just as in an
RB program. In the expression you can use any of the simple variables and/or array elements that have
been declared during the run of the program up to that point. The expression can be any valid RB
expression using functions and variables.

RobotBASIC V4.2.0

Page 7 of 276

Each expression will be evaluated then, it and its value, will be displayed on a separate line in the Debug
Screen output area. If the expression cannot be evaluated you will get an error message and the display in
the debug area will also show a message saying that the expression could not be evaluated.

You can evaluate the expressions immediately by pressing the Evaluate Now button. You also can have
the expressions evaluated every time you press the Step button, but the expressions will be evaluated the
next time the Debug Screen becomes active. This would be immediately after executing the pending line if
you are in Stepping mode. However in Debug mode it won't be until the next Debug statement is
encountered. Check the check box labeled Evaluate On Stepping to activate this mode.

Creating, Saving And Running Programs

Creating The Program
To create a program use the editor to type in the program according to the syntax covered in the
Overview Of The Language section and referring to the various other sections for details on how to use
the commands and functions and flow control statements.

Saving The Program (Text)
While writing your program you ought to save it as often as you can so that you won't lose your hard
work in the case of some mishap. To save the program use the menu option Save under the File main
menu, or the speed button or Ctrl+S. There is another menu option called Save as Binary. This option is
used to save a file as a binary file and will be described later below. During the development stage do
not use this option.

Running The Program
The next step is to run the program using Ctrl+R or the speed button or the menu options. Your program
may have errors and you may have to iterate through the process until you are satisfied the program is
running correctly

Running Finalized Programs
Once a program is a fully functional program and saved as a text .Bas file (or binary file, see later), there
are two ways you can run it. If you share your program with others they also have the same two ways to
run the program (the second method might be preferable). You can share your programs by giving the text
.Bas file. Another way you can share your program is by giving a binary version of the program (binary
.Bas). This method has an advantage in that your source code will be hidden. This method will be
described later below. In both cases the other party will have to have their copy of RobotBASIC.Exe. A
third way to share your programs is as a compiled stand alone executable which has the advantage of not
requiring the RobotBASIC interpreter to be running on the target machine. See later for how to do this.

To run a program you can use either of the following two methods (also see Sharing an Executable
below) :

From within the IDE
This method requires that you run the RobotBASIC.exe, then use the editor to load the program (.Bas
file) you want to run then use Ctrl+R or other methods to run the program. This method is the same as
when you were developing a program and has the advantage of being able to view the program code and
be able to modify it if needed (if the text .Bas is being used).

RobotBASIC V4.2.0

Page 8 of 276

Directly From Windows OS
Using this method you will be able to run the .Bas file directly without having to run RobotBASIC first.
The program will run and when terminated you will be back to the operating system (except in certain
cases).

This method is useful for people who want to run the program but without having to know about
RobotBASIC and all the actions required to load and run programs within the IDE. Also this method is
convenient since you do not have to go through the steps of running RobotBASIC, loading the .Bas,
then after running it having to close the RobotBASIC IDE to go back to the OS.

To be able to use this option the OS has to be setup (one time process) before the first time you perform
the action. The OS has to be told to use the RobotBASIC.exe to execute the .BAS file every time you
double-click on a .BAS file. This setup process has to be performed only once for your computer. Once
performed you will be able to double-click on any file with the extension .BAS and the OS will first run
RobotBASIC and tell it to load and run the .BAS file all automatically. Also when the program
terminates RobotBASIC will automatically close up and return you to the OS (except in certain cases).
The process of how to do this will be described later below.

Sharing Finalized Programs
Once a program is fully functional there are three ways you can share it with others:

Note: If your program uses additional files like bitmaps, wavs, or other files then you will also have to
share these files.

Note: If your program makes use of the TWAIN image capture functions or the USBmicro functions
then you will also have to distribute the required DLLs.

Note: Other than with the Executable method of sharing your programs, the end user will have to have
the RobotBASIC.exe program on their system.

Sharing a text .Bas file
During the process of creating your program, you have been saving it all along as a text file with the
.BAS extension. This text file can be given to any person you wish to use your program (they need to
also have a copy of RobotBASIC.exe). This method of sharing your programs has the advantage that the
users can read your program and can learn from it and can also edit it, do modifications or
improvements or can cut and paste routines for use while making their own programs.

Sharing a binary .Bas file
If you wish to share your programs with other people but do not wish to allow them to view your source
code, you need to save your program as a binary file and distribute this file instead of the text file. They
also need to have a copy of RobotBASIC.exe.

This binary file will still have the .Bas extension and will be used in exactly the same manner as the text
file. As far as the end user is concerned the process of running the binary file or the text file is exactly
the same with no difference whatsoever. The only variation is that if the user executes the binary file
from within the IDE (see above) she/he will not be able to view the file, edit or modify it. Instead a
message will be visible within the editor screen that explains that the file is a binary file, but that it can
be otherwise executed as any other text file.

To save your program as a binary file, load it within the editor and use the menu option Save as Binary
from under the File main menu. The system will show you a dialog box that has a suggested name for
the file. This suggested name is the same name as the loaded text file with the character '_' added at the

RobotBASIC V4.2.0

Page 9 of 276

end of the file name (just before the .). You can accept this suggested name or enter your own name. For
example if the text file name is MyFile.Bas then the suggested name will be MyFile_.Bas.

The naming method suggested by the system is useful for you to be able to distinguish binary files from
text files. When you see files named WhatEver.Bas and WhatEver_.Bas you will know that the first one
is the text version and the second is the binary version without having to look inside the files. If you do
not like this standard create your own but do stick to a standard that makes it easy for you to identify the
files without having to load and inspect them.

The file saved must still have the .Bas extension and for all intents and purposes it is the same as the text
version except that it cannot be viewed by any programs since it is a binary file and if viewed it will
contain nothing but garbled characters. You can now share your program with others assured that no one
can discern your algorithms.

Sharing a compiled Executable (.EXE) file
RobotBASIC allows you to compile your program to a standalone executable (EXE) file. The sub-menu
option File / Create EXE will compile the .BAS program (text not binary) you currently have active in
the Editor and create a standalone Windows Executable program (EXE). You will be given the option to
change the name of the program, but as a default it will have the same name as the .BAS file but with
the .EXE extension.

The resulting EXE will run on any Windows OS (95 onwards). If your program makes use of the
TWAIN functions then you will need to distribute the EZTW32.DLL with your program. Also, if your
program makes calls to the USBmicro functions then you will also need the USBm.dll.

If your program expects WAV, BMP or other files to also be there then you should also distribute these
with the program. The RobotBASIC_HelpFile.rtf help file will of course not be needed.

Distributing an executable will alleviate the need to have a version of RobotBASIC on the target PC.
This is a major advantage when end users are not programmers, also the setup should be a lot simpler
since the executable can run without any setup required.

If you have a web site you can post the executable on it where it can also be run directly from your web
site, unless you make use of the DLLs or other additional files (bitmaps or wavs etc.).

Another advantage of creating an executable of your program is that it will always run as when it was
compiled regardless of what version of RobotBASIC there is out there.

Setting up the Operating System
To be able to run .Bas files directly from the operating system you need to tell the OS that
RobotBASIC.exe is the file to use to execute .BAS files.

You have been using this method of running files all along with other systems. For example, if you double
click on any file with the .TXT extension the OS automatically executes NotePad.exe and gives it the .Txt
file. You can setup the OS to do the same with .BAS files and RobotBASIC.exe.

Note: You may have other programs that use the .BAS extension and your OS may have been setup to use
these with the .BAS extension. You have to decide whether you want to override this or not. There
are other methods (described later) to still be able to run RobotBASIC with a .BAS file without
doing these steps. However, this is the most convenient and preferred method.

RobotBASIC V4.2.0

Page 10 of 276

The process described below assumes you know how to use windows tools such as the Windows Explorer
and you know how to navigate around your hard drives and directory structure. If you do not, recruit
someone who knows how to do this to assist you.

1- Navigate (using Windows Explorer) to any file that has the .BAS extension (either one you created
or one given to you).

2- Use the mouse to right-click on the file (click using the right mouse button).
3- A popup menu will show. This menu has an option Open With. Put the mouse pointer on this option.

This option may have a sub menu or it may not. If it does not have a sub menu click on it. If it has a
sub menu then the submenu will have an option called Choose Program... or Setup Default
Program... or something to the effect (usually the last option). Click on that.

4- The previous step will now have you presented with a dialog box that has some program names and
some buttons and a check box. The check box will have the title Always Use This Program To
Open these files, or some equivalent. Click on this check box to check it.

5- One of the buttons at the bottom will have the title Browse or Other. Click on this button. This will
present you with an explorer screen that enables you to navigate to the location where the
RobotBASIC.exe file resides. Use this screen to do so and select the RobotBASIC.exe file. For
example the RobotBASIC.exe may be sitting in the directory on your C: drive called Programs
Files in a sub directory called RobotBASIC. So navigate to the C: drive then to the Program Files
then RobotBASIC. In there you will see the file RobotBASIC.exe. Double click on it.

6- When you come back from selecting RobotBASIC.exe you will be at the dialog box you saw in step
4. Now the button labeled OK will be enabled. Ensure that the file RobotBASIC.EXE is highlighted
in the list above and that the check button in step 4 is checked then press the OK button.

7- That is all. Your OS is now setup to run any .BAS automatically with RobotBASIC.exe. To test this
go back to where you have some .BAS files and double click any of them. You should see the
program running.

Once you setup the system to automatically run .Bas files, you can also create shortcuts to the .BAS file so
that you won't have to navigate to the location of the file to double click on it and run it. The shortcut can
be placed in a convenient location (such as the desktop). Also shortcuts can have a nice Icon that indicates
what the file is.

Other Methods
There are two alternatives to the above. However the above is the best and most convenient method.
The first alternative given is the second preferred alternative and also has an additional advantage of
using shortcuts, which are a convenient way to run programs rather than navigating to a location of
where .Bas files might reside. With these alternatives you can have RobotBASIC automatically load
and run the .BAS file without the end-user having to explicitly run the exe then load and run the
program from within the IDE. Also these two methods do not require that the OS know that the
RobotBASIC.exe is the default executer for the .BAS extension files.

Using Shortcuts
 1- Right click on your desktop and select the menu option called New. This option will show a

submenu. One option in the submenu is called Shortcut. Select this option.
 2-You will be presented with a dialog box that allows you to use the Browse button to navigate to

where the RobotBASIC.exe file resides. Do so and then press Next.
 3- Give a name to the shortcut that reflects the name of the .Bas file you want to eventually have

run through this method.
 5- The shortcut will now be on the desktop. Right click on it.
 6- Select the Properties option (at the bottom).

RobotBASIC V4.2.0

Page 11 of 276

 7- You will now have a dialog box that shows the details of the shortcut. The box labeled Target
will have the RobotBASIC.exe file name and path highlighted. Use the arrow keys to go to the
end of this text.

 8- Right after the .exe type a space then type in the name of the .BAS file you wish to have run
when this shortcut is executed. You have to type the name of the .BAS file including its
directory path. If you do not know this you can find it out by using the Windows Explorer to
navigate to it. The Caption at the top left of the window of the windows explorer program will
have the exact path and file name once you have the .BAS file highlighted. You can use this
information to type the text required.

10- A little lower there is an edit box labeled Start In:. Delete what is already there and type in the
same path as the .BAS file. This is the directory where the .BAS resides (without the file name).

11- Press OK and you will now have a shortcut on your desktop that will execute the .BAS file using
RobotBASIC.exe any time you double click on it.

12- If you do not want the shortcut to be on your desktop you can use Windows Explorer to navigate
to where you want it and then drag and drop the shortcut from the desktop to that location.

You can also edit the icon of the shortcut. If an .ICO file is available you can change the default icon of
the shortcut so that it uses the available .ICO file instead. This has the advantage of making the shortcut
have a visual cue to what the program does and is pleasing to the end user.

As a programmer you can share shortcuts with your end-users, but unfortunately the shortcuts have
absolute path information and cannot be made relative. So you still have to make sure that the paths in
the shortcut are correct if you want to share them. You also may have to control where the end-user
places the RobotBASIS.exe file and the .BAS files.

Using Drag and Drop
Use the above procedure to create a shortcut to the RobotBASIC.exe (just the exe no .BAS) and have
this shortcut available on the desktop. The user can then drag any .BAS file and drop it onto the
shortcut. This will execute RobotBASIC and automatically load and run the .BAS file.

Controlling How Your Programs Terminate
There are 4 combinations for how to run RobotBASIC programs:

1- A Text .BAS file from within the IDE
2- A Binary .BAS file from within the IDE
3- A Text .BAS file from the Operating System (OS)
4 - A Binary .BAS file from the OS.

Note: The information in this section does not apply to compiled files. Compiled standalone
executables will always terminate back out to the OS.

Each one of the options will have a different behavior in how the system will startup and terminate.
RobotBASIC gives you three statements for terminating a program (End, Terminate and Exit). Also it is
possible for the user to close the program window while running, effectively aborting the program.
RobotBASIC gives you five methods for controlling the abortion procedure (see AbortMethod for
details). Additionally, it is possible for your program to generate an error and the way the system will
terminate again depends on which running style (one of the above 4) is being used.

Thus to summarize, you have 3 program termination statements, 5 program abortion methods and the error
condition, for each one of the 4 program execution styles. In addition you also have the condition where
you do not give a specific way to exit the program or to handle abortion (i.e. two more default conditions).
All together there are 50 possibilities. Do not fret though; most of these will be the same. See the table

RobotBASIC V4.2.0

Page 12 of 276

below while following the description that follows. Also refer to AbortMethod, and the End, Terminate,
Exit and onAbort statements in the Flow Control Statements section, as well as AbortFlag().

From The IDE From the OS

Text Binary Text Binary

Termination
Statements

None See Note 1 See Note 1 Goes Back To Editor Exits To OS

End
Stays in the Terminal
Screen (See Note 2)

Stays in the Terminal
Screen (See Note 2) Goes Back To Editor Exits To OS

Terminate Goes Back To Editor Goes Back To Editor Goes Back To Editor Exits To OS

Exit Goes Back To Editor Goes Back To Editor Exits To OS Exits To OS

Abortion
Control

None Goes Back To Editor Goes Back To Editor Goes Back To Editor Exits To OS

am_Normal Goes Back To Editor Goes Back To Editor Goes Back To Editor Exits To OS

am_Exit Goes Back To Editor Goes Back To Editor Exits To OS Exits To OS
am_Error See Note 3 Goes Back To Editor Exits To OS Exits To OS

am_NoAbort No Action (Note 5) No Action (Note 5) No Action No Action
am_Flag No Action (Note 6) No Action (Note 6) No Action No Action

Runtime
Error See Note 4

Goes Back To Editor
See Note 4

Exits To OS
See Note 4

Exits To OS
See Note 4

Note 1: If you do not have a specific termination statement for the program the termination method will
follow the specified abortion method. If there is no specified abortion method then the interpreter will
assume an End statement. However, you should always have a specific termination statement; End,
Terminate or Exit. It is also advisable to also specify an abortion handling method.

Note 2: When the program terminates and the Terminal screen stays visible, you can close the window
using the X on the top right corner (or other OS methods). This option is useful to continue seeing the
program output even after it terminates. Also even when the Terminal screen is closed (as occurs in other
combinations) you can still see the program output again by redisplaying the Terminal screen by pressing
Ctrl+T from the Editor (or use the menu or speed button). You can do this any time to see what the output
of the last executed program. The Terminal screen is not erased after the program terminates until a new
program is executed or you exit the IDE.

Note 3: RobotBASIC provides many methods for debugging programs. This is one additional way you can
find errors in a program. You can have the program running and at some point during the execution
manually abort the program. Normally the system will just go back to the editor if you are running from
within the IDE. However, if you use this abort capturing method the system will also highlight and locate
for you the line of code which was about to be executed just before you aborted. This can be useful in
locating the area of code that may be causing trouble but is not causing an error that stops the program.
This feature is only possible though if you are not running binary files nor running from the OS rather than
the IDE.

RobotBASIC V4.2.0

Page 13 of 276

Note 4: If an error occurs during the execution of a program (not using OnError trapping) and it is not a
binary file or is not being run from the OS, the system will highlight and locate the line in the source code
that caused the error. In all cases however an error message is given that indicates the type and nature of
the error and the line number in the code that caused the error. If you are running a text .BAS within the
IDE you will also have the added benefit of seeing the line that caused the error. If you are running a
binary file from within the IDE the system will just go back to the editor. If you are running the program
from the OS (binary or text) the system will go back to the OS. Also see the OnError flow control
statement.

Note 5: The am_NoAbort abortion capture method will prevent the user from being able to abort the
program and prevents the closing of the Terminal screen window by any method. This is a useful option if
you need to always have the user terminate the program using an option you provide programmatically.
This option can be a button or any other user interface method. If the user tries to close the window a
message will be given to the user using a dialog box that explains that it is not possible to close the window
and that another method should be used. See AbortMethod.

Note 6: The am_Flag method performs exactly the same function as the am_NoAbort option except for
two differences. No message will be given to the user and a flag within the system will be set every time
the user tries to close the window. It is possible to interrogate the status of this flag to find out whenever
the user tries to abort and take action programmatically. See the AbortMethod and AbortFlag(). Also see
the onAbort statement.

Running from within the OS
The intent of the above mechanisms is to give you control on how to terminate the program. In all
cases, other than when you prevent program abortion, running a binary file from within the OS will exit
back to the OS once the program is terminated regardless of what method you use. If a text file is being
run from the OS the interpreter will exit back to the OS if you specifically request an Exit or an error
occurs. Otherwise, the interpreter will go back to the editor screen within the IDE.

If you run programs from within the OS, the editor window will not be available and will not be shown.
So only the Terminal screen will be showing. The editor will be revealed when the program terminates
and is a text file and there was no error, nor a specific Exit termination method.

Running from within the IDE
When you run programs from the IDE, it is assumed that you want to stay within the IDE when the
program terminates. Also the Editor window will be visible but will be behind the Terminal screen.
You are able to view the contents of the editor.

In most cases, when the program terminates, you will be back inside the Editor screen and the cursor
will be where you had left just before running the program. However, in the case of the am_Error abort
capture method and in the case of a real error a line will be highlighted (see Note 4 above).

If you do not specify a specific termination or abortion method or you use the End statement the
Terminal window will remain active above the Terminal screen (see Note 1 above).

Study AbortMethod and AbortFlag() and also the End, Terminate, Exit, OnError and OnAbort flow control
statements.

RobotBASIC V4.2.0

Page 14 of 276

Overview Of The Language
RobotBASIC is a line-oriented programming language. A program is a set of lines, where each line is
either a blank line or contains a Statement. A line ends at the end of the line i.e. a line ends with a
CR+LF (Carriage Return + Line Feed).

Therefore a program is a collection of statements like this:
Statement
Statement

Statement
Statement
….

Statements
A statement is what makes a RobotBASIC program achieve the tasks it is designed to accomplish. There
are various types of statements:

Assignment Statements
Command Statements
Flow Control Statements
Labels
Comments
Function call

Labels and Comments can be combined on the same line with other statements (see below).A statement
contains various other elements that help in achieving the functionality of the statement. These elements
are:

- Simple Variables
- Array Variables
- Expressions

Expressions contain further elements that constitute the expression. These elements are:
Simple Variables
Array Variables
Constants
Strings
Numbers

Which are of the following types:
- Integer Numbers
- Floating Point Numbers

Operators
Which are of the following types:

- Parenthesis
- Mathematical Operators
- Comparison (Relational) Operators
- Logical Operators
- Bit-wise Operators

Functions
Which can contain expressions.

RobotBASIC V4.2.0

Page 15 of 276

Line Comments
Comments are an important part of any programming language. Without good comments a program can
be hard to understand. Without good comments, even the person who wrote the program may not be able
to follow the program’s logic when reading the program at a later time.

Comments are not executable statements. They are used to annotate a program and format the text of the
program to look nice and to make the logic of the program understandable by someone trying to read the
program. Comments can also divide the program in sections, making it easy to see where various
operations begin and end.

Comments can be in a line on their own, or they can be in line with a statement. Any text in a line after
and including the comment indicator will be ignored and not considered as part of the statement.

RobotBASIC allows for two methods of indicating a comment. The character combination // is one and

the character ‘ is another. For example:

//this is a comment on a line by itself
‘this too is another comment
d = 9 //this is a comment in line with a statement
b = d*2 ‘so is this comment

Block Comments
Sometimes you need to block off a whole block of code so as to try out the program without the code or
maybe you need to remove the code but do not want to delete it yet. One way you can do that is to
comment each line with the // symbol (or '). This definitely works but you may have many lines and
going through each one to put a // is a lot of typing and also if you need to reinstate the code later you
have to do a lot of work to delete all these previously typed //.

This is why the block comment will save you a lot of typing. However there are a few rules you need to
follow.

A comment block is started with a /* and ended with a */ . But there are conditions on using these.

1- You can put the /* anywhere in a line of code.
2- ALL code from that point until a */ is encountered becomes a comment and is not executed as

code.
3- The */ symbol MUST BE the last thing in a line. So no other code or text can come after it (not

even a comment).THIS IS IMPORTANT it has to be the absolute last two characters on a line. If
the */ is not the last thing in a line it will not be taken into account and thus causing the whole rest
of your program to become a comment. This can be useful. If you want to comment the whole of
the rest of the program from a certain point onwards then just put a /* from the point you need and
do not put a */ anywhere later as the last thing on a line.

4- You cannot nest block comments. So you cannot have /*/*.......*/.....*/. RobotBASIC will
see the first /* and start looking for a */. The second /* will not be considered. So later it will see
the first */ and will think that this is the end of the comment block. Later when the second */ is
encountered it will cause a syntax error. So you cannot nest comment blocks. If you want to nest a
larger block that would include a previous comment block then just uncomment the inner
comment block, or use the // to comment out the first */.

RobotBASIC V4.2.0

Page 16 of 276

Example:
For i= 0 to 5
 print i
 //blocked off code with */ as the last thing in a line
 /*print 3
 print 4*/
 /*********************
 this is also a comment block
 this text will not be taken as code
 **********************/
 /******this is a comment ******/
 print /*5 notice the 5 is now part of the comment block
 *****/
 /*
 print 20
 */
next

Assignment Statements
An assignment statement is where you assign a value to a variable. Variables are storage spaces for
values that will be used in the program logic. Variables can be simple variables or Array elements. See
the sections below on Variables and Arrays for more detail on what a variable or array is and how to use
it. In the discussion below Var means a simple variable and VarA[…] means an array element. Also see
the section below on Expressions for further details of what an expression is. Assignment statements
are like this:

Var = Expression
OR Note: Also see the Assignment Operators in the Operators Section.

VarA[…] = Expression

For example:
Distance = 5.4 //--assigns the variable Distance the
 //--value 5.4
TimeTaken = 2.1
Speed = Distance/TimeTaken //--Speed will be assigned
 //--the result of the
 //--expression
Dim MailBoxes[20,10] //--see later for what this means
MailBoxes[5,3] = 9 //--assign an array element

Note: You can place multiple assignment statements on the same line by using the \ character. So instead
of saying:

a = 1
b = 2
c = 3

you can say:
a = 1 \ b = 2 \ c = 3

This helps for making more compact code (see the Line Break Operator description below).

RobotBASIC is a versatile language in that you do not have to specify the type of a variable. The
type of the variable is determined by the data being stored in it. Also the type of a variable can
change if you reassign it a different type value. However you can change this and make RB become a
strict typing language with the use of Declare.

RobotBASIC V4.2.0

Page 17 of 276

Variable names cannot include %,$ or # as in other BASIC implementations. You cannot use these
characters as part of variable names. These characters are used as operators (see Operators section
below).

A variable does not have to have been specified prior to the assignment. But if you use this format a =
a+4 then the variable must be previously specified because otherwise the interpreter will not know what
the original value was and will give an error.

If the resulting expression is a string/integer/float the variable will be created and assigned that
value and type. If the variable already exists but is of a different type and/or value it will be erased
and assigned the new type and value. However also see Declare that prevents this.

The Array must have been created using Dim or Data. The element specification has to be legal for the
array dimension specified in Dim. The array element is treated as if it is a variable name and the above
information regarding variables is applicable.

The line break operator
RobotBASIC is a line-oriented language. This means that assignment, command as well as flow control
statements have to occur on lines by their own. Also a statement must keep going on the same line no
matter how long the statement may be.

However, the \ operator allows you to modify these to restrictions. Think of \ as acting as a line break
substitute in certain cases and as a line break canceller in other places.

As a line break substitute
In this case the \ character allows you to put multiple statements on the same line and thus will act as
if it were a line break. For example you normally have to do this

x = 30+a
b = 5
d = x+b

But with using the \ operator you can do the following: (notice how the \ character acts as if it is a
line break)

x = 30+a \ b = 5 \ d = x+b

This is a useful space saving and also can help put logically related actions on the same line as a
grouping.

As a line Continuation operator
In this case the \ character allows you to break up a lengthy line into two or more lines so as to keep
the code from going too far to the right and thus forcing scrolling off the screen. So normally instead
of saying:
 circlewh Centroids[i,0]-5,Centroids[i,1]-5,120,120,black,black
//draw triangular centroid of each face

You can now do this:
 circlewh Centroids[i,0]-5,Centroids[i,1]-5,\
 10,10,black,black //draw triangular centroid of each face

There are conditions for where you can use the \ character to break a line of code:

RobotBASIC V4.2.0

Page 18 of 276

1- It must be the absolute last thing on the line followed immediately with line feed (i.e.
cr/lf i.e. Enter).

So you cannot do
circlewh Centroids[i,0]-5,Centroids[i,1]-5,\ //this is
illegal
 120,120,black,black

2- You cannot break up PRIMITIVES. Primitives are numbers, variable names, command
names, function names and strings, So you cannot break a line of code in the middle of a
variable name or a numeric value or a string (i.e. between the "").

So you cannot do
circlewh Centroids[i,0]-5,Centr\
 oids[i,1]-5,120,120,black,black //this is
illegal in middle of a variable/array name
circlewh Centroids[i,0]-5,Centroids[i,1]-5,1\
 20,10,black,black //this is
illegal in the middle of a number
circlewh Centroids[i,0]-5,Centroids[i,\
 1]-5,10,10,black,black //this is allowed but not
advisable due to readability
print "this is a lengthy string primitive that cannot \
 be broken up over multiple lines" //this is
illegal in the middle of a string
print "this is a lengthy string primitive that cannot"+\
 "be broken up over multiple lines" //this is one
you can do it legally
print 456+sin(cos(tan(sqrt(p\
 i())))) //this is illegal in the middle of
a function name
pri\
 nt 456+sin(cos(tan(sqrt(pi())))) //this is illegal in
the middle of a command name
print 4;\
 5;\
 sin(\
 pi()\
) //perfectly legal....but WHY would you
do that???

3- You cannot break the line after an inline comment operator (// or ')
So you cannot do

circlewh Centroids[i,0]-5,Centroids[i,1]-
5,120,120,black,black //this is \
 illegal

RobotBASIC V4.2.0

Page 19 of 276

Command Statements
RobotBASIC has an extensive set of commands that achieve a variety of tasks like drawing lines on the
screen, accepting input from the user, printing results on the screen and so on. These commands are the
heart of RobotBASIC and are what makes the language achieve most of its actions.

Some commands have parameters and some do not. Some commands require a specific number of
parameters and some have optional parameters. Parameters are how values are passed to the command
and results obtained from it. A comma must separate all parameters. Commands look like this:

CommandName parmater1, parameter2…

If the parameter is a value to be passed to the command then it must be an Expression that results in the
value (see Expressions section below). Some parameters may have to be numeric (float or integer) and
some may have to be strings. In either case the Expression must result in the appropriate value.

If the parameter is a value to be obtained from the command, then that parameter must be a simple
variable (see Variables section below). The command will use the values (expressions) passed to it,
perform its action and then assign values to the variables passed to it (when appropriate).

Some commands act on an entire array; in that case the parameter must be an array name (see Arrays
section below for details on arrays). For a list of commands and a description of their action see the
various sections below.

New in version 4.1.0 and above:
Some commands have optional parameters which you do not have to specify. In previous versions, if
you wished to specify an optional parameter that comes after preceding optional parameters you had
to specify values for all these preceding parameters. However, now you can skip these preceding
parameters and use a space (or many or none) without specifying any value at all and just go on to the
next parameter (you still need the commas though). For example in the command Circle the last two
parameters are optional. Say you want to specify the second parameter and accept the default value for
the first one. You would say:
Circle 10,10,100,100, ,red //notice the missing parameter in all four
lines
Circle 10,10,100,100,,red //you can use one space or none
Circle 10,10,100,100, ,red //or many
Circle 10, ,100,100, ,red //This line will cause an error since the
second

 //parameter is required but it is not
specified

Commands are not case sensitive, so Print and print are the same. Here are some examples of
commands in action:

rLocate 100,100,90 //initializes the robot and puts it
 //at location 100,100 with heading 90
rForward 20 //make the robot go forward 20 pixels
rTurn 40 //make the robot turn 40°

RobotBASIC V4.2.0

Page 20 of 276

Labels
A Label is a marker to mark a certain location in the program. This marker is given a name and can be
used within certain statements to refer to that location in the program. You can see how this is done in the
Flow Control Statements section.

A label can be in a line by itself, or can be in line with another statement, but must be first in the line. A
label must end with the character : and must start with a letter but after the first letter any combination of
numbers and letters can be used (read below for other label styles).

Labels are case sensitive, so Label1: and label1: are not the same. Here are some examples of the
use of labels:

ProgramStart: //this is a label on its own
 Input "Enter a number ",n
 Print "You have entered ",n
 If n < 5 then goto ProgramStart //goes to the position
 //marked by the label
 //if input is less than 5
 If n > 30 then goto Pos1 //so does this one if the
 //input is greater than 30
 K = n*2
 Print K
End // stops the program here
Pos1: Print "Too high a number" // this shows a label in
 // line with another statement

There are three styles for labels:

Alpha-Numerical Style 1
This is the clearest style of all the other styles and is the easiest to pick out while scanning the source
code of a program. In this style of labels you must begin the label with a letter followed by any
combination of digits and letters and finally ended with the : character. You must end this label style
with the : character and commence with a letter. Example:

//this is a label on its own
Label_1:
 print 20
//a label in line with another statement
Label_23: print 40
 goto Label_1
//when you refer to the label do not use the :

Note
- When referencing a label in a statement like Gosub or Goto do not include the : character. The : is

put as part of the label only at the label position to define the label and is not be used in statements
referring to the label.

- Labels are case sensitive. So Loop:, loop:, and LOOp: are all different.
- Labels can be up to 255 characters long, so do use meaningful names for Subroutines and looping

labels.

RobotBASIC V4.2.0

Page 21 of 276

Alpha-Numerical Style 2
This style is similar to programming languages other than BASIC and is supported by RobotBASIC for
people who like this style. A label of this style must begin with the character : followed by any
combination of digits and letters. For example:

//this is a label on its own
:Label_1
 print 20
//a label in line with another statement
:2_Label print 40
//when you refer to the label do not use the :
 goto Label_1

Numerical Style
This style supports the standard BASIC line numbers and is not a recommended style. You can use any
combination of digits that are the first thing in a line or the only thing in the line. A variation to this style
is supported where after the first digit you can use a combination of letters and digits, but you must start
the label with a number. For example:

//10 is the numerical label in line with another statement
10 print 4
20 print 9
//4A2C is the other style inline with another statement
4A2C print 100
//200XYZ1 is the other style in a line on its own
200XYZ1
 print "Hi there"
//30 is the numerical label in a line on its own
30

 goto 10

Expressions
 An expression is a formula that manipulates numbers, strings or other expressions and returns a result.
You can use numbers, strings, variables, constants and/or functions in an expression (See below for
details on each of these elements). An expression results in any of the three basic elements of
RobotBASIC, an integer number, a floating-point number or a string (see below for details).

In many statements, parameters are needed for the statement to function. Anywhere a parameter is
needed an Expression can be used that would result in the correct type required by the statement.

Operators are used in an expression to manipulate the sub-parts of an expression. These operators are
parenthesis, comparison operators, math operators, logical operators and bitwise operators (see below for
details).

There are many functions in RobotBASIC that accept parameters and return a value. These functions can
be used within expressions, are themselves expressions and are given expressions as parameters (see
below for details).

Expressions can contain previously assigned variables and/or array elements. If an array element is
specified then it must have been assigned and be within the range of the array's dimensional constraints
as specified in Dim. Expressions can also contain functions (see Functions section below). Expressions
also can contain Bitwise, Logical, Comparison and Math operators (see Operators section below)

print sin(4+5/3.0)*(3|4)+ ((a>b)&(c<5))
n = "this{"+b+"} = "+c

RobotBASIC V4.2.0

Page 22 of 276

Note: If all the numbers involved in an expression are integers the result will be an integer. If any of the
numbers is a float then the result will be float. For example B =
sin(pi(2*Theta^2))/(3+4*Acceleration) results in a float even though all the numbers are
integer since sin() returns a float.

Numbers
Numbers are used in all computer programs. There will hardly ever be a program that does not use
numbers. In RobotBASIC there are four types of numbers:

Integer Numbers (whole numbers)
The range for Integer numbers is from -2,147,483,648 to +2,147,483,647
For Example:

Age = 46 //assigns the variable Age the
 //integer value 46

Hexadecimal Integer Numbers (whole numbers)
The range for Hexadecimal Integer numbers is from 0x00 to 0xFFFFFFFF
For Example:

n = 0xAF //assigns the variable n the integer value 175
print n //prints 175
print Hex(n) //prints AF
print ToNumber("0x"+Hex(0xAF)) //prints 175
print 0xFFFFFFFF //prints -1
print Hex(-1) //prints FFFFFFFF

Note: Hexadecimal numbers are stored internally as integers. If you specify a hexadecimal
number larger than 0xFFFFFFFF you will get 0.

Note: 2's compliment applies to the Hexadecimal numbers. If the MSBit is set then the
number will be a negative number.

Binary Integer Numbers (whole numbers)
The range for Binary Integer numbers is from 0%00 to 0%1111111..... up to 32 bits
For Example:

n = 0%100010 //assigns the variable n the integer value 34
print n //prints 34
print Bin(n) //prints 100010
print ToNumber("0%"+Bin(0%100010)) //prints 34

Note: Binary numbers are stored internally as integers. If you specify a binary number
larger than 32 bits you will get 0.

Note: 2's compliment applies to the Hexadecimal numbers. If the MSBit is set then the
number will be a negative number.

Note: The % sign is also the Percent operator. If it is preceded immediately by only one
digit which is a zero and followed immediately by a 0 or 1 it will be considered as the
binary number indicator, otherwise it will be considered as the Percent operator. If
you want to use the Percent operator and are not sure then just add spaces between
the numbers and the operator.

print 0 % 1 //prints 0 (i.e. 0 percent of 1)
print 0%1 //prints 1 (i.e. binary number with only LSBit set)

RobotBASIC V4.2.0

Page 23 of 276

print 10%11 //prints 1.1 (i.e. 10 percent of 11)
print 0%11 //prints 3 (i.e. binary number 11 = 3)
print 1%11 //prints 0.11(i.e. 1 percent of 11))

Floating Point Numbers (numbers with decimal fractions)
The range for Floating Point Numbers is from +/-2.23 10^-308 to +/-1.79 10^308
You can use the letter e or E with a + or - to indicate powers of 10 as shown in the example below.
For Example:

//assigns the variable Distance the floating
// point value 5.78
Distance = 5.78
C = 3.1e+8 //speed of light is 3.1 * 100000000
M = 0.1E-6 // M = 1/10000000

RobotBASIC has many functions and commands that require and/or return numbers. There are
functions to convert numbers and manipulate them. When an Integer number is required, if you pass
a float instead, the system will truncate the number into an integer by removing the decimal
fractional. If float is too large to be converted into an integer (see Integer limits above) an error will
be issued.

When RobotBASIC evaluates mathematical operations with a mixture of floats and integers the
result will be a float. However, if all the numbers involved in an expression are integers then the
result will be an integer. This is especially important when performing division. For example:

A = 5 \ B = 6 \ C = 4.2
Print A/B //prints 0
Print C/B //prints 0.7
Print 1.0*A/B //prints 0.83333

Strings
Strings are text and must be enclosed within quotes. In many programs strings are required to
communicate with the user. Any time you need to give results to the user in a friendly fashion, or prompt
the user regarding what to do next or how to use your program, strings will be required.
For Example :

Print "Hello World" // Hello world is a string

RobotBASIC has many functions and commands that require and/or return strings. There are functions to
convert strings and manipulate them. Strings can be as long as required, there is no limitation on the
string size.

You define a string within your program by using the quote " character. A string is surrounded by a pair
of quote characters. If you need to use the quote character within the string as part of the string you must

make it a double "".
For Example:

Print "Hello ""World""" // will print Hello "World"

You can add two strings
temp = "test" + "ing" //temp will be "testing"

You can add a string and a variable that is string
temp = "test"
print "I'm "+temp+"ing" //will print I'm testing

You can add a string and a number as long as the string resulting expression comes before the number.

RobotBASIC V4.2.0

Page 24 of 276

The number will be converted to a string. Use ToString() to do the same regardless of order.
a = 12.3 \ b = "Result = " \ c = b+a
print "The "+c //prints The Result = 12.3
print "The ",b,a //prints The Result = 12.3
print "The ",b+a //prints The Result = 12.3
print "The ",b+ToString(a) //prints The Result = 12.3
print a+b //Gives An Error

You can compare two strings for equality. But be careful about > and < since capital and lower case
letters will affect the result. You can also use the $ operator

if "tin" $ "testing" then print "yes" //prints yes
//ExprS1 $ ExprS2 will test to see if ExprS1
//occurs within ExprS2

You can use InString() to do a similar action
if InString("Testing","tin") > 0 then print "yes"
//will print yes

Simple Variables
A Variable is a named storage area to keep numbers or strings. Variable names must start with a letter
but then any combination of letters and numbers can be used. Variable names are case sensitive, so
Distance and distance are different.

The length of a variable name can be up to 255 characters, so you can use names like
DistanceToBeacon_1. It is important to use meaningful names in your programs because this makes your
programs easier to follow and understand.

A variable can be used anywhere a number or string is used. As long as the variable has been assigned a
value before using it, it can substitute for its value. A Variable is assigned a value in an Assignment
Statement (see above) or by passing it as a parameter to a command that will assign it a value.

Unlike standard BASIC or most programming languages, variables in RobotBASIC do not have to
be predefined as being of a specific type. Any variable can be of any value type (Float, Integer or
String). Additionally you can reassign a value of a different type to a variable that already holds a
certain type. If a variable exists when it is being assigned a value, it does not matter what the old
value is and of what type it is, the new value will replace the old one. If the original value is an
integer and the new value is a string the variable type will be changed to a string, and vice versa.
The same is true for floats and integers and floats and strings.

In certain operations RobotBASIC will convert between variable types as necessary if it can. For
example if you add an integer to a string the integer will be converted to its string representation
and concatenated to the string. If the operation cannot be performed the system will issue an error.

Note: See Declare to see how to convert RB to perform strict typing of variables

The name of a variable cannot contain any operators such as %,$ or # . You cannot use these characters
as part of variable names. These characters are used as operators (see Operators section below). You can
use the underscore character '_'.

For Example:
Message="Hello World" //assigns a variable a value
Today=Date(1) //assigns a variable the value of a function
Print Message // will print Hello World
Print "Today is ",Today //will print Today is 2007/03/01

RobotBASIC V4.2.0

Page 25 of 276

rLocate 400,500
rGps X_Pos,Y_Pos //will assign X_Pos the robot’s x
 //position and Y_Pos the y position
Distance=PolarR(X_Pos,Y_Pos) //calculates using a
 //function using variables
Message = 8+4 //change Message to a number

- Variables are case sensitive. So Theta and theTa and theta are all different. This can cause logical
errors if you miss-type the names. Take care.

- Variable names can be up to 255 characters long so do use meaningful names to avoid variable clashes.
For example for a counter in a subroutine called Delay use Del_1, Del_2 etc.

- Do Not Use variables with the same name as Commands/Functions/Constants or Labels An error will
occur if you do.

- All variables are global (except ones created within Call/Sub subroutines). This means that once a
variable has been defined and assigned a value it is accessible from any statement in the program from
that time onwards (except within Call/Sub subroutines). So if you use a counter inside a subroutine in
a For/Next statement like For I= 1 to 6 and I is being used in a counter in the calling section,
unpredictable logical errors may occur. So be careful in variable naming assignments and especially
within GoSub subroutines. You may want to use Call/Sub subroutines to take advantage of Local
Scoped variables.

Global and Local Scoping:
Once a program starts, any variables created during the progress of the program are Global variables
that can be accessed anywhere in the program. However there is an exception to this rule. In RB there
are two ways you can create a Subroutine (see later).

One way uses a Label to mark a section of code and uses the statement GoSub to branch to that section
and returns once a Return is encountered. These are called Gosub subroutines. Variables created within
this type of subroutine are still considered to be global variables and are available in other parts of the
program after the return from the subroutine, also variables created elsewhere are available within the
GoSub subroutine and can be changed within the subroutine and the change will be in effect outside the
subroutine.

The other method for creating subroutines is with the use of the Sub statement and to call the
subroutine using the Call() statement. These are called Call/Sub subroutines. Within the body of this
type of subroutine variables have Local scoping. These subroutines act as if they were an independent
program and any variables created during the progress of the subroutine will not be available outside
the subroutine (i.e. after the Return). Also the subroutine will not be able to access any Global variables
(there is an exception see the details in the Call/Sub definition in the Flow Control Statements section).
This can be very helpful in avoiding unintentionally affecting variables and having to come up with
variable names that are different from variables elsewhere. There are many benefits to Local Scoping.

Arrays
An array is a collection of variables all given one name. Each variable is an element in the array. Each
element in the array is referenced by its position in the array. Array names are case sensitive, so Dist[]
and dist[] are different.

Each element in an array can be of any data type (Float, Integer or String). Additionally you can
reassign a value of a different type to an element that already holds a certain type. If an element
has previously been assigned and it is being reassigned, it does not matter what the current value is
and of what type it is, the new value will replace the old one. If the original value is an integer and
the new value is a string the element type will be changed to a string, and vice versa. The same is

RobotBASIC V4.2.0

Page 26 of 276

true for floats and integers and floats and strings.

Remember the elements of the array do not have to be all of the same type. Each element can be of
any type. Also, all the simple variable naming restrictions mentioned above apply to naming
arrays.

Think of an array of mailboxes. They are collectively called MailBoxes. To access the 3rd one from the
left on the 2nd row we would say MailBoxes[1,2]. The reason we have 1,2 not 2,3 is because we start
counting at 0 (not 1) so the first is 0, second 1 and so on.

RobotBASIC allows you to have arrays of any dimension with as many elements in each dimension
as you want. The dimension of the array is the number of indexes it has. For example Array_1[5,7,8] is a
three dimensional array while Array_2[4,6,7,8] is four-dimensional. The dimensional constraints of an
array are the extent of each dimension. For example Array_3[5,7] is a 2 dimensional array with
constraints of 5 rows and 7 elements in each row (or 7 columns). Remember that even though we have
5 rows the 5th row is row number 4 since the 1st row is row number zero.

Once an array is defined each element in the array can be used as if it were a simple variable. Anywhere
a simple variable can be used an array element can be used. And just like a simple variable the array
element needs to be assigned a value before it is used.

Note: In Commands that require a variable to be passed, so as to be assigned a value, you cannot
substitute an array element, you must use a simple variable. The simple variable can be later stored
in the array element if needed.

Note: RobotBASIC has a powerful array structure seldom found in other languages. In addition to a
versatile Data command, you can have almost limitless (only limit is memory) dimensional arrays
and limitless elements in each dimension. You can manipulate and do operations on arrays that
include inversion, multiplication and more. There is also a set of statistical operations like
variance, regression and more.

Note: Arrays are Global scoped and are accessible within Call/Sub subroutines and any changes made to
an array within the body of a Call/Sub subroutine will continue to be in effect after the routine
returns.

Some commands and functions in RobotBASIC act on the entire array at once. These commands require
the array name as a parameter. An array is created by using Dim or Data. Here are some examples of
array manipulation:

Dim Array1[3,4]
Array1[1,1] = "testing"
Array1[0,0] = 9
Array1[0,1] = 8.4
Print Array1[1,1];Array1[0,0]
Array1[2,2] = Array1[0,0]+Array[0,1]*4

Functions
Functions are expressions that use expressions as a parameter and return a number or string. A function
can be used anywhere a number or string resulting expression can be used. The form of a function is as
follows:

FunctionName(parameter,parameter,…)

RobotBASIC V4.2.0

Page 27 of 276

The parameters are expressions and can also be other functions, since a function is an expression. If the
function does not take parameters then you only have the parenthesis and nothing in between them, for
example rFeel().

RobotBASIC has many functions that return strings or numbers and accept strings or numbers as
parameters. There are functions to get the sine of an angle, to convert a string to uppercase, to convert a
float to an integer, to convert a number to a string and many more. Some functions operate on an entire
array. In those functions you pass the array name as a parameter to the function.

For Example:
Print sin(40*pi(1)/180)
B = ToUpper("test") + Spaces(30)
A = Left(B,20)+ "__"
If !(rFeel() & 2) then rTurn 3

NEW in version 4.1.0 and above:
In versions of RobotBASIC before 4.1.0 you could not place a function call as a statement in a line on
its own. That is you could not do:

Sin(30)

which is of no use anyway since most of the time you need the value returned from the function and
thus you have to do:

x = Sin(30)

However, with version 4.1.0 and above you can place a function call on a line as a statement. This is
useful when you are not interested in the value returned by the function and rather the action of the
function is what is important. In this case you can use the function as if it were a subroutine and ignore
the return value. For example MsgBox() displays a dialog box with text in it. It will also return a value
to indicate what button the user pushed to exit the dialog box. However, you may not require this
information and you just want to use the function to display information to the user and you are not
interested in which button the user pushed to exit. In this situation you would do:

data a;"This is line one", "This is line two","etc."
MsgBox(a,"Information box") //notice how the function is on a line by

itself just
//like a

statement and there is no need to assign
its

//return
result to a variable since you do not
need it

whereas in versions prior to 4.1.0 you would have HAD to do:
data a;"This is line one", "This is line two","etc."
x = MsgBox(a,"Information box") //notice how you HAD to assign the

function

//to a scratch variable even
though you did

//not actually need the return
result

RobotBASIC V4.2.0

Page 28 of 276

There are MANY functions in RobotBASIC that do actions while the function is doing its work and in
many situations you are more interested in its actions rather than its return results. Of course you may
also need the return results in other situations to verify that it actually worked or as such. Examples of
functions whose return value may not often be needed are FileClose(), TCPC_Connect(),
TCPC_Close(), DirCreate(), re_Setup() and many more.

Operators
Expressions are formulas that manipulate expressions. Expressions are manipulated using operators.
Some operators have precedence over other operators. For example multiplication has precedence
over addition. So 4+5*3 result in 19 not 27. That is because the numbers 5 and 3 are multiplied first then
the 4 is added. If you want to do the addition first you must write (4+5)*3 which will result in 27. There
are six types of operators (listed in order of precedence):

Parenthesis ()
Any expression surrounded by parenthesis will be evaluated before it is passed on for further
evaluation outside the parenthesis. Thus Parenthesis are used to override any operator
precedence rules (see above). You can think of any combination of expressions within the
parenthesis as an expression in itself just as if it were a single number or string in itself.

Use parenthesis around operations when you are not sure how they would evaluate due to
operator precedence, or to make the intent of the formula more clear, or to override the operator
precedence.

Examples:
Print 3*4+5 //prints 17
Print 3*(4+5) //prints 27
print 3#2*4 //prints 4
print 3#(2*4) //prints 3

Math Operators (Listed in order of precedence)
Unary Negate -
Put in front of a numeric expression makes the result a negative if it is positive and positive if it is
negative. For example:

a = 5
print -a //print -5
print -(a-7) //prints 2

Raise to the power ^ (exponentiation)
Raises an expression to the power of another (the exponent)
Example:

Print 4^2+1 //prints 17
Print 4^(2+1) //prints 64
Print (3+1)^(2+1) //prints 64
Print 4^-2.0 //prints 0.0625
Print 4^-2 //prints 0
Print 4.0^-2 //prints 0.0625

Divide / Multiply * Percentage % Modulus #
/ divides a number expression by another.
* multiplies a number expression by another.
% the percentage of a number expression

RobotBASIC V4.2.0

Page 29 of 276

the integer remainder of dividing an integer number expression by another

In all the above operations, if either expression is not a number an error will occur. All these
operators have the same precedence and will be evaluated from left to right if they are in sequence.

Note: When you divide two integers you will get the result of an integer division not a
floating point division so 2/3 is 0 not 0.6666. If you want to make sure the result is a
floating point make sure that at least one of the expressions is a floating-point result,
so you can do 2.0/3 to get 0.666

Note: The Percent operator (%) is an exception to the rule of all Integer operands giving an
integer result. The result of a percent operation is always a float regardless of what
combination of integer and float operands are used.

Note: The Modulus is an integer operation only. If any of the operands is a float it will be
truncated to an integer.

Examples:
Print 5/6 //prints 0
Print 4/3 //prints 1
Print 4.0/3 //prints 1.333333
Print 4*3 //prints 12
Print 40%3 //prints 1.2
Print 5* 8 # 5 //prints 0
Print 5* (8 # 5) //prints 15
Print 8.3 # 5.3 //prints 3
Print "ttt"/3 //ERROR

Add + Subtract -
+ adds an expression to another. If the two expressions are numbers then addition will occur. If the
two expressions are strings then concatenation will take place. If the first expression is a string and
the second is a number then the second expression will be transformed into a string and
concatenated to the first expression. If the first expression is a number and the second is a string an
error will occur.

- subtracts a number expression from another. If either operand is not a number an error will occur

Both operators have equal precedence and will be evaluated from left to right if they are in
sequence.
Examples:

Print "Test"+"ing" //print Testing
Print "Test"+5 //prints Test5
Print 5+"test" //ERROR
Print 7+5 //prints 12
Print 7-5 //prints 2
Print "Test" - ""ing" //ERROR

Comparison (Relational) Operators
Comparison operators compare an expression to another and return the value 0 if the result is false
and 1 if the result is true. For example 5 > 4 results in 1 (true) but 5 > 10 results in 0 (false).

The result of this type of operation is usually used in Flow Control Statements to determine whether
to take action or not. But the result of a comparison operation can be used anywhere an expression

RobotBASIC V4.2.0

Page 30 of 276

can be used, just as if it were a number, which it is (the number 0 or 1).

Comparison operators have the same precedence as each other and will be evaluated from left to
right. But it is very confusing if you combine comparison operators in an expression. If you do need
to do so use Logical operators (see below) for better clarity and use parenthesis to clarify the
meaning. Many operators have multiple formats that perform the same operation. This is so that
you can use any style you might be familiar with from other programming languages.

All operators will operate on string or number expressions but both expressions must be the same.
Except, for the $ operator where expressions can only be strings.

Note: If you compare two string expressions beware of lower and upper case letters. Letters are
compared in order of their ASCII codes. Upper case letters have less value than lower case
letters. Comparing strings with other than the $ operator may give unexpected results
depending on the length of strings and letters in the strings. For example "Test" is not
equal to "test" but is less than it.

In the following list True = 1 and False = 0.
$ To see if the left string expression is contained within the right string

expression. Both expressions have to be strings or an error will result. e.g. "st"
$ "testing" returns true.

> To see if the left expression is Greater Than the right expression. e.g. 5 > 4
returns true.

< To see if the left expression is Less Than the right expression. e.g. 4 < 3
returns false.

= or = = To see if the left expression Equals the right expression. e.g. 4 = 7 returns
false.

>= or => To see if the left expression is Greater Than Or Equal to the right one. e.g. 5
>= 7 returns false.

<= or =< To see if the left expression is Less Than Or Equal to the right one. e.g. 5 <= 7
returns true.

< > or > < or != To see if the left expression is Not Equal to the right one. e.g. 5 != 4 returns
true.

Logical Operators
Logical operators are usually used to combine results from comparison operators. A Logical
Operator will consider the expressions it operates upon as False if the expression results in a zero,
or True if the expression results in other than zero (negative or positive). So you can do logical
operations on any numerical resulting expressions. If any of the expressions results in a string an
error occurs.

All logical operators have equal precedence and will be evaluated from left to right if they occur in
sequence. Use parenthesis if you are not sure how the combination will perform.

There are two formats for each operator. This is so that you can use the style you are familiar with.
The letter formats are not case sensitive. So AND, and, AnD are the same.

Logical AND
And &&

e.g. (5 > 4) and (4 < 3) results in false
e.g. (5 > 4) && (4 < 3) results in false

RobotBASIC V4.2.0

Page 31 of 276

e.g. (5 > 4) and (4 >= 3) results in true
e.g. (5 > 4) && (4 >= 3) results in true

Logical OR
Or ||

e.g. (5 < 4) or (4 < 3) results in false
e.g. (5 < 4) || (4 < 3) results in false
e.g. (5 > 4) or (4 < 3) results in true
e.g. (5 > 4) || (4 < 3) results in true

Logical XOR
XOR @@

e.g. (5 < 4) xor (4 < 3) results in false
e.g. (5 < 4) @@ (4 < 3) results in false
e.g. (5 > 4) xor (4 < 3) results in true
e.g. (5 > 4) @@ (4 < 3) results in true

Logical NOT
Not !

e.g. !(5 < 4) results in true
e.g. not(5 < 4) results in true
e.g. !(5 > 4) results in false
e.g. not(5 > 4) results in false

Here is a table of how the various operators will do the logic:

Operator Left Expression Right Expression Result
And 0 0 0

 0 1 0

 1 0 0

 1 1 1

Or 0 0 0

0 1 1

1 0 1

1 1 1

Xor 0 0 0

0 1 1

1 0 1

1 1 0

Not 0 1

1 0

RobotBASIC V4.2.0

Page 32 of 276

Bitwise Operators
Bitwise operations only work with numeric resulting expressions. If either the right or left
expression results in a string an error will be issued. Bitwise operations will do the equivalent
logical operation on each bit of the numbers that result from the expressions. So for example if we
do 9 bAnd 4 then since 9 is 01001 and 4 is 00100 then the result will be 00000 which is zero. If we
do 9 bOr 4 the result will be 01101 which is 13. Just remember that bAnd, for instance is an And
but performed on a bit-by-bit basis.

All the bitwise operators have the same precedence and are evaluated from left to right if they are in
sequence. There are two formats for each operator. This is so that you can use the format you are
familiar with. The letter formats are not case sensitive so bAnd, band, BAND are the same.

Bit-wise AND
bAnd &

7 & 2 equals 2
7 bAnd 2 equals 2

Bit-wise OR
bOr |

6 | 1 equals 7
6 bOr 1 equals 7

Bit-wise XOR
bXOR @

6 @ 2 equals 4
6 bXor 2 equals 4

Bit-wise NOT
bNot ~

~ 1 equals -2
bNot 1 equals -2
~ 0 equals -1
bNot 0 equals -1
~ 5 equals -6
~ (-6) equals 5

Shift Right
bShiftR >>

514 >> 1 equals 257
514 bShiftR 1 equals 257

Shift Left
bShiftL <<

5 << 4 equals 80
5 bShiftL 4 equals 80

Rotate Right
bRotR

514 bRotR 1 equals 1

RobotBASIC V4.2.0

Page 33 of 276

Note: Operates only on a byte. If the number is greater than 255 the lowest byte alone is used
and all other bytes are zeroed.

Rotate Left
bRotL

5 bRotL 4 equals 80
Note: Operates only on a byte. If the number is greater than 255 the lowest byte alone is used

and all other bytes are zeroed.

Assignment Operators
These are shortcut assignment operators. For example instead of saying Var = Var+1 you can
say Var++. Statements involving Assignment Operators are just like an assignment statement and
have to be in a line by themselves. All of the operators work on a simple variable or an array
element just like a normal assignment statement. These are mathematical operators will perform
just like their long version. That is if both the variable and expression hold an integer then the
resulting operations is an integer one and the new value assigned to the variable will be an integer.
However, if either is a float then the value assigned to the variable will be a float regardless of the
original type of the variable.

Note: The operators use a double symbol, but the two symbols have to always be together and not
separated by any spaces. However, the operator can be separated from its operands. So you
can say Var ++ but not Var + +.

Increment ++
This is equivalent to Var = Var+1 or VarA[...] = VarA[...]+1. The variable (or
array element) has to exist and has to hold a numeric value. See examples below.

Decrement --
This is equivalent to Var = Var-1 or VarA[...] = VarA[...]-1. The variable (or
array element) has to exist and has to hold a numeric value. See examples below.

AddAssign +=
This is equivalent to Var = Var+Expr or VarA[...] = VarA[...]+Expr. The
variable (or array element) has to exist and has to hold a value. If the variable holds a string value
then the expression can be a numeric or string result. However, if the variable holds a numeric
value then the expression has to result in a numeric value. See examples below.

SubtractAssign -=
This is equivalent to Var = Var-NExpr or VarA[...] = VarA[...]-NExpr. The
variable (or array element) has to exist and has to hold a numeric value. See examples below.

MultiplyAssign *=
This is equivalent to Var = Var*NExpr or VarA[...] = VarA[...]*NExpr. The
variable (or array element) has to exist and has to hold a numeric value. See examples below.

DivideAssign /=
This is equivalent to Var = Var/NExpr or VarA[...] = VarA[...]/NExpr. The
variable (or array element) has to exist and has to hold a numeric value. See examples below.

RobotBASIC V4.2.0

Page 34 of 276

Examples:
data a;10,20.3,8 \ s = "test" \ I = 6 \ F = 3.4
I++ \ F-- \ a[0] += I \ a[1] /= I \ s+=F \ a[2]*= 3
print I;F;a[0];a[1];s;a[2] //7 2.4 17 2.9 test2.4 24 ..
notice the result test2.4
a[0] /= 6 \ I /= 4.
print a[0] //prints 2 since both are integers the result is an
integer
print I //prints 1.75 since one was a float the result is a float
F ++ // notice operator is separated from the operand
print F //prints 3.4
s++ //causes an error
s -= 4 //causes an error
I += "ggg" //causes an error
F + + //causes an error since the ++ is separated
F+ = 10 //causes an error since the += is separated
J = F++/4 //causes an error. You cannot use the increment/decrement
operator in an expression

Flow Control Statements
Flow control statements allow RobotBASIC to:

- Take actions depending on certain condition.
- Repeat actions a number of times.
- Repeat actions until a certain condition is fulfilled.
- Repeat actions while a certain condition is fulfilled.
- Go to a sub-part of the program and return from there and continue execution from where the program

branched off.

Flow control statements are not case sensitive, so While and while are the same. Here is a simple program
that shows three different flow control structures:

rLocate 100,100
for I = 1 to 5 //forward the robot 5 pixels
 rForward 1
next
Input "Enter a number",N
if N < 5 then print "too small"
if N > 30 then print "too large"
while N > 0 // make the robot turn N times
 rTurn 1
 N = N-1
wend
End

Subroutines in RobotBASIC are created by surrounding a group of statements with a Label and the Return
statement like this (these are called GoSub subroutines):

SomeRoutineName:
 Statement
 Statement

...
Return

RobotBASIC V4.2.0

Page 35 of 276

You can then, anywhere in you program, branch off to the subroutine. The subroutine's statements will be
executed and when Return is executed the program flow will go back to the line right after the line that
called the subroutine. Here is an example:

Statement
Statement
 ...
gosub SomeRoutineName
Statement
Statement
End
SomeRoutineName:
 Statmenet
 Statement

...
Return

Note: The statement End in the above code is needed to stop the program from flowing into the
area where the subroutine is. Without the End statement the program will execute the
subroutine as if it were part of the program.

Note: There is another method for creating a more advanced type of subroutine called
Call/Sub subroutine. See below.

IF ExprN THEN statement
The in-line-if style. If ExprN results in a number not equal to zero (true), then the statement after the
THEN will be executed. Otherwise (false) the program flow will go to the next line ignoring the
statement after the THEN. ExprN can be any expression that results in a number. If the result is Zero
then the condition is redeemed to be False. If the result is other than Zero (positive or negative) then
the condition will be redeemed to be True. See Operators section in the Overview Of The Language
section for comparison and logical operators. You can have multiple statements on the same line using
the \ operator. These multiple statements will only be executed if the condition is true because when the
statement is false the program flow will skip to the next line and therefore misses any statements on the
same line separated with the \ operator. For a better method of controlling conditional multiple
statements execution see the structured-if flow control below.

a = 3 \ b = 4 \ c = 5 \ d = 1 \ e = 0
if a then print "true" // prints true
if d then print "true" // prints true
if e then print "true" //will not print
if a > b then print "true" // will not print
if !(a > b) then print "true" // prints true
if !(a > b) && (c < 9) then print "true" //prints true
if "es" $ "test" then print "true" // prints true
if InString("test","es") then print "true" // prints true
if a < b then print a \ n=b+c \ print n //prints 3 then 9 on the next line
if a > b then print a \ n=b+c \ print n //does nothing

RobotBASIC V4.2.0

Page 36 of 276

If ExprN1
 statement
 statement
 ...
{ElseIf ExprNn}
 statement
 statement
 ...
 .
 .
 .
{Else}
 statement
 statement
 ...
EndIf

This is the Structured-If style. Notice that there is no Then after the IF. This is how it should be. The
interpreter will distinguish between the above and this style by this one difference. The conditions are
evaluated as above.

This Structured-If style is made up of blocks of lines. There is the If-block, the ElseIf-block and the
Else-block. You can have multiple ElseIf-blocks or none. You can have only one Else-block or none
and it has to be the last block.

If ExprN1 evaluates to true then the If-block lines will be executed. All the other blocks will be ignored.

If ExprN1 evaluates to false then the interpreter will evaluate the ElseIf conditions (ExprNn) in
sequence until the first one that evaluates to true. If none evaluate to true then the Else-block lines will
be executed (if used).

The lines of the first ElseIf-block to evaluate to true (if ExprN1 is false) will be executed and all other
blocks (including the Else-block) will be ignored.

This If-style can be nested in any combination. In-Line-IF does not count as a nested one. You can nest
other IF/.../ENDIF structures within any block of the structure.

For Var = ExprN1 To ExprN2 {Step ExprN3}
 statement
 statement
 ...
Next

The interpreter will repeat the statements between the FOR/NEXT a number of times equaling
Abs(ExprN2-ExprN1)/ExprN3+1. The interpreter will put ExprN1 result into Var. The statements
between the For/Next structure will be executed. The interpreter will then increment Var by ExprN3 if
given or 1 if not. The interpreter will then check if the result is greater than ExprN2. If it is, the program
flow will continue with the statement after the Next (i.e. Exit the For/Next loop). If not, the flow will
go back to the statement right after the FOR and repeat the whole process.

You can optionally give a Step size. Var must be a variable but it does not need to have been
previously defined. EprN1, 2 and 3 must result in Integer numbers. ExprN3 must be greater than
0. If it is 0 then it will be made 1. If it is less than 0 then it will be made positive.

RobotBASIC V4.2.0

Page 37 of 276

If ExprN1 is greater than ExprN2 the interpreter will decrement ExprN1 until it is less than ExprN2.
You can nest For loops. An error will be issued if you try to nest too deep.

Note: Normally RB is a free typing language and the variable used for the counter does not have to
exist and if it does it will be converted to an integer. However, if RB has been made to become
a strict typing system (see Declare) then the counter variable has to have been declared as an
Integer variable.

Note: You can modify the Var counter within a For/Next loop, just as if it were any other variable. But
beware of your logic. Use Break/Continue along with If/Else/ Endif or IF/Then to force an early
abort or re-loop of the loop (i.e. before reaching the end-count).

ExprN1/2/3 are only evaluated upon entering the loop. They are not revaluated again
during the execution of the loop. If for instance ExprN2 is the variable A and you vary the
value of A in the body of the loop, there will be no effect. The limit of the loop will be
whatever the value of A was upon entering the loop regardless of what its value becomes
later. However the value of Var (the counter) will always be reevaluated so if you change it
in the body of the loop you may affect the number of times the loop is executed.

Example:
For I = 0 to 10 step 2
 Print I
Next //will print 0 2 4 6 8 10
For I=10 to 0 step 2 //even though you said 2, I will be decremented by 2 not
incremented
 Print I
Next //will print 10 8 6 4 2 0
A = 5
For I=A/2 to A+7 step -3 //even though you said -3, I be will incremented not
decremented
 print I
 A = 90 //changing the value of A will not affect the looping count
Next //will print 2 5 8 11
For I=0 to 10^2
 print I
 if I > 3 then I = 100 //changing the value of the counter will affect the
loop count
next //will print 0 1 2 3 4

Repeat
 Statement
 Statement
 ...
Until ExprN

Will execute the statements between the Repeat-Until as long as ExprN evaluates to zero (false). The
lines within the loop will be executed at least one time, since ExprN will not be evaluated until the
loop has been executed the first time.

You can use Break within the loop, which will force the loop to terminate immediately ignoring any
lines after the Break. You can use Continue within the loop, which will force the loop to re-loop
immediately ignoring any lines after the Continue.

RobotBASIC V4.2.0

Page 38 of 276

Example:
I = 0
repeat

Print I
I = I+1
If I # 2 <> 0

I = I+1
If I > 10 then break
continue

Endif
until I > 20 //will print 0 2 4 6 8 10

While ExprN
 Statement
 Statement
 ...
Wend

Will execute the statements between the While-Wend as long as ExprN evaluates to other than zero
(true). The lines within the loop may never execute if ExprN evaluates to zero (false) on entry into the
loop.

You can use Break within the loop, which will force the loop to terminate immediately ignoring any
lines after the Break. You can use Continue within the loop, which will force the loop to re-loop
immediately ignoring any lines after the Continue.
Example:
I = 0
while I < 20

Print I
I = I+1
If I # 2 <> 0

I = I+1
If I > 10 then break
continue

Endif
wend //will print 0 2 4 6 8 10

Break
Used inside a FOR/NEXT,REPEAT/UNTIL,WHILE/WEND loops to break the loop immediately. The
lines beyond the Break statement will not execute and the current level of the FOR/REPEAT/WHILE
loop will be abandoned to the line following NEXT/UNTIL/WEND line associated with the current level.
This is useful if a loop needs to be abandoned before reaching the end of the loop.

Continue
Use inside a FOR/NEXT,REPEAT/UNTIL,WHILE/WEND loop to re-loop the loop immediately. The
lines beyond the Continue statement will not execute. The program flow will go to the end of the loop
(NEXT/UNTIL/WEND). Execution will continue on that statement. The loop will be executed as per
normal. This is useful if a loop needs to be repeated before reaching the end of the loop.

RobotBASIC V4.2.0

Page 39 of 276

Case Construct
The Case Construct is not implemented in the language. However, you can emulate a Case Construct
using the Structured-If.

If ExprN1 //Case_1 condition here
//Do stuff
.
.
.

ElseIf ExprN2 //Case_2 condition here
//Do stuff
.
.
.

ElseIf ExprN3 //Case_3 condition here
//Do stuff
.
.
.

Else
//Do Stuff that will be done if no case is true
.
.
.

Endif

Gosub Label
Gosub Expr
Return

Flow will go to the statement directly following the Label and will continue until a RETURN statement
is encountered after which the flow will go back to the line following the line that called the subroutine.
A subroutine is marked by a label and the Return statement as the last line. You can use other returns
within the logic of the subroutine, but always have the last line of the subroutine as a Return, just in
case your logic gets there. If you do not do so any program lines following the subroutine would be
executed as part of the subroutine.

You can call a subroutine from within another subroutine. An error will be issued if you try to nest too
deep. Be careful when you do this that you do not inadvertently create a circular endless loop.
Recursion can also cause trouble if you do not have the correct windup conditions.

If you use the format Gosub Expr, then Expr must result in a number or string that is a name of a valid
label. If Expr results in a number then it will be converted to a string. So saying Gosub 1000, Gosub
100*10 or Gosub "1000" are all equivalent and would cause the program flow to branch to the label
1000.

The second format is useful if you want to branch to a subroutine name that will be calculated
depending on some logic. For example you may have an array of labels and you want the program flow
to go to one of the labels depending on some number that is used to index into the array. Example:

Data Labels; "L1",100,"1000"
while true
 Input "Enter a number 0 to 2",I
 If !Within(I,0,2) then continue
 Gosub Labels[I]
wend
End
L1:
 print "I am In L1"

RobotBASIC V4.2.0

Page 40 of 276

 Gosub Substring("I'm going to Test_Sub, Bye",14,8) //notice this line
calculates the
Return //subroutine name using
functions
100
 print "I am In 100"
 Gosub Labels[I]*10 //notice this line how it goes to a subroutine name
Return //that is mathematically calculated
1000
 print "I am In 1000"
 a = "Test"+"_Sub"
 Gosub a //notice this goes to a subroutine name defined by a variable
Return
Test_Sub:
 print "I am in Test_Sub"
Return

Note Returns within IF-Structures inside subroutines have to be carefully considered, be extra careful
when using Returns out of subroutines within If-Structures. Check your logic.

Sub SubName({{&}var1{,{&}var2{,...}})
Return {expr}
Call SubName({expr1{expr2{,...}})

Sub/Return is used to delineate a Subroutine mechanism more advanced than the GoSub mechanism
described above.

You define a subroutine using the Sub statement. The word Sub is not case sensitive however the
subroutine name is case sensitive. You must then have an opening Parenthesis and then you can have
as many parameter variables as needed then a closing Parenthesis. You can have many parameters or
none. If the subroutine does not need any parameters then use (). The parameter variables' naming
follows the same rules as apply to naming simple variables (parameter names are case sensitive).
Any of the parameters may be preceded with an &. This indicates that the parameter is by reference as
opposed to by value. See later for details on this.

A very important aspect of Call/Sub subroutines is that they have Local Scoped variables. That means
that the subroutine will be as if it were a brand new program with its own set of variables. It starts out
with the variables in its parameter list set to the values specified in the Call to the subroutine. The
subroutine may create other variables but they will not be visible to other routines outside the body of
the subroutine. Only parameters with the & will be visible outside the subroutine by the caller area (see
later). Also the subroutine cannot see variables previously created outside its scope. (except for Arrays
which are Global).

To invoke a Call/Sub subroutine use the Call statement followed by the subroutine's name as defined in
the Sub statement then a ‘(‘ and then as many expressions as are needed by the subroutine separated by
commas then finally a closing ‘)’.

You cannot specify more expressions than the number of parameters as specified in the Sub statement
but you can specify less. Also if you wish to skip a parameter then just do not specify an expression but
you still need the comma to mark its place (see examples later). The expressions follow all the rules of
Expressions as described above. Also if any of the parameters in the Sub's definition is by reference
than the value passed in the Call statement in the position that corresponds to it has to be a variable
(but also see later).

RobotBASIC V4.2.0

Page 41 of 276

The Call statement will calculate all the provided expressions and will assign the corresponding
variables as specified in the Sub statement the resulting value and then will jump to the body of the
subroutine and begin executing. The subroutines will only see those variables that have been assigned.
Any ones that have not been assigned will not exist as variables as far as the subroutine is concerned.
Use vType() to determine if and which parameter variables have been assigned and to what type. Also
you may assign any unassigned variables initial values as needed (see examples later). Other than these
variables the subroutine will not be able to access any other variables that may have been assigned
outside the body of the routine. Also any variables created or changed in the routine will not be
reflected back to the outside (except for by reference parameters i.e. with &).

The subroutine's execution ends when a Return statement is issued. This return statement is similar to
but different from the one used with the GoSub statement in that it can have an optional return
expression. This expression again follows the normal expressions' rules. It will be calculated and
assigned to a variable that will be sent back to the calling area and will become visible to the caller
area. This variable will have a name made up of the name of the subroutine and then __ (i.e. two _)
and then the word Result. So if the subroutine is called MyRoutine then the variable name would be
MyRoutine__Result (case sensitive). If you do not specify a return value then MyRoutine__Result
will be assigned an empty string (i.e. "").

So there are two methods that can be used to return values to the calling area. One is to use by
reference parameters (using &) and the other is to use the xxxx__Result (xxxx is the routine’s name) by
returning a value. You may also explicitly assign xxxx__Result a value before returning with a Return
without a parameter.

By Reference Parameters
Let’s say that the Sub has been defined as follows Sub XXX(A,B,&C,X) then later you call the
subroutine using Call XXX(10,30,LocalVar,X). Then upon entry into the subroutine C will hold the
value of the variable LocalVar, but then upon return from the call the variable LocalVar will have
whatever value the subroutine has assigned its variable C since C is a By Reference parameter (&).
But X will not be changed even though it has the same name as the parameter in the Sub definition
since it is not a By Reference parameter (no &).

The above is what is normal for most languages. However, RobotBASIC goes a little beyond that.
RB allows you to say Call XXX(10, , ,7) and since there is no value being passed to put in B and C
then both will not be defined (use vType() to ascertain if a parameter has been assigned a value and
of what type). If you say Call XXX(,30,55*2) then in this case C will be assigned the value 110
while A and X will not be defined. Also since what was passed to the subroutine is a value rather
than a variable name then no variable will be changed in the caller area when the subroutine
changes C.

Access to Global variables
When the program first runs before any calls to subroutines are performed you can create variables
and assign them values. These are called Global Variables. These variables are accessible to the
whole program throughout (and in GoSub subroutines). However, since Call/Sub subroutines act as
if they were stand alone programs they do not have ready access to Global variables nor do other
parts of the program have access to the subroutine's variables. The proper way to pass values
between the subroutine and the caller part of the program is to use the by value and by reference
parameters.

However, it is desirable in certain situations to have access to some Global variables. RB allows
you to do this but you have to prefix the global variable's name with an underscore character _.

RobotBASIC V4.2.0

Page 42 of 276

This will indicate to RB that the desired variable is not a local variable but rather a global variable.
Within a Call/Sub subroutine you can therefore access global variables just like any local variable
by using the global variable's name prefixed with the _ and you can use it normally in an
assignment statement or in an expression. However, you cannot use a global variable:

As a counter for a For-Next loop an error will be issued
As a variable in a Command that requires variables as parameters "
In a Declare statement "
As a variable for a by reference parameter in a Call statement no error will be issued, but the

variable's value will be used as
if it were an expression.

Note: All arrays created outside or inside a subroutine will be visible inside and outside the subroutine.
Arrays are global. Scoping only applies to simple variables. This can be useful in that you
can use an array as a shared memory between different subroutines to exchange data other than
using by reference parameters and the return value. Also see Access to Global Variables above.

Note: Ensure that the normal program flow will never run into a Sub statement since that will cause an
error. Use an End statement.

Examples:
Main:
 V1 = 10 \ V2 = "Test" \ Temp = 0
 Call MySwap(V1,V2)
 Print V1;V2 //Test 10
 Call MySwap(20,V2)
 Print V1;V2 //Test 20
 Call MySwap(V1)
 Print V1;V2 //0 20
 Call MySwap(,V2)
 Print V1;V2 //0 0
 Call MyTest(30,40,V1)
 Print V1;V2;MyTest__Result //0 0 40 //notice the use of
the return result facility
 Print Temp //prints 4 ...it has been incremented in
every call to MySwap()
End //this is important
Sub MySwap(&A,&B)
 if !vType(A) then A = 0
 if !vType(B) then B = 0
 Temp = A \ A = B \ B = Temp
 _Temp++ //notice here we are using the Global
Temp not the local Temp
 //also see how it is affected in Main
 //GetColor pc,_Temp //causes an error Global not allowed
as command variables
 //Swap _Temp,A //causes an error "
in the Swap command
 //for _Temp = 0 to 5 //causes an error "
as For-loop counters
 //Next
Return
Sub MyTest(V1,A,B)
 V2 = 50 \ V1 = 60
Return A+B //notice the return ability

RobotBASIC V4.2.0

Page 43 of 276

//========================second example============
n=8 \ call Fact(n) \ print factorial(n);Fact__Result
end //this is important
sub Fact(i) //recursively calculate the factorial
 if i= 1 then return i
 call Fact(i-1) //recursion occurs here by the subroutine calling
itself
return i*Fact__Result //makes use of the return result

OnError Label
OnError Expr
OnError

If an error occurs during the run of a program the system will direct the flow to an error handler routine
as defined by Label or the label resulting from Expr (see the description of the use of the Expr format
in the GoSub statement above). No error message will be issued and the program be directed to the
error handler routine that is specified by Label or the label that results from Expr. In the handler routine
you can use GetError to find out the error number, message, line number, and character number. It is up
to you to handle the error and how to redirect the program flow accordingly. If you issue a Return the
program flow will go back to the line just after the line that caused the error.

Note: When a jump occurs the OnError event is turned off. In the error handler you need to
reissue an OnError statement again before you return out of the error handler subroutine
if you wish to continue trapping errors after you return from it.

Note: When a jump occurs due to an OnError event, the OnTimer is also turned off. If you need
to continue handling timer events you need to reissue OnTimer again inside the error
handler routine before returning from it. See example below.

You can issue this statement with different labels at different times to change the routine that will be
used if an error occurs. You can also issue the statement without Label (or Expr) to turn off the feature
and have the interpreter handle errors as normal.

Also see AllowEvents.

Example:
addtimer "t",250
ontimer tHandler \ onerror eHandler
i = 0 \errcnt = 0
while true
 if !(i#100) then n = n+1 //this causes an error every 100 count
 xystring 10,10, i \ i = i+1
wend
eHandler:
 errcnt = errcnt+1
 xystring 100,130,errcnt," Errors handled"
 onerror eHandler //--notice this line and the next. Comment
 ontimer tHandler //--either or both and see what happens
return
tHandler:
 xystring 100,100,"Timer = ",gettimerticks(lasttimer())
 ontimer tHandler
return

RobotBASIC V4.2.0

Page 44 of 276

OnAbort Label | SubName
OnAbort Expr
OnAbort

If the user closes the Terminal Screen, using any of the Windows methods, during the run of a program
the system will direct the flow to an abort handler routine as defined by Label or the label resulting
from Expr (see the description of the use of the Expr format in the GoSub statement above). Also see
the AbortFlag() and AbortMethod.

This statement will be as if you have issued an AbortMethod am_Flag statement. This statement will
set no aborting allowed with flagging (read about it in the Controlling How Your Programs Terminate
sub-section in the IDE section). Later when the user tries to abort the program, the event will be
flagged and the program flow will go to the correct handler routine as defined by Label or Expr.

In the handling subroutine you can take actions to determine if the program should be terminated or
not. To terminate issue an Exit or Terminate statement, otherwise, issue a Return statement to return to
the original program execution.

You can issue this statement with different labels at different times to change the routine that will be
used if an abort is attempted. You can also issue the statement without Label (or Expr) to turn off the
feature.

Note: If you use a Label or Expr then the Event handler will act as a normal Gosub subroutine
and will have global scoping variables. If you instead use a Call/Sub subroutine then the
jump will be as if a Call has been issued and the subroutine will have local scoping
variables. However when you give the name of the Call/Sub subroutine do not specify any
parameters nor the (). No parameters will be passed or returned from an event handler, it
will act just like a normal subroutine but with the benefit of Local Scoping of variables.

Also see AllowEvents.

On[CONTROL] Label | SubName
On[CONTROL] Expr
On[CONTROL]

If a [control] is changed or clicked (depending on the control) (see later for list) during the run of a
program the system will direct the flow to a handler routine as defined by Label or the label resulting
from Expr (see the description of the use of the Expr format in the GoSub statement above). In the
subroutine you must use Last[CONTROL]() to get the name of the control that caused the jump.

RobotBASIC will reset the ON[CONTROL] to being off once the jump is executed. You must reissue
the ON[CONTROL] statement again within the handler routine before you RETURN from it if you
wish for RB to continue to capture the ON[CONTROL] event.

You must also make a call to Last[CONTROL]() relating to the control. If you do not do this then the
next time you issue the ON[CONTROL] there will be an immediate jump.

You can issue this statement with different labels at different times to change the handler routine that
will be jumped to if the control event occurs. You can also issue the statement without Label (or Expr)
to turn off the event handling.

RobotBASIC V4.2.0

Page 45 of 276

On[CONTROL] can be one of 15 words:
OnKey occurs when a keyboard key is pressed.
OnMouse occurs when a mouse button is clicked.
OnSerial occurs when there are bytes in the serial buffer.
OnTCPC occurs when there are bytes in the TCP client buffer.
OnTCPS occurs when there are bytes in the TCP server buffer.
OnUDP occurs when there are bytes in any activated UDP socket buffer.
OnButton occurs when a push button is clicked.
OnEdit occurs when the text in the Edit box has changed.
OnListBox occurs when an item in the list box is selected.
OnRBGroup occurs when a radio button from the group is clicked.
OnCheckBox occurs when the check box is checked.
OnSlider occurs when the slider position is changed.
OnSpinner occurs when the spinner is clicked.
OnMemo occurs when the text in the Memo box is changed.
OnTimer occurs every time the Timer clicks (every period).

Also see OnAbort statement above and AllowEvents.

Note: If you use a Label or Expr then the Event handler will act as a normal Gosub subroutine
and will have global scoping variables. If you instead use a Call/Sub subroutine then the
jump will be as if a Call has been issued and the subroutine will have local scoping
variables. However when you give the name of the Call/Sub subroutine do not specify any
parameters nor the (). No parameters will be passed or returned from an event handler, it
will act just like a normal subroutine but with the benefit of Local Scoping of variables.

Note: If you have a timer that has a period of a few milliseconds it will trigger the handler quite
frequently and it may not give time for other timers which have a bigger period to trigger
the event handler. You may want to check all timers' status in a timer event handler if you
have multiple timers.

Note: When a jump occurs due to an OnError event, the OnTimer is also turned off. If you need
to continue handling timer events you need to reissue OnTimer again inside the error
handler routine before returning from it. See the example under the OnError statement.

Note: You must read the buffer in the handler for an OnSerial, OnUDP, OnTCPS, OnTCPC
which also clears it. If you do not then the moment the event handling is enabled again
there will be a jump back to the handler and since the handler does not clear the buffer
then you will end up doing nothing more than repeatedly executing the event handler for
the event.

Note: For ALL the control event handlers you must make a call to Last[control]() so as to clear
the flag that caused the event. If you do not, then the moment the event handling is enabled
again there will be a jump back to the handler and since the handler does not clear the flag
then you will end up doing nothing more than repeatedly executing the event handler for
the event.

Warning!!! Exercise great care using Event driven programming. If there are errors in your
program things may not be easy to debug using the Debug and Stepping methods
since the program does not flow in a sequential manner. Also be very careful with
VARIABLES, you must make sure that the variables in the event handler are not

RobotBASIC V4.2.0

Page 46 of 276

going to be changed while handling the event due to another event occurring. The
best way to accomplish this is to use unique variable names in the handler routine.
Also is you do need to change variables that are shared then maybe you need to
implement a semaphore mechanism. Furthermore, the use of AllowEvents Off to
disable all even handling will help in critical sections of code.

Warning!!! Event driven programming can cause perplexing results when there are errors. It
may seem that errors are occurring in a different place than where they actually
occur.

Warning!!! If you do not reactivate the event trapping of the event before you exit out of the
handler, the event will not be activated again. This may cause a program behavior
that looks like there is an error when in reality there are none.

Example: Also see the examples under AddSlider and AddMemo for an example of the usage of these
flow control statements.

MainProgram:
 GoSub Initialization
 while true
 //do nothing just wait for events to be handled
 wend
end
Initialization:
 AddTimer "t1",30
 for i=0 to 2
 n = i+1
 addbutton "But"+n,10,10+30*i
 AddEdit "Edit"+n,60,10+30*i,80,0,," "
 addlistbox "List"+n,150,10+30*i,100,"test1"+n+crlf()+"test2"+n
 addrbGroup "Radio"+n,280,10+60*i,100,50,1,"test1"+n+crlf()+"test2"+n
 if i != 1 then addCheckBox "Check"+n,410,10+30*i
 if i == 1 then addCheckBox "Check"+n,410,10+30*i,"test"
 addSlider "Slider"+n,480,10+40*i,200
 next
 onbutton bHandler \ onedit eHandler \ onlistbox lHandler
 onrbgroup rHandler \ oncheckbox cHandler \ onslider sHandler
 onAbort aHandler \ OnTimer tHandler \
 OnKey kHandler //you can either use a lable or a Subname this one uses a subname.
 onMouse mHandler //this one also uses a subname
Return
Sub kHandler() //this is a Sub subrotuine with local variable scoping
 n = LastKey()
 if n == kc_Esc then gosub aHandler
 OnKey kHandler
Return
Sub mHandler()
 n = LastMouse()
 if n == 2 then gosub aHandler
 OnMouse mHandler
Return
tHandler: //this is a normal gosub subrotuine with global scoping
 n = LastTimer()
 xyText 10,110,gettimerticks(n),,25,fs_Bold
 ontimer tHandler
Return
bHandler:
 xystring 10,200,"Button:";lastbutton()
 onbutton bHandler
return
eHandler:
 n = lastedit()
 xystring 10,230,n,":",getedit(n),spaces(50)
 onedit eHandler
return

RobotBASIC V4.2.0

Page 47 of 276

lHandler:
 n = lastlistbox()
 xystring 10,260,n,":",getlistbox(n),"=",getlistboxtext(n),spaces(50)
 onlistbox lHandler
return
rHandler:
 n = lastrbgroup()
 xystring 10,290,n,":",getrbgroup(n),"=",getrbgrouptext(n),spaces(50)
 onrbgroup rHandler
return
cHandler:
 n = lastcheckbox()
 xystring 10,320,n,"=",getcheckbox(n);getcheckboxcaption(n),spaces(50)
 oncheckbox cHandler
return
sHandler:
 n = lastslider()
 xystring 10,350,n,"=",getsliderpos(n),spaces(50)
 onslider sHandler
return
aHandler:
 an=ErrMsg("Do you want to abort?","Test",MB_YESNO|MB_QUESTION)
 if an==MB_YES then Exit
 onAbort aHandler
Return

End
Will cause the program flow to terminate and return to the editor. The Terminal Screen will remain on
top but you can close it or use the button on the bottom right corner to switch to the editor window. Or
use Windows methods to do so. You can review the terminal screen if you close it, by using Ctrl+T or
the menu or speed button on the editor window. This option is useful for terminating the program but
continue to view the program's last output Also see Terminate and Exit. This option is the preferred
way while you are still editing your programs. Also see AbortMethod below. If you are running a
binary file or from within the OS the termination behavior is different. See the IDE section for a table
and more details on how this statement will respond in the various cases.

Note: Do not use End inside If/Else/ElseIf/Endif structures. You should use Terminate (preferably) or
Exit.

Terminate
Will cause the program flow to terminate and return to the editor. The Terminal Screen will be closed.
You can still view it by using Ctrl+T or the menu option or the Speed button on the buttons panel. This
option can be useful for terminating programs and remove the Terminal screen where certain program
logic requires you to return to the editor screen immediately. Also see End and Exit. Also see
AbortMethod. If you are running a binary file or from within the OS the termination behavior is
different. See the IDE section for a table and more details on how this statement will respond in the
various cases.

Exit
Will cause the program flow to terminate and will exit RobotBASIC IDE if you are running from
within the OS. If you are running from within the IDE the interpreter will close the Terminal screen
and go back to within the Editor screen. This option is useful when you are distributing your programs
to users who do not need to see the editor screen. It alleviates having to close the Terminal screen then
the Editor screen to terminate a program. The non-programmer user can run your programs and press a
menu option within the program to terminate the program but also exit the RobotBASIC IDE all in one
go, as opposed to End or Terminate. Also see AbortMethod. See the IDE section for a table and more
details on how this statement will respond in the various cases.

RobotBASIC V4.2.0

Page 48 of 276

Goto Label
Program flow will branch to the statement directly following the Label. The label can be anywhere in
the program.

Be very careful using this flow control. Most of the time you can avoid using GOTOs by using good
structured programming logic techniques with the help of the structured flow control constructs
detailed above.

The main use for GOTOs is to create loops, but it is more advisable to use REPEAT/
UNTIL,WHILE/WEND loops and FOR/NEXT loops along with Break, Continue and the appropriate
If/Else/Endif combinations.

Certain precautions must be taken if you use Goto within If/Else/Endif, Repeat/Until, While/Wend or
Subroutines.

- When a GOTO statement is executed, the interpreter will reset any IF nesting and any
For/Next,REPEAT/UNTIL, WHILE/WEND nesting. It would be as if there are no pending
If/ELSE/ENDIF anymore and likewise no more FOR/NEXT, REPEAT/ UNTIL, WHILE/WEND
loops. So if you use a GOTO within an IF to go beyond the entire nested IF structure you would
be OK, but if you GOTO within the next IF/ELSE or ELSE/ENDIF etc. you will get an error.
Likewise if you are within a FOR/NEXT,REPEAT/UNTIL, WHILE/WEND use a goto to go out of
the entire nested structure, otherwise you will get an unbalanced NEXT/ WEND/UNTIL error.

- It is not a good idea to use Goto within looping-structures. If you need to do so, make sure your
program logic accounts for it.

- In a Subroutine, try to use goto to branch within the Subroutine. Make sure that somewhere within
the subroutine a Return is eventually issued. Using GOTO to get entirely out of the subroutine is
legal, but beware of the logic of your program.

- You can use Goto to go beyond an END statement but check your logic.

Try to avoid using Goto. Use of Goto makes the program flow hard to understand, hard to follow, hard
to debug and can cause logical and semantic errors that are hard to locate. However, Goto can be useful
in handling errors to redirect the program flow to one place in the code to handle all errors. However,
even then, it is advisable to use onError.

RobotBASIC V4.2.0

Page 49 of 276

Flow Control Directives
Note: See the notes at the top of the Standard User Interfacing section.

AllowEvents {on|off}
Will turn Event handling off if off is given or on if on is specified or not given. This can be useful for
preventing other events from causing jumps when in certain critical sections of your program. Do not
forget to turn it back on again when finished with the critical section or else no further event
handling can occur.

AbortFlag()
In order to use this function you have to have issued the AbortMethod am_Flag statement within
your program. The function returns true (1) if the user has tried to abort the program by closing the
Terminal screen window using any of the methods provided or operating system methods such as
pressing the X on the top right hand corner. Every time you use this function the flag will be reset to
false. So if the user has not tried to abort since the last time you interrogated the flag a false (0) will be
returned. If the user tries to terminate, the flag will be set to true and will remain set until you
interrogate the flag status using this function. See AbortMethod, and also the IDE section for more
details on aborting and termination behaviors as well as the OnAbort statement.

AbortMethod {ne_AbortCode}
While a program is running the user can use the Stop button to abort the currently running program and
return to the editor screen. The same action can be achieved by closing the Terminal screen window
(using MS Windows methods). The standard response for doing this action is for the Terminal screen
to close and the Editor screen becoming the active window. Within the editor the cursor position will
be where it was when the program was run (unless you are running a binary file or from within the OS,
see the IDE section for more details).

This command changes how the interpreter will respond to the user trying to terminate a program using
the Stop button on the Terminal Screen or closing the Terminal screen (also see thestatements
Terminate and Exit and AbortFlag() as well as OnAbort). If you do not use this command the standard
behavior is as described above (close Terminal screen and return to Editor Screen where you were
before the program was run, also see the IDE section for more details on this). But, there are situations
were a different response may be required and this command allows you to select the response you
desire from among five choices. ne_AbortCode defines the type of response and it should be one of the
following: am_Normal, am_Exit, am_Error, am_NoAbort, and am_Flag (see RobotBASIC
Constants section). If it is not given then am_Normal will be assumed.

am_Normal
Causes the interpreter to behave normally. The terminal screen will be closed and the Editor
screen becomes the active window with the cursor position where it was before the program was
run. Also see the Terminate flow control statement and the IDE section for more details on how
running binary files or from within the OS will affect this.

am_Exit
Causes the interpreter to close the Terminal Screen and go back to the Editor screen. However in
the case of running from within the OS the interpreter will terminate the RobotBASIC system
and go back to the OS. This option is useful when you are distributing your programs and do not
want a user of your program to have to close the Terminal screen then the Editor screen. The
user closes the Terminal screen and the entire system is closed in one action. Also see the Exit

RobotBASIC V4.2.0

Page 50 of 276

flow control statement and the IDE section for more details.
am_Error

Causes the interpreter to close the Terminal screen, activate the Editor screen window and
highlight the last line executed before the abort was executed. The highlighted line will be
highlighted up to the point where the interpreter was just before aborting the execution. This is
similar to a run time error but without the error message, since there was no real error. This
option is useful during program development where you may want to terminate a program at a
certain point during the execution and see where in the code that action was taking place. This
action takes place only if you are running a text file from within the IDE, otherwise the system
will behave according to the table described in the IDE section.

am_NoAbort
Causes the interpreter to ignore any attempt by the user to close the Terminal screen or pressing
the Stop button. This is useful when you are distributing your programs and do not want users to
terminate the program just anywhere. You, of course, have to provide a method for the user to be
able to Quit your program (maybe by pressing a button or key press, or mouse press...see

AddButton, GetKey, ReadMouse etc.). Use this option with great precaution. A
user will not be able to abort the program if you have not provided a method for doing so within
your program. Also if the user does try to abort the program a message dialog box will be
revealed explaining the fact and directing the user to use the options you have provided
within the program to be able to terminate the program. Also see the option below and the
OnAbort statement.

am_Flag
Causes the interpreter to trap any attempt by the user to close the Terminal screen or pressing the
Stop button. This is useful when you are distributing your programs and do not want users to
terminate the program just anywhere. If the user does try to abort, the interpreter will set a flag to
true. This flag can be interrogated using AbortFlag(). If the function returns true then you know
that the user has just tried to abort. You then can take any action you wish using the
programming language. No automatic message will occur as in the above option. If you wish to
give a message do so in your program. Also if you wish to abort use the termination statements

(Terminate or Exit) as you desire. You, the programmer, have the control. Use this option
with great precaution. A user will not be able to abort the program if you have not
provided a method for doing so within your program. Also see the option above and the OnAbort
statement.

Stepping {On|Off}
From the moment this command is issued until you turn it off, RobotBASIC will execute the program
one line at a time. Before each line to be executed the Debug Screen will be shown with a message
showing what line is about to be executed.

If you issue the command with On or without a parameter, stepping will be turned on. To turn off
stepping issue the command with Off as a parameter.

You can interact with this screen and use the View Variables Table and Evaluate Now to get
information about the status of variables and array elements and even to do calculations involving
these. You can also swap between the Debug Screen, Terminal Screen and Editor Screen. In the Editor
Screen you will notice that the line about to be executed is highlighted, however, the highlighting
will only become visible if you bring the Editor Screen to the forefront. Use the Show Editor Screen
button to bring the Editor Screen to the forefront, also use the Show Terminal Screen button to bring
up the Terminal Screen to view the result of the last line to be executed.

RobotBASIC V4.2.0

Page 51 of 276

If you use the mouse to click on the Editor Screen window to bring it to the forefront then make sure
you click on the border frame of the window or else the highlighting of the line about to be executed
will be removed due to your clicking inside the Editor. It is best to use the buttons on the Debug
Screen to bring whichever screen you need to the forefront.

If you press Step the current line will be executed and its effects will be shown on the Terminal Screen
and then the Debug Screen will become active again showing what line is about to be executed next.
The data displayed in the Debug Screen will be:

About to execute (L,C):Code in the line that is about to be executed

L is the line number where the command to be executed is within the program. C is the character
number in the line where the command about to be executed starts. The text after the colon is the actual
code that is about to be executed.

Stepping will ignore any empty lines in the program and also any comment lines. You can override
either of these actions and have stepping not ignore them by un-checking the appropriate check box
at the top left of the Debug Screen.

If you press Stepping Off the stepping mechanism will be turned off and program execution will
resume as before until another Stepping On is encountered. Also stepping can be turned off
programmatically using Stepping Off. You can also turn Stepping back on again from within the
Terminal Screen by pressing the SteppingOn button (bottom right hand of the screen, see note
below).

Note: Stepping can be turned on/off anywhere in the program. So if you place the Stepping On
statement at a particular area of interest you can avoid having to step through the entire program
before you get to the area of concern.

Note: Another way stepping can be turned on is through the SteppingOn button on the Terminal
Screen (lower right). Pressing this button is as if you have issued a Stepping On
programmatically, and stepping will remain on until either a Stepping Off statement is
encountered or you turn off stepping using the Stepping Off button on the Debug Screen. The
advantage of this method is that you can turn stepping on even though there are no program lines
relating to stepping and also you can do it at a particular action situation so that you can start
stepping only when you need it.

Note: You can use DebugOn and Stepping On simultaneously. When a Debug {} statement is executed
the debug data will be displayed on the next line below the Stepping data. Also the Stepping Off
button will become a DebugOff button so that you can turn off the debugging if desired. When
you step you will be back to the stepping mode of the Debug Screen until the next Debug{}
statement if you have not turned debugging off.

Note: See the Debug Screen section in the IDE section for explanations of the Expressions Evaluation
feature and controls provided at the top of the Debug Screen.

Note: This command is deactivated if you save your program as a binary file or if you compile it. No
stepping will occur while running a compiled program or a binary program even if you leave
the Stepping statements in the program.

RobotBASIC V4.2.0

Page 52 of 276

DebugOn
DebugOff
Debug {Expr1,Expr2;Expr3...}

Outputs the values of expr.... to a debugging screen. This only takes place if DebugOn has been issued
any prior time, or the DebugOn button has been pressed on the Terminal Screen. The DebugOff
command will turn debugging off again. The debug screen will pause the program execution and
display the result of Expr... and wait for you to press the Step button to execute the rest of the program.

If Debug{} is in a loop it will be executed every time the command line is encountered. To stop any
further execution use the DebugOff button on the debug screen. This will be the same as issuing a
DebugOff. Or you can close the Debug window using the window close icon on the top right-hand
corner; this is the same as pressing the DebugOff button.

To remain in the debug mode just press the Step button. To eliminate any further program pausing and
debugging press the DebugOff button or close the debug window, or issue a DebugOff within the
program code. To turn on further debugging you must issue a DebugOn again within the program flow,
or press the DebugOn button on the bottom right hand side of the Terminal Screen. This button allows
you turn debugging on at any time during the program flow as if a DebugOn has been issued.
Subsequently any Debug will be executed. This can be useful to turn the debugging on at a certain
stage in the program rather than having to step through until you get to a point of interest.

If you keep the Debug{} lines in the program but do not wish them to be executed next time you run the
program, make sure that DebugOff is issued before any Debug{} is issued or that any prior DebugOn
are commented out.

{Expr1,Expr2;Expr3...} are printed as described in Print in the Standard User Interfacing section.

This combination of commands help in stepping the program and viewing variables while doing so.
The Clear button is to clear any previous printed debug data, but also, every time you run the program
from the start the debug screen will be cleared. You can swap windows back and forth between the
editor/terminal/debug windows. Use the Show Terminal Screen and Show Editor Screen buttons to do
so.

Note: Another way debugging can be turned on is through the DebugOn button on the Terminal
Screen (lower right). Pressing this button is as if you have issued a DebugOn programmatically,
and debugging will remain on until either a DebugOff statement is encountered or you turn off
debugging using the DebugOff button on the Debug Screen.

Note: See Stepping above and the second note there regarding having Debugging and Stepping being
activated simultaneously.

Note: See the Debug Screen section in the IDE section for explanations of the Expressions Evaluation
feature and controls provided at the top of the Debug Screen.

Note: This command is deactivated if you save your program as a binary file or if you compile it. No
stepping will occur while running a compiled program or a binary program even if you leave
the Debug statements in the program.

GetError vn_ErrNo{,vs_ErrMessage{,vn_LineNo{,vn_CharNo}}}
Will fill the variable vn_ErrNo with the last error number (-1 if no error), vs_ErrMessage will be filled
with the description of the error (blank if no error), vn_LineNo will be assigned the line number where

RobotBASIC V4.2.0

Page 53 of 276

the error occurred (-1 if no error) and vn_CharNo will be assigned the character number in the line
where the error occurred (-1 if no error). Issuing this command will retrieve the details of the last error
to have occurred and then will clear the data. If an error occurs and you do not issue this command
before another error occurs, issuing this command will get the details of the last error, the previous
details will not be retrievable. If an error occurs and you have not issued an OnError Label (see Flow
Control Statements section) statement then the error will halt the program and you won't be able to use
this command.

#Include "FileName.Ext"{,...}
This statement allows you to incorporate other RobotBASIC files within your file (with conditions).
#Include statements are Directives to RB to fetch the files named and to Append them to the end of the
program being run. They are not executable statements. RB will pre-scan the program for any
#Include statements and will fetch the named files one by one. Each file may also have #Include
statements too, so again these files will also be fetched and appended to the end of the program (and so
forth recursively). Once all #Include statements in all files have been processed it will be as if you have
merged all the named files together in one file. Then RB will execute the program as if it were one big
program but with one difference. RB will insert an End statement right before each included file. This
prevents your program's flow from running into the included programs prevent them too from running
into each other.

Notice the # is part of the statement. It is all one word with # at the beginning. The word Include is not
case sensitive just like all commands and statements. But you must have the # in front of it and no
spaces are allowed.

 1- The list of names of the files given in the statement have to be within Quotes ("") and separated by
commas (,). You can use a simple expression to create the name...BUT no variables can be used
since the #Include statements are processed by the preprocessor and variables are not available to
that process.

 2- The file names have to be specified with the extension even if it is a .Bas file. Also if the file is not
in the same directory as the program being run then you have to give the full path name.

 3- If the file cannot be found or cannot be read then an error will be issued. If the file is not a valid RB
text or binary program you will get all sorts of problems. So do not include other than valid RB
programs.

 4- An RB program can have as many include statements as you wish and you can specify multiple
files in the same statement.

 5- All files will be appended one after the other to the end of the file that has the #Include statement
(recursively).

 6- Included files may themselves have included files. This however may cause a circular referencing
in certain situations. RB will do its best to detect the fact and prevent it, nevertheless you should do
your best to prevent it as well.

 7- You may include RB Binary files just the same as normal RB files....but not compiled RB
EXEs....only Binary RB files (ones saved with the menu option "Save As Binary").

 8- Include files can be any RB programs. Nevertheless, you should in fact consider the Included files
as libraries of either Label subroutines (i.e. to be called with a GoSub) or Sub subroutines (i.e. to be
called with a Call).

 9- You can have #Include statements anywhere in your program. However, the included files will not
be included at the position where the include statements occurs. ALL include files will be
APPENDED to the end of the file that has the include statement.

10- When you compile a program that has #Include statements, RB will create an EXE out of ALL the
files together as if they were all merged into one program. Thus the EXE will not require any of the
included files again.

RobotBASIC V4.2.0

Page 54 of 276

11- If you create a Binary file from your program then it will still need to have the Include files. Binary
programs will run as if they are text programs. Thus you will still need the included files to be
available in the directory along with the main program (or the directory they should be in according
to the path in the file name).

12- If an error is encountered within the code of an included file you will see an error statement (as
normal) that will indicate the line number and the nature of the error. However, when the program
halts the IDE will not highlight the offending line within the editor since it is not in the editor's text
(it is an external file). Therefore you will get an extra error warning telling you of the fact and
obviously no line will be highlighted in the editor as per normal. It is assumed that include files
have been thoroughly debugged and tested before they are used as include files.

13- Make sure that ALL Labels and Call/Sub names are unique in the included files. If two Include
files have the same Label or Call/Sub name an error will be issued. If you are designing a library of
subroutines then ensure that you use a naming convention to minimize the possibility of other
libraries or programs using your library having the same names (labels or Subs) as your routines.
Also it is strongly advised that you use Call/Sub subroutines because they have local scoped
variables as opposed to GoSub subroutines that will have global scoping variables.

14- If you are going to distribute your code as include libraries then please make sure that you
thoroughly debug and test your code, especially if you distribute them as binaries (RB binaries not
EXEs).

Undeclare
This will cancel the effect of a Declare and will revert RB to be a free typing language. All variables
previously created using Declare statements will remain and will continue to be of the same type and
to hold the same value. However, they will become free again and they can be reassigned any value
again.

Declare v_Name {{=}e_InitialValue} {, ...}
RobotBASIC is by default a free typing system. That is variables do not have to be declared and typed
before they can be used. Also if a variable already exist and is being assigned a value of a different type
than its current value type then it will be converted to the new type and assigned the new value.

With this command you can force RB to become a strict variable typing system. From the first time a
Declare statement is executed RB will become strict and will require that from that time onwards all
variables must have either been previously created or that they must be declared using a Declare (see
note later for an exception to this). Also from that time onwards variables will not change their type
and you won't be able to assign a string to a numeric type or a numeric to a string (but a float can be
assigned to an integer if it can be truncated and an integer to a float and RB will do the conversion
automatically) and you won't be able to use any variable in an assignment statement or an Input or a
For-Next statement unless you have already declared the variable as an appropriate type.

Note: Variables given to commands (except for Input and also see VarSet) that require variables
do not have to have been declared even when strict typing is in effect and if they have they
will be retyped during the execution of the command to be of the type of the value the
command will set them to.

You can cancel strict typing by issuing an Undeclare.

You can declare as many variables as needed in the Declare statement and you can use as many
Declares as you need. If you declare a variable in multiple statements then the last one will be the one
that determines the type of the variable (no error will be issued...this can be useful in changing a
variable's type if you wish).

RobotBASIC V4.2.0

Page 55 of 276

After the variable name you can optionally specify an equals sign (=) and an expression or just an
expression by itself without the = (the = may be clearer for beginners even though it is more
typing).The optional expression must result in a value that will determine the type of the variable and at
the same time will set its initial value. Thus achieving the declaration of the variable to be of a certain
type (the same type as the result of the expression) and also at the same time initializing the variable to
a desired value (the result of the expression). The expression assignment is optional and if not given
then the variable will be assigned the same type and value as the variable just before it in the
same Declare statement. If the first variable in the list of the same Declare statement is not
assigned an expression value then it will be assumed to be of type Integer and it will be initialized
to 0.

To summarize:
1- You can have many Declare statements any where in a program.
2- The first statement to be encountered will make RB perform strict type checking and to require

that all variables have to exist before they can be assigned values and have to be assigned an
appropriate value for their type.

3- Variables that have been created while RB was in the free type mode (i.e. before the first Declare
statement is executed) will remain available and to hold the value they do. However, they will
become as if they have been declared as of the type.

4- In each Declare statement you can specify as many variables as you wish.
5- You can specify a variable in multiple Declare statements and that will change its type and value

accordingly. That is, the last Declare will determine the type of a variable. This is useful if you
wish to explicitly change the type of a variable from one section of the program to another.

3- Variables in the Declare statement must be separated by commas.
4- Any of the variables can be followed by either an = then an expression or just an expression

without the equal separated from the name of the variable by a space.
5- This expression must result in a value of the same type as you wish to make the variable and the

value of the expression will be assigned to the variable as an initial value.
6- If no expression is given then the type and value of the variable will be the same as the one that

preceded it in the same list.
7- If the first variable in the list is not given an expression then it will be assumed to be an integer of

value 0.
8- You can have different variables being of different types and of different initial values in the same

Declare statement. Just remember that the last type and value in the list will be applied to all the
variables that follow that are not given an expression until one is encountered with an
expression after which the new type and value will become the new defaults. The list starts off
with Integer 0 being the default until you change it.

9 - There are many commands in RB that use a variable as a parameter and will set the variable to a
value. These commands (except Input and also see VarSet) will not respect the strict typing and
will continue to behave as if no Declare statement has been issued.

The following examples illustrate these rules. Examples:
Declare i,j,k //make RB strict typer and also declare i,j and k as
integers initialized to 0
Declare x=0.,y .1,z,W //declare x as a float with initial value 0.0 then y
as a float with initial value 0.1
 //and z and w as floats with initial value 0.1 since
they are not given expressions
 //and the last default is that given to y (i.e. 0.1)
Declare a "",b,c //declare a,b,and c as strings and initial value of
empty strings
Declare r,p 1.,q,s,t 5,xx,yy "test",zz //declare r as integer and 0 initial

RobotBASIC V4.2.0

Page 56 of 276

value.
 //p,q and s as floats with 1.0 as
initial value,
 //t and xx as integers with initial
value of 5 and
 //yy and zz as strings with "test" as
initial value.
Declare f=0, g 1. , h="test", aa 9.3 //declare f as an integer with value
0, g as float with value 1.0
 //h as a string with value "test" and
aa as a float with value 9.3

print i;j;k;x;y;z //prints 0 0 0 0 0.1
0.1
print "-",a,"-";b,"-";c,"-" //prints -- - -
print r;p;q;s;t;xx;yy;zz //print 0 1 1 1 5 5
test test
i = 3.6 //is allowed but i will be 3 (i.e. truncation of 3.6)
print i //prints 3
i = "test" //causes an error since i is an integer it is not allowed to
assign it a string
a = 5 //causes an error since a is a string and only strings can
be assigned to it
x = 3 //x will be 3.0 since x is a float and even though 3 is an
integer it will be converted to a float
for K = 0 to 10 //causes error since K is not declared
next
for x = 0 to 10 //causes and error since x is a float only integers are
allowed as For-Loop counters
next
Undeclare //turn strict typing off
for x=0 to 10 //no error since strict typing is now off and x will be
changed to become an integer
next
Declare i "", j 3.4, k=0 //strict typing back on and i is now a string with
initial value of ""
 //and j is a float with initial value of 3.4 and k
an integer with value 0.
Input i,j,k //you can enter anything for i, even numbers since they will be
converted
 //to strings. But only a numeric entry is allowed for j and k.
If you enter a string
 //an error will be issued. If you enter an integer for j it will
be made into a float.
 //if you enter a float for k the value will be truncated before
assigning it to k.
Print i;j;k

RobotBASIC V4.2.0

Page 57 of 276

RobotBASIC Constants
Constants are numerical values defined within RobotBASIC, but instead of using the number you can use
a name for the number. This is the same as using a simple variable. The names have been defined within
RobotBASIC and you can either use the number if you can remember what it is or use the name
anywhere the number is needed.

Constants can be used anywhere a numerical expression is required. Constant names are not case
sensitive so Red and red are the same. There are constants that define 16 colors and constants to define
things like true and false and so forth.

Color Constants
 Black = 0
 Blue = 1
 Green = 2
 Cyan = 3
 Red = 4 Note:
 Magenta = 5 See the discussion about colors in the
 Brown = 6 Screen & Bitmap Graphics section.
 Gray = 7
 Darkgray = 8
 Lightblue = 9
 Lightgreen =10
 Lightcyan =11
 Lightred =12
 Lightmagenta =13
 Yellow =14
 White =15

Variable & Array Element Type Constants
NoType = 0
Float =102
Integer = 105
String = 115

Serial Port Settings Constants
Parity:

pNone = 0
pOdd = 1
pEven = 2
pMark = 3
pSpace = 4

Stop Bits:
sbOneAndHalf = 0
sbOne = 1
sbTwo = 2

RobotBASIC V4.2.0

Page 58 of 276

FlowControl:
fcNone = 0
fcXonXoff = 1
fcHardware = 2

BaudRate:
br110 = 0
br300 = 1
br600 = 2
br1200 = 3
br2400 = 4
br4800 = 5
br9600 = 6
br14400 = 7
br19200 = 8
br38400 = 9
br56000 =10
br57600 =11
br115200 =12
br128000 =13
br256000 =14

ErrMsg() Dialog Icon Codes And Return Values
Buttons Codes:
MB_Ok = 0
MB_OkCancel = 1
MB_AbortRetryIgnore = 2
MB_YesNoCancel = 3
MB_YesNo = 4
MB_RetryCancel = 5

Icon Codes:
MB_NoIcon = 0 there will be no icon.
MB_Error = 16 will cause a Stop icon.
MB_Warning = 32 will cause a ! icon.
MB_Question = 48 will cause a ? icon.
MB_Information = 64 will cause an i icon.

Default Button Codes:
MB_Button1 = 0
MB_Button2 = 256
MB_Button3 = 512

Returned Value Codes:
MB_Ok = 0
MB_Cancel = 1
MB_Abort = 2
MB_Retry = 3
MB_Ignore = 4

RobotBASIC V4.2.0

Page 59 of 276

MB_Yes = 5
MB_No = 6

Mouse Cursor Constants
cr_Default = 0 this is the default system shape (usually a pointer the same as
cr_Arrow)
cr_None = -1 this will effectively remove the cursor. Beware of this format!
cr_Arrow = -2
cr_Cross = -3
cr_IBeam = -4 Note: -5 is not used and will be the same as -1 if you use it
cr_NESW = -6
cr_NS = -7
cr_NWSE = -8
cr_WE = -9
cr_UpArrow = -10
cr_HourGlass = -11
cr_DragPoint = -12
cr_NoDrop = -13
cr_HSplit = -14
cr_VSplit = -15
cr_MultiDrag = -16
cr_WaitSQL = -17
cr_Stop = -18
cr_WaitPoint = -19
cr_HelpPoint = -20
cr_HandPoint = -21

Font Style Constants
fs_Bold = 1
fs_Italic = 2
fs_Underlined = 4

AbortMethod Constants
am_Normal = 0
am_Exit = 1
am_Error = 2
am_NoAbort = 3
am_Flag = 4

Some Key Code Constants
These codes should be used only with KeyDown() but they can be used with GetKeyE if the user
does not press Shift, Ctrl, or Alt along with the key since GetKeyE will append 1000, 4000, or
2000 correspondingly to the actual code.

The codes for 0 to 9 are 48 to 57, the codes for A to Z are 65 to 90. There are no codes for lower
case letters the same key is lower and upper. You can detect if shift is pressed also to distinguish
(if you need to), however in GetKeyE the code returned will have 1000 added to the normal code
if shift is pressed.

kc_LMouseB = 1
kc_RMouseB = 2

RobotBASIC V4.2.0

Page 60 of 276

kc_MMouseB = 4
kc_Esc = 27
kc_F1 to kc_F12 = 112 to 123
kc_LArrow = 37
kc_UArrow = 38
kc_RArrow = 39
kc_DArrow = 40
kc_Shift = 16
kc_Ctrl = 17
kc_Alt = 18
kc_Ins = 45
kc_Del = 46
kc_Home = 36
kc_End = 35
kc_PUp = 33
kc_PDn = 34
kc_Enter = 13
kc_BkSpace = 8
kc_Space = 32

Spawn Modes
P_WAIT = 0
P_NOWAIT = 1

File Low Level I/O Constants
fo_BEGIN = 0
fo_CURRPOS = 1
fo_END = 2
fo_READ = 0
fo_WRITE = 1
fo_READWRITE = 2
fo_EXCLUSIVE = 16
fo_DENYWRITE = 32
fo_DENYREAD = 48
fo_DENYNONE = 64

Conversion Codes Constants
cc_DCTODF = 0 Celsius to Fahrenheit
cc_DFTODC = 1 Fahrenheit to Celsius
cc_DTOR = 2 Degrees to Radians
cc_RTOD = 3
cc_NMTOR = 4 Nautical miles to Radians
cc_RTONM = 5
cc_MITONM = 6 Miles to Nautical miles
cc_NMTOMI = 7
cc_KMTONM = 8 Kilometers to Nautical miles
cc_NMTOKM = 9
cc_KMTOMI = 10 Kilometers to Miles
cc_MITOKM = 11
cc_FTTOMI = 12 Feet to Miles

RobotBASIC V4.2.0

Page 61 of 276

cc_MITOFT = 13
cc_YRDTOMI = 14 Yards to Miles
cc_MITOYRD = 15
cc_FTTOYRD = 16 Feet to Yards
cc_YRDTOFT = 17
cc_INTOFT = 18 Inches to Feet
cc_FTTOIN = 19
cc_YRDTOM = 20 Yard to Miles
cc_MTOYRD = 21
cc_INTOM = 22 Inches to Meters
cc_MTOIN = 23
cc_M2TOHCT = 24 Meters2 to Hectares
cc_HCTTOM2 = 25
cc_M2TOACR = 26 Meters2 to Acres
cc_ACRTOM2 = 27
cc_CM3TOCUP = 28 Centimeters3 to Cups
cc_CUPTOCM3 = 29
cc_CM3TOGLN = 30 Centimeters3 to Gallons
cc_GLNTOCM3 = 31
cc_CM3TOGLNUK = 32 Centimeters3 to Gallons UK
cc_GLNUKTOCM3 = 33
cc_CM3TOLTR = 34 Centimeters3 to Liters
cc_LTRTOCM3 = 35
cc_CM3TOONC = 36 Centimeters3 to Ounces
cc_ONCTOCM3 = 37
cc_CM3TOONCUK = 38 Centimeters3 to Ounces UK
cc_ONCUKTOCM3 = 39
cc_CM3TOPNT = 40 Centimeters3 to Pints
cc_PNTTOCM3 = 41
cc_CM3TOQRT = 42 Centimeters3 to Quarts
cc_QRTTOCM3 = 43
cc_CM3TOTBLSP = 44 Centimeters3 to Table Spoon
cc_TBLSPTOCM3 = 45
cc_CM3TOTSP = 46 Centimeters3 to Teaspoon
cc_TSPTOCM3 = 47
cc_GTOCART = 48 Grams to Carrats
cc_CARTTOG = 49
cc_GTOONC = 50 Grams to Ounces
cc_ONCTOG = 51
cc_GTOPND = 52 Grams to Pounds
cc_PNDTOG = 53
cc_GTOSTN = 54 Grams to Stones
cc_STNTOG = 55
cc_GTOTON = 56 Grams to Tones
cc_TONTOG = 57
cc_GTOTONL = 58 Grams to Long Tones
cc_TONLTOG = 59
cc_WATTTOHP = 60 Watts to Horse Power
cc_HPTOWATT = 61

RobotBASIC V4.2.0

Page 62 of 276

Regular Expression Mode Codes
RE_DOTMATCHNEWLINE = 1
RE_MULTILINE = 2
RE_IGNORECASE = 8
RE_RIGHTTOLEFT = 16
RE_IGNOREWHITESPACE = 32

Numeric Type Byte Count
BytesCount_I = 4
BytesCount_F = 8

Media Player State Codes
ms_NotReady = 0
ms_Stopped = 1
ms_Playing = 2
ms_Recording = 3
ms_Paused = 5

DFT/FFT Window Functions Codes
sw_NoWindow = 0
sw_Hamming = 1
sw_VonHann = 2
sw_Blackman = 3
sw_BHarris = 4
sw_Bartlet = 5

Other Constants
True = 1
False = 0
On = 1
Off = 0
Yes = 1
No = 0
Down = 1
Up = 0

RobotBASIC V4.2.0

Page 63 of 276

Standard User Interfacing
Note: See the Overview Of The Language section for a discussion on how commands and functions fit

within the RobotBASIC language. The commands and functions are listed here in order of
functionality. An alphabetical order can be found in another section. Commands and functions are
not case sensitive. ClearScr, clearscr, and clearSCR are all the same command also sin(),
SIN(), and sIn() are all the same function.

Note: In many commands and functions there are optional parameters. If a parameter is not given
RobotBASIC will assume a default value for it. If you need to specify a value for an optional
parameter that comes after any preceding optional parameters, you have to put a space (or more or
none) in place of any optional parameters that precede the one you wish to specify. For example:

//this is how the command to save the screen is specified
//SaveScrWH {ne_X1{,ne_Y1{,ne_Width{,ne_Height}}}}
circlewh 10,10,100,100,red,red
SaveScrWH ,,70 //in this line we have accepted the default
 //values for the first 2 parameters then specified
 //a value for the 3rd and again accepted the
default
 //value for the last parameter
//this is how the function to obtain a substring from a strin is
given

 //Substring(se_Text{,ne_StartChar{,ne_NumCharacters}})
 s = Substring(ss) //useless but allowed start from beginning to
the end
 s = Substring(ss, ,5) //get 5 characters from the beginning
 s = Substring(ss,3) //get all the rest of the string from the 3rd
character
 s = Substring(ss,7,2) //get 2 characters from the 7th

Note: The following prefixes are used to describe the type of the parameter to be given to a command or
function:

ne_ = An expression resulting in a numeric (integer or float).
se_ = An expression resulting in a string.
e_ = An expression resulting in a numeric or string.
vs_ = A simple variable that will be set by the command to a string value.
vn_ = A simple variable that will be set by the command to a numeric value.
v_ = A simple variable that will be set by the command to a numeric or string.
a_ = An array variable that will be used by the command or function as a whole array.
Expr = An expression that can result in a numeric or string but no easy description can be
given.
ExprN = An expression that must result in a numeric but no easy description can be given.
{Expr} implies that it is optional and {Expr...} means many can be optionally given.
If a simple variable is expected in any of the commands, then if it exists it will be assigned the
result otherwise it would be created and assigned the result.
If an array is expected then it must be a previously dimensioned array, but in some cases where
the array is created by the command, it does not have to be previously dimensioned.
The character | means or. So if you see on | off, it means you can use either on, or off. v_Name |
a_Name[...] means you can specify a simple variable or an array element.

RobotBASIC V4.2.0

Page 64 of 276

Standard Output

Print {Expr,Expr;Expr...}{;|,}
Write {Expr,Expr;Expr...}{;|,}

Outputs the values of expr.... to the screen. A , between the expressions makes them print with no
space between them a ; prints them with a tab space between them. If there are no expressions then a
line feed is printed.

If the list of expression ends with a , or ; there will be no line feed after printing. So the next print will
start from where the current printed text ends on the screen. Using a comma as the last thing after the
expressions will cause the next print statement to print immediately where the current printed text ends,
while a semicolon will put a tab first. If there is no comma or semicolon then a line feed will be issued
at the end of the printing. If the expressions result in text that is longer than would fit on one line then
the text will wrap around to the next line (not word wrap).

Print and Write do the exact same thing. Both syntaxes provide compatibility with most systems and
you can either in exactly the same manner.

If you want to issue a linefeed after a series of print statements that end with a semicolon or comma,
then issue a Print/Write statement on its own (no parameters).

The first time Print is used the text will print at the top of the screen and then will print on subsequent
lines until the screen is filled. When this happens the screen will be cleared and printing will start at the
first line again. See the IDE section for more on this and a special feature for retrieving the text that
scrolled off the screen. Also see TextBuffToCB, and SetTextBuff and GetTextBuff().

The color of the text is according to the current default colors. If you desire to use different colors then
use SetColor and GetColor. Also see ErrMsg() and MsgBox().

Note: In RobotBASIC the ; creates a tab between the printed elements of the Print command

while , is used as a no spaces separator. In other versions of BASIC it is the other way
around. You can tell RobotBASIC to be like other BASICs using CommaTab (see below).

Note: If the resulting string to be printed contains within it the character 13 (CR) or the
combination of characters 13 and 10 (CR/LF) the part of the string after the CR or CR/LF
will be printed on a new line. This feature was not in versions earlier than V4.0.1. See
HonorCRLF if you need to maintain compatibility with earlier versions.

CommaTab {true|false}

In RobotBASIC the ; creates a tab between the printed elements of Print while , is used as a no spaces
separator. In other versions of BASIC it is the other way around. You can tell RobotBASIC to behave
like other BASICs using this command. If true is given or not given then RB will behave like other

BASICs and will use , as a tab separator and ; as no spaces separator. If false is given then RB will

behave normally and the ; will be the tab separator. Issue this command anytime (only once) before
you use any Print statement and you can make RB behave as desired.

RobotBASIC V4.2.0

Page 65 of 276

HonorCrLf {true|false}
In RobotBASIC versions earlier than V4.0.1 Print did not effect a Line Feed if the string to be printed
contained within it the CR/LF characters [char(13)+char(10)]. Version 4.0.1 onwards will cause a line
feed if the string being printed contains either a CR (char(13)) alone or a CR/LF (char(13)+char(10))
combination. This will be done by default.

This command allows you to turn off this feature to maintain compatibility with earlier versions if you
need it. If there is no parameter or the parameter is true then the feature is on. If the parameter is false
then the feature is turned off. By default it is on if the command is never issued.

SetPromptArea {se_Text}
Puts text in the Prompt area at the bottom of the Terminal Screen just above the input area. This can be
useful for prompting the user or for displaying status without interfering with the display in the main
Terminal Screen area. If se_Text is not given then it will be "", effectively clearing the prompt area.

SetInputArea {se_Text}
Puts text in the Input area at the bottom of the Terminal Screen. This can be useful for prompting the
user or for displaying status without interfering with the display in the main Terminal Screen area. Also
it is a way to set default input as a response to an Input. If se_Text is not given then it will be "",
effectively clearing the input area.

xyString ne_X,ne_Y,Expr{;expr,expr;...}

Outputs the result of Expr... at ne_X,ne_Y position on screen. The , between expression makes them

print with no spaces between them and ; prints them with tab separation. The color of the text is
according to the current default colors. If you desire to use different colors then use SetColor. Also see
GetColor and GetXY. If either ne_X or ne_Y is -1 then the current corresponding X or Y screen
position will be used. Also see ErrMsg(), TextBox and MsgBox(). Also see TextWidth() and
TextHeight().

xyText {ne_X{,ne_Y{,e_Text{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_BackgroundColor}}}}}}}}
Outputs the result of Expr at ne_x,ne_Y position on screen. se_FontName specifies the font name of
the font to be assigned to the printed text. ne_Size specifies a size and ne_FontStyle is a bitwise map of
the style.

e_Text can be any valid expression that results in a number or string. If it is a number it will be
converted to a string. If it is not given it will be "".

If either ne_X or ne_Y is -1 or is not given then the current corresponding X or Y screen position will
be used. The font name size and style are optional. If the font name is not specified or is an empty
string then the default font (Courier New) will be used. If the size is not specified or is less than 1 then
the default size will be 11. If the style is not specified or is 0 then no style is applied. If ne_PenColor is
not given or is less than 0 then the current default Pen Color will be used. If ne_Background color is
not given or is less than 0 then the current background color will be used.

The size of the font can be any number and the system will apply the closest allowable size.

ne_FontStyle is a bitwise map of the desired styles to be applied. You can bit wise OR (bOr or |) the
values given in the RobotBASIC Constants section to apply multiple styles. So for example if you want
bold and italic use fs_Bold | fs_Italic.

Different machines may have different fonts and if the name you specify is invalid the system will

RobotBASIC V4.2.0

Page 66 of 276

apply a default (not necessarily Courier New). To find out what names are available on your machine
use the Fonts menu option from within the Help menu on the Editor screen. This will bring up a dialog
that shows all fonts available and what sizes are available for each. You can select a font and when you
exit the dialog the font's name will be copied to the clipboard. You can then use Ctlr+V (paste) to insert
the name into your program. Remember different machines may not have this font. So try to choose
fonts that are universally available on most machines.

Many fonts have characters of varying widths. These fonts will not print within a consistent an overall
width depending on the number of characters in the string, since different characters have different
widths. The font "Courier New" has all characters of the same width. Text written with a font that does
not have the same width characters will be hard to line up from line to line.

Also see GetColor, GetXY, TextWidth() and TextHeight().

OverlayText {ne_X{,ne_Y{,e_Text{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_Quick}}}}}
Performs the exact same action as xyText but the text will not have a background color. Both xyText
and xyString draw the text over the screen with the default pen color and a rectangular area
surrounding the letters with the background color. So when the text is drawn the area under the text
will be overwritten.

This command draws the text letters with the default pen color, but no background is drawn. So only
the letter itself is drawn and any details under the rectangular area surrounding the letter will not be
obliterated.

All the parameters are exactly the same as for xyText except that there is no background color since the
text with this command will have a transparent background color. Instead the last parameter is
ne_Quick which if not given will be assumed to be false (see note below for details of what it
signifies). Also see TextWidth() and TextHeight().

Note: This command executes considerably slower than xyText or xyString so use it only when needed
for effect not as a standard text output command.

Note: the ne_Quick parameter makes the command perform slightly faster and the text will look better
on a white background. However, on a colored background the text looks like it is surrounded
with speckles due to the antialiasing coloring around the font. This will make the text look bad
when drawn over other stuff and you should either not specify this parameter or set it to false.
But when this parameter is set to true the text is drawn a little bit faster and looks better on a
white background and thus it is up to you to decide which version to use.

Example:
//makes text look like it is shadowed
s = "Test Words" \ fnt = "Times New Roman"
Flip on
xyText 65,110,s,fnt,90,fs_Bold,,red
OverlayText 60,100,s,fnt,90,fs_bold,blue,false //set false to true and see
what happens
Flip

RobotBASIC V4.2.0

Page 67 of 276

Standard Input

InlineInputMode {on|off}
By default InlineInputMode is set to off. This command allows you to set it on or off. If on is specified
or no parameter is given then RobotBASIC will be put into Inline Input Mode On. If off is given then
the mode will be set to off (which is default mode). This will affect how Input and WaitKey behave.
See below

Input {e_Prompt,} v_Name | a_Name[...] {,...}
Prints the text resulting from e_Prompt above the input box at the bottom of the Terminal Screen, then
waits for input inside the input box which must be terminated with a RETURN. The input will be
assigned to the simple variable v_Name or to the array element a_Name[...]. The array element must be
within the dimension of the previously dimensioned a_Name array. If e_Prompt results in a blank
string or is not given then > is printed as a prompt. If it results in a numeric it will be made into a
string.

You can have as many v_Name or a_Name[...] parameters separated with commas as needed. When
the user inputs a value and presses RETURN it will be assigned to the next variable in the list. The
program will keep prompting the user with the e_Prompt (but see below) for as many times as there are
variables and will expect the user to enter values with a RETURN for as many times as there are
variables in the list.

If e_Prompt is a string that contains the character | then string will be deemed to have separate sections
and the first section will be used to prompt for the first variable in the list and the second section for the
second variable and so forth. See examples below.

If the user just presses RETURN then the corresponding variable will be assigned a "".

Note: The above is true by default and if InlineInputMode off has been issued. If InlineInputMode on
has been issued then instead of using the input box in the Control Panel at the bottom of the
screen and prompting just above it, the program will print the prompt on the screen where the
next Print statement would have printed and the input from the user is also printed just after that
as the user inputs it. If the command expects multiple inputs then the next user input will be on
the next line and will have the prompt > unless the original prompt has a corresponding section
in the overall prompt (using the | character). The next Print statement will be on the next line
after the inputted text.

Note: Normally RB is a free typing language. The variables in the list of variables of Input do not have
to exist and if they do their type does not matter. If the value inputted by the user is an integer or
a float it will be made into one and assigned to the corresponding variable and the variable will
take on that type. If the value inputted cannot be converted to a numeric then it will be deemed
to be a string and assigned to the variable and the variable will become a string. You can then
use vType() to find out the type entered and use ToNumber(), ToStirng(), IsNumber(),
IsString(), Round() etc. to manipulate the variables as needed.
However, if RB has been made to become a strict typing system (see Declare) then the variables
in the list have to have been previously declared of a certain type. If a variable has not been
declared then there will be an error. Also the input has to be appropriate for the type according to
the rules:

1- If the variable is a string then any input is allowed (numeric or string) and it will be
assigned to the variable as a string. If it is a numeric then it will be converted to a string.

RobotBASIC V4.2.0

Page 68 of 276

2- If the variable is an integer then only integer or float input is allowed. A float will be
converted to an integer by truncating it if possible. If the float cannot be converted to an
integer (i.e. too large) an error will be issued.

3- If the variable is a float then only integers and floats are allowed. If the input cannot be
converted to a float then an error will be issued.

Also see ErrMsg(), MsgBox(), StrInput(),and xyInput.

Example:
//InlineInputMode on //uncomment this line to see how the program behaves
Input a
print "You entered ",a
Input "Please enter a number",b
If IsNumber(b)
 Print b,"*",5,"=",b*5
else
 Print "You did not enter a number"
endif
Input "Enter three values a,b,c:",a,b,c
Print "You entered: ",a;b;c
Input "Enter your name|Your age|Are you male (Y,N)?:",Name,Age,IsMale
//notice the | character
Print "Hi ",Name, " You were born in ",Year(Now()-ToNumber(Age,0)*365),
Print " and you are a ",
if Upper(IsMale) == "Y"
 Print "Male"
else
 Print "Female"
endif

xyInput v_Input{,ne_X{,ne_Y{,e_Title{,e_Default{,ne_BoxLength}}}}}
This will show an input box with a prompt message and will allow the user to enter data in the input
box. The entered data is assigned to the variable v_Input. If the data is numeric then v_Input will be
numeric, otherwise it will be string.

All the parameters are optional except v_Input. ne_X and ne_Y will default to the value -2. e_Title and
e_Default will default to an empty string. ne_BoxLength will default to -1.

If ne_X or ne_Y is -2 then the input box will be centered (in that axis) on the screen. If they are -1 then
the input box will be positioned at the current pen position (for that coordinate that is -1) within the
terminal screen. Any other value will be used to position the input box within the terminal screen.

e_Title and e_Default can be numeric or string. e_Title is used for the prompting message above the
input box. e_Default is used to initialize the input box. The user terminates the input using ENTER or
ESC. If Enter is used the current value inside the box will be assigned to v_Input. If ESC is pressed the
initial value will be assigned to v_Input regardless of what is inside the box currently. ne_BoxLength
assigns a length to the box in pixels. If it is less than 50 then the greater of the length of the prompt or
the initial input value or 50 will be used.

The box cannot be positioned outside the screen or be wider than the screen. It will be sized and
positioned such that it will still be fully visible if the given parameters will cause it to be otherwise. The
input data will scroll within the input box. Also see ErrMsg(), MsgBox() and StrInput().

RobotBASIC V4.2.0

Page 69 of 276

Keyboard Input

WaitKey {e_Prompt,}vn_KeyCode
Prints the prompt above the input box at the bottom of the Terminal Screen then waits for a key to be
pressed. When a key is pressed its ASCII code value is assigned to vn_KeyCode. If the prompt is not
given or is an empty string ("") then a Press Any Key is printed as a prompt. If e_Prompt results in
a numeric it will be made into a string. The code assigned to vn_KeyCode is the ASCII code of the key
pressed so if you press 'a' then 97 will be assigned, while Shift-a (i.e. A) will give 65. Other key
combinations like Ctrl-a or Alt-a will return non-ASCII codes if valid. Keys like up-arrow, home etc.
do not return any values. For these keys see GetKeyE. Also see Ascii() and Char() which convert
between the ASCII code and string characters.

Note: If InlineInputMode on has been issued then instead of using the Control Panel at the
bottom of the screen the Prompt will be shown where the next Print would have printed.
The next Print will then be on the next line.

GetKey vn_KeyCode
Does not cause the program to pause and wait for a key, but if a key is pressed then its ASCII code
value is assigned to vn_KeyCode, otherwise a 0 is stored. This is useful in loops that need to be exited
if a key is pressed but without halting the loop until a key is pressed. The code assigned to
vn_KeyCode is the ASCII code of the key pressed so if you press 'a' then 97 will be assigned, while
Shift-a (i.e. A) will give 65. Other key combinations like Ctrl-a or Alt-a will return non-ASCII codes if
valid. Keys like up-arrow, home etc. do no return any values. For these keys see GetKeyE, Ascii() and
Char() which convert between the ASCII code and string characters. Also see KeyDown(). This
function has the added power of allowing you to detect multiple keys pressed together.

If you use this command within a loop you may get too many repetitions of the key due to the speed of
the system not giving the user time to release the key before it is read many times as being a new key
press. This can be counteracted by using Delay to delay between successive reads of the key (150 to
200 milliseconds might be sufficient). Or you can use looping to wait until the key is released
(vn_KeyCode will be zero) or you can use WaitNoKey. It depends on your application, but the third
or second method should be preferable. Example:

rLocate 400,300
while true
 GetKey k
 if k== Ascii("w") then rForward 1
 if k== Ascii("a") then rTurn -1
 if k== Ascii("s") then rTurn 1
 if k== Ascii("z") then rForward –1
 //waitnokey 20 //uncomment this line see the effect
wend

GetKeyE vn_ScanCode
Does not cause the program to pause and wait for a key, but if a key is pressed then a code value (scan
code) corresponding to the key is assigned to vn_ScanCode, otherwise a 0 is stored. This is useful in
loops that need to be exited if a key is pressed but without halting the loop until a key is pressed and
also for detecting key presses of keys like up and down arrows and so on.

This command will return the scan code of the key pressed (not its ASCII code). The keys Shift, Alt
and Ctrl have their own codes if pressed on their own. However, if these keys are pressed in
combination with another key then the code of the key alone is added to 1000 (Shift), 2000 (Alt) or
4000 (Ctrl). For Example if you press 'a' alone you will get 65 inside vn_ScanCode (notice that this is

RobotBASIC V4.2.0

Page 70 of 276

the ASCII code for A not a). If you press Shift+a you will get 1065, Alt+a will give 2065, Ctrl+a will
give 4065, Alt+Shift+a will give 3065, Ctrl+Alt+a will give 6065 and so on.

This command allows you to examine more keys than in GetKey. Keys like Up-Arrow will return 38.
The codes returned by this command may not necessarily be the ASCII codes. Rather, they are codes
that represent the key inside the operating system (scan codes). The codes for the alphanumerical keys
are actually the ASCII codes but only for the upper case. So when the key 'D' is pressed the code will
be 68 which is the ASCII code for 'D' regardless of the CapsLock state. If you press Shift-D then the
code returned will be 1068 (as discussed above) which is not a valid ASCII code. The Shift, Ctrl, and
Alt keys pressed alone will have the code 1016, 4017 and 2018. The actual codes for the keys are 16,
17 and 18 but due to the coding described above the values 1000, 4000 and 2000 also get added to the
code. Also see the RobotBASIC Constants section for handy constants that represent various key scan
codes. The constants kc_Shift, kc_Ctrl, and kc_Alt cannot be used with this command since the
command returns 1000, 4000 and 2000 added to the code.

Also see KeyDown(). This function has the added advantage of allowing you to detect multiple keys
pressed together.

This command may not return a value for certain combinations of keys pressed if they correspond to
key combination that have a meaning for the operating system. So for example Ctrl+Esc will cause the
Window's "Start" menu to fire up and will not be possible to detect within your program.

To find out what key code will be returned for a particular key you can experiment with the keys using
the program below:
while true
 getkeyE k
 if k then xyString 1,2,"Extended Code=",k;" "
wend

If you use this command within a loop you may get too many repetitions of the key due to the speed of
the system not giving the user time to release the key before it is read many times as being a new key
press. This can be counteracted by using Delay to delay between successive reads of the key (150 to
200 milliseconds might be sufficient). Or you can use looping to wait until the key is released
(vn_ScanCode will be zero) or you can use WaitNoKey. It depends on your application, but the third
and second method should be preferable. Example:

rLocate 400,300
while true
 GetKeyE k
 if k== kc_LArrow then rTurn -1 //left arrow
 if k== kc_UArrow then rForward 1 //up arrow
 if k== kc_RArrow then rTurn 1 //right arrow
 if k== kc_DArrow then rForward -1 //down arrow
 //waitnokeyE k,50 //uncomment this to see the effect
wend

WaitNoKey {ne_MillisWait}
If ne_MillisWait is zero or not given then the program will pause until no key on the keyboard and no
mouse button is pressed. If it is given then the program will pause until no key is pressed or
ne_MillisWait milliseconds elapse whichever comes first.

This is useful when you want to detect a key press and release. See the example program under
GetKey.

To illustrate the need for this run this program then uncomment the commented line and run it again to

RobotBASIC V4.2.0

Page 71 of 276

see the difference in behavior.
while true

GetKey k
readmouse x,y,m
if k || m

print "Press";m;k
//WaitNoKey //uncomment this and see the effect

endif
wend

WaitNoKeyE ne_ScanCode{,ne_MillisWait}
If ne_MillisWait is zero or not given then the program will pause until the key with the scan code
ne_ScanCode is not pressed. If it is given then the program will pause until the key with the scan code
is not pressed or ne_MillisWait milliseconds elapse whichever comes first.

This is useful when you want to detect a key press and release for a particular key. See the example
program under GetKeyE.

This command achieves the same purpose as WaitNoKey, except you are only interested in one
particular key scan code. If other keys are pressed but not the key specified the command will not cause
a pause. You can use any of the scan codes given in the RobotBASIC Constants section.

LastKey()
Returns the scan code of the last keyboard key to be pressed. This function is equivalent to GetKeyE.
This function is necessary in the body of a OnKey event handler subroutine. You must use this function
within the body of the subroutine before you return from the routine. The scan code returned is as
described in GetKeyE. If there is no key pressed when this function is called the returned value is 0.

KeyDown({ne_ScanCode})
WaitKey, GetKey and GetKeyE allow you to obtain the code for the last key pressed. However, it may
become necessary to test if a certain combinations of keys are pressed. Say you want to fire
retrorockets horizontally and vertically and allow both at the same time. If you use the above
commands the program will only be able to detect the last key pressed and thus if the user presses both
the Up and Left Arrow keys together the commands will only report the code of the last key pressed.
Also see the RobotBASIC Constants section for handy constants that represent various key codes.

Using this function you can interrogate each key separately to see if it is pressed down or not. There are
255 keys on the keyboard and you can find out the state of each separately using this function. For
instance if you want to find out if the up arrow key is pressed and also at the same time the left arrow
key then you would have a statement like
 if KeyDown(kc_LArrow) && KeyDown(kc_RArrow) then GoSub DoSomething
Or you can use the numbers directly
 if KeyDown(37) && KeyDown(38) then GoSub DoSomething

The function returns a non-zero number if the key is pressed and zero if it is not. ne_ScanCode is an
integer value representing the code of the key you wish to query. The codes of the keys can be
determined as described under GetKeyE. There is a program segment given there that enables you to
determine the code for any key on the keyboard. Most of the alphanumeric keys have a code that is the
ASCII code of the UpperCase letter of the key. The shift, Control and Alt keys have the values 16, 17,
and 18 respectively. So for example if you wish to find out if Shift+Ctrl+F2 are pressed simultaneously
you would have:
 if KeyDown(kc_Shift)&&KeyDown(kc_Ctrl)&&KeyDown(kc_F2) then GoSub DoSomething

RobotBASIC V4.2.0

Page 72 of 276

The Function keys have the numbers 112 to 123 (F1 to F12). Remember the key code is specific for
each key even if the key has multiple characters printed on it, it will have one code. So the 9(key will
have the code 57 which is actually the ASCII code for the numeral 9. The Left-Up-Right-Down arrow
keys have the codes 37 to 40 in order (see the RobotBASIC Constants section). You can also use this
function to read the condition of the mouse buttons as if they were keyboard keys. See the
RobotBASIC Constants section for their codes.

The function can be useful in gaming where a response to more than one key pressed together may be
necessary. Also refer to GetKey, and GetKeyE for a discussion on how to handle the speed of response
when you do not wish to detect one press as multiple presses.

Note: This function will report the scan codes of the keys and mouse buttons. If you have mapped the
mouse to left handed operations the reported numbers will not be as you expect since 1 will still
be the left button on the mouse regardless of left handed swapping operations (4 will be middle
and 2 will be right).

Note: ne_ScanCode is optional. If it is not given or is less than zero then the function will report the
scan code of a pressed key instead of looking for a particular key. It will return either 0 if no key
is pressed when the function is called or the scan code of the key being pressed. If multiple keys
are being pressed the function will return the LOWEST scan code.

Mouse Input

ReadMouse vn_X,vn_Y{,vn_Buttons}
Reads the current mouse position on the Screen and Sets vn_X and vn_Y to the position of the mouse
pointer at the time the command was executed. vn_Buttons is set to a number that indicates a variety of
things as follows:
Two digit integer where the ones digit is:

1 if Left mouse button is down
2 if Right mouse button is down
3 if Middle mouse button is down

The tens digit is:
10 if the Shift key is pressed
20 if the Ctrl key is pressed
30 if the Alt key is pressed
40 if the mouse button was double clicked

For Example: vn_Buttons will be 21 if the Left mouse button was pressed while the Ctrl button was
held down.

If you use this command within a loop while detecting for a mouse click you may get too many
repetitions of the click due to the speed of the system not giving the user time to release the button
before it is read many times as being a new button press. This can be counteracted by using Delay to
delay between successive reads of the click (150 to 200 milliseconds might be sufficient). Or you can
use looping to wait until the button is released (vn_Buttons will be zero) or you can use WaitNoKey. It
depends on your application, but the third or second method should be preferable. Example:

rLocate 400,300
while true
 ReadMouse x,y,mb
 if mb== 1 then rForward 1
 if mb== 2 then rTurn 1
 //waitnokey 20 //uncomment this and see the effect

RobotBASIC V4.2.0

Page 73 of 276

wend

SetMousePos {ne_X{,ne_Y}}
Positions the mouse cursor within the terminal screen to any position specified by the given
coordinates. Unspecified parameters are made to be 0.

SetCursor {ne_CursorShapeCode}
Sets the mouse cursor to a particular shape as defined by the given code. The code is optional and if not
defined cr_Default will be assumed. See the RobotBASIC Constants section for a set of possible
values. If the given code > 0 it will be made negative and it is < -21 it will be made -21.

GetCursor vn_Code
Assigns vn_Code the value of the current mouse cursor shape value. See the RobotBASIC Constants
section for possible values.

LastMouse()
Returns the code of the mouse button pressed when this function is called. This is the same code
returned when ReadMouse is executed. The code is only for the mouse button and any Shift, Alt or Ctrl
pressed at the same time as described in ReadMouse. No mouse position is encoded. To get this you
must use ReadMouse. If no mouse button (nor shift/alt/ctrl) is currently pressed when this function is
called the returned value will be 0.

This function is necessary in the body of a OnMouse event handler subroutine. You must use this
function within the body of the subroutine before you return from the routine.

Joystick Input

Joystick ne_JoystickNo,vn_XAxisPos,vn_YAxisPos,vn_ThrottlePos,vn_Buttons
Reads the current status of the Joystick and assigns the variables as will be described shortly. You can
use up to two joysticks. If ne_JoystickNo is 2 then the second joystick will be interrogated. If it is other
than 2 (e.g. 1) then joystick 1 will be interrogated.

Joysticks need to be installed using the operating system and need to be calibrated (also using the OS).
If there is no joystick or there is an error in reading the joystick then the variables will all be assigned -
1. If there is a joystick in the indicated position and it is successfully interrogated then the variable will
be assigned values as follows:

vn_Buttons will be assigned 0 if no button is pressed or a bit wise number representing what
combination of buttons are pressed if any are pressed. The first button is the least significant bit
(LSB) and the last button is the most significant bit (MSB). So if buttons 2 and 5 are pressed then
vn_Buttons will be 10010 i.e. 18, if buttons 3 and 8 are pressed then will 10000100 i.e. 132 will be
assigned and so on.

vn_XAxisPos/vn_YAxisPos will be assigned a floating point number 0.0 to 1.0 representing the
position of the X-Axis/Y-Axis of the joystick. 0.5 being the center position, 0 all the way to the left
and 1.0 is all the way to the right.

Some joysticks only allow the above two axes, however, many joysticks have what is normally
called the throttle axis which can be considered to be the Z-Axis. vn_Throttle will be assigned a
floating point number 0.0 to 1.0 representing the position of the Z-Axis of the joystick. 0.5 being the

RobotBASIC V4.2.0

Page 74 of 276

center position, 0 will be the fully closed position (usually up) and 1.0 is the fully open position
(usually down). Example:

While true
 Joystick 1,x,y,z,b
 xyString 10,10,x;y;z;b;spaces(20)
 delay 100
wend

JoystickE ne_JoystickNo,a_ReturnedData
Reads the current status of the extended Joystick and assigns values inside the array a_ReturnedData as
will be described shortly. You can use up to two joysticks. If ne_JoystickNo is 2 then the second
joystick will be interrogated. If it is other than 2 (e.g. 1) then joystick 1 will be interrogated.

Joysticks need to be installed using the operating system and need to be calibrated (also using the OS).
If your joystick supports more than three axis and other functionalities then use this command to obtain
the extended information about the status of the joystick. You are still able to use Joystick even if you
have an extended joystick so long as you do not need the additional controls the extended joystick can
give. However, if you need more than three axis and other functionalities then use this command to
obtain all the information.

a_ReturnedData will be a two-dimensional array [8x3]. The data will be as follows:
X-axis value X-axis minimum value X-axis maximum value
Y-axis value Y-axis minimum value Y-axis maximum value
Z-axis value Z-axis minimum value Z-axis maximum value
R-axis value R-axis minimum value R-axis maximum value
U-axis value U-axis minimum value U-axis maximum value
V-axis value V-axis minimum value V-axis maximum value
Buttons Pressed Button number Number of buttons available
POV value Type of POV Number of Axes available

The range for an axis is defined by the maximum and minimum values while the current position is
given in the value. There are up to 7 axes supported. The actual number of axes implemented by the
joystick is given in a_ReturnedData[7,2].

The Z-axis is usually the throttle. The R-axis is usually the rudder axis and on some joysticks is the
twist in the joystick handle. The U and V axis are not common on joysticks but can be available on
consoles like driving and flight simulator control consoles.

a_ReturnedData[6,0] holds a value that represents which combination of buttons is pressed (it is a bit
map as described in Joystick above). a_ReturnedData[6,1] holds the lowest number (1,2,3, etc) of the
buttons pressed. a_ReturnedData[6,2] is the number of buttons available on the joystick.

The POV is a hat button (called Point Of View) that can be pushed in a direction Up, Down, Left,
Right and on some joysticks in positions in between. There are two types of POVs. The continuous
ones where you can position it at any angle (0 to 359) or the discrete ones which can only be positioned
at discrete positions. If a_ReturnedData[7,1] is 0 (false) then the joystick POV is discrete, if it 1(true)
then it is a continuous type. a_ReturnedData[7,0] holds the position of the POV in degrees like in a
compass. 0° is North, 180° is south, 45° is North East, and so on. If the POV is not being pushed in any
position then the value will be -1.

If the command fails or there is no joystick then all the numbers will be -1. Example:
while true
 joysticke 1,a

RobotBASIC V4.2.0

Page 75 of 276

 for i=0 to 7
 s = ""
 for j=0 to 2
 s = s+format(a[i,j],"##########0")
 next
 xyString 0,i*20, s
 next
 delay 100
Wend

Sound Output & Input

Beep {ne_Count}
Beeps the Speaker ne_Count times. If ne_Count is not given only one beep will be sounded. Each beep
takes 250 milliseconds, so if you beep 4 times the command will be equivalent to a delay of 600 ms.

PlayWav {se_FileName{,ne_Mode{,ne_Loop}}}
Plays the WAV file specified on the sound card. The value ne_Mode specifies whether it is
Synchronous or Asynchronous. If it is false it is Synchronous which means that the program flow will
halt until the sound finishes playing. If it is true (the default value) then the file will be played
Asynchronously which means that the program will continue without waiting for the sound to finish.
ne_Loop specifies whether the sound will play in a loop (i.e. never finish). If ne_Loop is true then wav
will continue to play over and over. If it is false or not given the wav will play only once. Looping is
only allowed if the wav is being played Asynchronously. So if ne_Mode is false ne_Loop is ignored
and is assumed to be false.

To stop a sound before it finishes either issue this command again with no file name specified, or with
a new file name to play, which will stop the current file and start the new file. The file must be a WAV
file with a ".wav" extension. If you specify a file with no extension or an extension that is not ".wav"
then it will be converted to ".wav". If the file is not a valid WAV format or it does not exist then a beep
will sound. When the program terminates any sound being played will be terminated also.

If the sound card is playing a sound file asynchronously the program flow will proceed while the sound
is playing. You can find out if the sound device is busy playing a sound using WavBusy() which
returns true if a sound is playing or false if not. Example:

playwav "song"
i=0
while WavBusy()
 print i+1
 delay 10
wend
print "ended"

WavBusy()
Returns true (1) if the sound device is busy playing a sound. Returns false (0) otherwise. This function
is useful to enable doing actions until the sound device finishes or while the sound card is still playing a
sound file that is being played asynchronously (see PlayWav).
Example:

playwav "song"
i=0
while WavBusy()
 print i+1
 delay 10
wend

RobotBASIC V4.2.0

Page 76 of 276

print "ended"

MediaPlay ne_DeviceNumber,se_FileName{,ne_Loop}
PlayWav only allows one WAV file to be played at a time. This command allows various media types
to be played and many simultaneously. You can play WAV, WMA, MP3 (and others) audio files and
AVI, WMV, MPG (and others) video files.

If you specify a file without an extension then it will be assumed to be an Audio WAV file and the
extension will be assumed to be ".wav".

You can have multiple media playing simultaneously. You specify a device to play the media on with
the ne_DeviceNumber. If ne_Loop is not given or is false then the media will be played once and once
finished the device will close. If ne_Loop is true then the media will be played continuously and you
have to explicitly stop it with MediaStop. You can also pause and resume the play using MediaPause.
You can also find out the state of a device with MediaState().

If the media file to be played is a Video file (see MediaIsVideo()) then use MediaShow,
MediaReposition and MediaGetPosition to show a window where the video will be displayed and to
control its position and size. See these commands for more details. If you wish to allow the user to
Pause/Resume or to Stop the play from within the RB Terminal screen you need to provide Buttons
that allow for that using MediaPause and MediaStop.

Example:
Main:
 ScrSetMetrics 650,100,700,250,0
 xyText 10,10,"File To Play:","Times New Roman",10,fs_Bold,blue
 AddEdit "fn",80,8,200
 ReadOnlyEdit "fn"
 data Buttons;"Choose &File","&Play","P&ause","&Stop","&Show
Video","&Resume","&Hide Video"
 AddButton Buttons[0],285,6
 for i=0 to 3
 AddButton Buttons[i+1],40+110*i,40,100
 next
 AddCheckBox "Repea&t",60,70,,,0
 fnt = "Times New Roman"
 xyText 150,70,"State:",fnt,10,fs_Bold
 xyText 290,70,"Video Size:",fnt,10,fs_Bold
 EnableButton Buttons[1],false
 onbutton bHandler
 Paused = false
 xyText 20,110,"Press to demo how to Reposition"+\
 " the video window under program control",fnt,13,fs_Bold
 for i= 0 to 3
 drawshape rotshape("lrrqsaw",i),80+i*11,120,4
 next
 xyText 20,140,"Press - + PgUp PgDn to demo how to "+\
 "Resize the video window under program control",fnt,13,fs_Bold
 FirstTime = true
 while true
 Call MonitorMediaState()
 Call MonitorKeyPresses()
 wend
end
Sub bHandler()
 b = LastButton()
 if b==Buttons[0]
 s = FilePrompt("|All Media Files|*.wav;*.avi;"+\

RobotBASIC V4.2.0

Page 77 of 276

 "*.wmv;*.mp3;*.mpg;*.mpeg|Others |*.*")
 if s!=""
 SetEdit "fn",s
 EnableButton Buttons[1]
 _FirstTime = true
 endif
 elseif b == Buttons[1]
 MediaPlay 1,GetEdit("fn"),GetCheckBox("Repea&t")
 SetButtonCaption Buttons[2],Buttons[2]
 SetButtonCaption Buttons[4],Buttons[4]
 Call ShowVideoScreen(1)
 _Paused = false
 elseif b == Buttons[2]
 if !_Paused
 SetButtonCaption Buttons[2],Buttons[5]
 MediaPause 1
 _Paused = true
 else
 SetButtonCaption Buttons[2],Buttons[2]
 MediaPause 1,0
 call ShowVideoScreen(0)
 _Paused = false
 endif
 elseif b == Buttons[3]
 MediaStop 1
 elseif b == Buttons[4]
 Call ShowVideoScreen(1)
 endif
 onButton bHandler
Return
Sub ShowVideoScreen(ChangeState)
 if !MediaIsVideo(1) then return
 if !_FirstTime then MediaGetPosition x,y,w,h \ MediaReposition x,y,w,h
 _FirstTime = false
 t = !(GetButtonCaption(Buttons[4]) == Buttons[6])
 if ChangeState
 SetButtonCaption Buttons[4],Buttons[4+2*t]
 MediaShow 1,t
 else
 MediaShow 1
 endif
Return
Sub MonitorMediaState()
 ms = MediaState(1)
 xyString 185,70,ms," "
 ms = (ms !=2 && ms != 5)
 for i=2 to 3
 EnableButton Buttons[i], !ms
 next
 EnableButton Buttons[0], ms
 t = MediaIsVideo(1)
 EnableButton Buttons[4], (!ms && MediaIsVideo(1))
 MediaVideoSize 1,w,h
 xystring 355,70,w,",",h,spaces(10)
Return
Sub MonitorKeyPresses()
 if !keydown() then return
 MediaGetPosition ML,MT,MW,MH
 if KeyDown(kc_LArrow) then MediaReposition ML-10
 if KeyDown(kc_UArrow) then MediaReposition ,MT-10
 if KeyDown(kc_RArrow) then MediaReposition ML+10
 if KeyDown(kc_DArrow) then MediaReposition ,MT+10
 if KeyDown(kc_PUp) then MediaReposition ,,,MH-10

RobotBASIC V4.2.0

Page 78 of 276

 if KeyDown(kc_PDn) then MediaReposition ,,,MH+10
 if KeyDown(189) then MediaReposition ,,MW-10 // -
 if KeyDown(187) then MediaReposition ,,MW+10 // +
Return

MediaPause ne_DeviceNumber{,on|off}
Will Pause the media playing on ne_DeviceNumber if on is specified or not given and will Resume
play if off is given. Also see MediaState().

MediaStop ne_DeviceNumber
Will Stop the media playing on ne_DeviceNumber. Also aee MediaState().

MediaRecord ne_DeviceNumber,se_FileName
This command allows you to RECORD a WAV file. Only WAV files are allowed and if se_FileName
has no extension or an extension other than ".wav" it will be changed to ".wav" and the file recorded
will have a WAV format. You specify the device that will be recording using ne_DeviceNumber. You
must use this same number when later on you use MediaSave to stop recording and save the file. Also
see MediaState().

MediaSave ne_DeviceNumber
Will Stop the Recording and then save the file to the file name specified in MediaRecord. If
ne_DeviceNumber does not correspond to a device that is currently recording then no action will be
taken. Also see MediaState().

MediaShow ne_DeviceNumber{,true|false}
If the media file to be played is a Video file (see MediaIsVideo()) then use MediaShow,
MediaReposition and MediaGetPosition to show a window where the video will be displayed and to
control its position and size. If you do not call MediaShow you will only be able to hear the Audio.
You can move and size the window manually or under program control using MediaReposition.
MediaGetPosition returns the window's current position and size. If you close the window manually
the video will stop playing. If you stop the video using MediaStop then the window will be closed.

If no second parameter is given or it is true then the window will be displayed. If false is given then the
window will be closed but you will still be able to hear the audio. To close the window and stop the
video at the same time use MediaStop or the user can close the window manually.

Note: Every time you call MediaShow the video window will start at the top left hand corner of the
Computer Screen and will be of an initial size according to the size of the video. However, if you
specify either the X or Y position of the window (using MediaReposition) BEFORE you show
the window then it will remain where you specified. If you specify the Width or Height of the
window (using MediaReposition) BEFORE you show the window then it will remain at the size
you specified and will not resize to fit the video. If you wish to keep the window in the same
position as it was before it was last closed then use MediaGetPosition to see what the current
size and position are BEFORE you show the window then use MediaReposition to position and
size it according to the returned values BEFORE you show the window.

MediaVideoSize DeviceNumber{,vn_Width{,vn_Height}}
Will set vn_Width and vn_Height to the video's width and height respectively of the video currently
playing in ne_DeviceNumber. If the device is not ready or it is playing an Audio then the values are 0.
This is related but not the same as the size of the window in which the video is playing. If you call this
for a video playing in a window that has not been resized (manually or with MediaReposition) then the
width and height will be the video's real width and height as it is save in the file. If the video window

RobotBASIC V4.2.0

Page 79 of 276

has been resized then the values are the current video's width and height as it is playing. Read the notes
about the video window under MediaShow.

MediaReposition {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
Can be called while the media window is open or closed. It will cause the window to be placed at a
particular X,Y position on the COMPUTER SCREEN (not the Terminal Screen). Also you can give
the window any width and height desired. The video being played will be resized to fit the window. See
the note under MediaShow for important information.

MediaGetPosition {vn_X{,vn_Y{,vn_Width{,vn_Height}}}}
Will set the specified variables with the values of the current X,Y,Width and Height of the window.
See the note under MediaShow for important information.

MediaState(ne_DeviceNumber)
Returns a number that represents the state the device ne_DeviceNumber is in. See Media Player State
Codes in the RobotBASIC Constants section. The codes are ms_NotReady, ms_Stopped, ms_Playing,
ms_Recording and ms_Paused. ms_NotReady means the media is either not a valid media or is closed
and not playing. ms_Stopped means the media is not playing or paused. MediaStop will close the
media and put it in an ms_NotReady mode most of the time but it is possible for it to go into an
ms_Stopped state on occasion.

MediaIsVideo(ne_DeviceNumber)
Returns true if the media playing in the device is a video file and false if it is not. Use this function to
decide when to use MediaShow.

Sound ne_Frequency,ne_Duration{,ne_Mode}
Makes the PC speaker make a sound at the frequency for the duration in milliseconds. If ne_Mode is
true then the sound is made in the background and if it is false then the sound will stop the system for
the duration of the note. Your program will still pause until the note finishes but the Windows OS will
not be paused if mode is true. The default mode, if you do not specify it, is True.

Note: This command may cause an error on machines without a speaker.

Speaker {on|off}
This will turn the speaker off or on. The notes played with Sound will play and will take the time
required but no sound will be heard if the speaker is turned off. The speaker is on by default upon the
start of the program. If no parameter is given it will be on.

Note: This command may cause an error on machines without a speaker.

PlaySong {se_Notes}
This will play a song defined by the string se_Notes. If seNotes is not given then it will be made to be
"AA#BCC#DD#EFF#GG#" i.e. all the notes at the default tempo and the default scale (see below). If
se_Notes is given it should contain notes and other specs as defined below:

 The Notes are A,A#,B,C,C#,D,D#,E,F,F#,G,G# also P which is a pause.
 You can use lower or upper case. The # must immediately follow a note or it will be ignored
 Immediately after defining the note you can specify a number to define the duration of the note.

This number can be any number greater than 0 and is usually 1,2,4,8,16,32,or 64. But you can
specify any number you desire. The number will be used to calculate the duration of the note by
dividing into the defined Tempo (see later). The formula is Duration = Tempo/Number. You do
not need to define a duration all the time. If a note does not have a duration defined after it then

RobotBASIC V4.2.0

Page 80 of 276

the duration last defined will be used. If you have not previously defined a duration for a
previous note then the duration will be 8 by default.

 You define a tempo for the song and can change it at any time by specifying the letter T
followed by a number. The number will be in milliseconds. So if you say T1500 then the tempo
will be 1 and half seconds. If you never define a tempo then it will be 1000 (i.e. 1 second) by
default.

 You can define a scale for the song and can change it any time by specifying the letter S
followed by a number. The number must be in the range 0 to 6. This means that there are 7
scales and scale 3 is the Middle C scale. If you never define a scale it will be 4 by default. If
you define a number greater than 6 it will be made to be 6.

 The letter P is taken to be a pause of the duration defined as for the notes (see above).
 If the speaker is off (see Speaker) then the song will play but no sound will be heard.

The following example will play a song with the scale being 4 to start with then it will be changed to 3.
Also the tempo will start as 1000 and will be changed to 1500 afterwards. The notes A and B will play
at 8th and then the rest will be played at 16th

PlaySong "abc16dc#T1500dgS3abdg#"

Note: This command may cause an error on machines without a speaker.

The following will play the song Jingle Bells followed by La Cucaracha. Notice how you have
versatility in defining and playing the songs. Also notice how the scale is changed in the La Cucaracha
song.

data Jingles;"T1000S4E8EP32E4P32E8EP32E4P32E8GP32C4D16P32E2P16"
data Jingles;"F8FP32F8F16P32F8EP32E8E16P32G8GFDP32C2"
Cucaracha = "T2500S4C16CCP64F8P64A7C16CCP64F8P64A7F16F8P64"
Cucaracha = Cucaracha+"E16EP64D16DP64C4P32S4C16CCP64E8P64G7"
Cucaracha = Cucaracha+"C16CCP64E8P64G7S5C8D16P64C16S4A#16AG"
Cucaracha = Cucaracha+"P64F8P4"
playsong Jingles[0]
playsong Jingles[1]
Delay 1000
playsong Cucaracha

RobotBASIC V4.2.0

Page 81 of 276

Graphical User Interfacing
Note: See the notes at the top of the Standard User Interfacing section.

Dialog Boxes

StrInput({e_Caption{,e_Prompt{,e_Default}}})
Display a dialog box with a caption (window title), and a prompt and a default input text. The user then
can enter any text and press the OK button. If the OK button is pressed the text in the input field will be
returned. If the cancel button is pushed then the original default text (se_Default) will be returned. The
dialog box will be centered on the screen. The function returns a string regardless of what the input
was. If you are expecting a number use the string conversion functions to convert it to a number and
test whether it is a valid input and so on.

All the parameter are optional and can be either numeric or strings. If they are numeric they will be
converted to the string equivalent. If e_Caption is not give it will be made to be "RobotBASIC:". If
e_Prompt is not given then it will be made to be "Please enter a value>". If e_Default is not given it
will be "".

TextBox(se_FileName{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
Shows a dialog box with the content of the text file. The dialog box has two buttons (OK and Cancel).
The user can terminate the box by pressing either button. The value returned by the function is 1 (true)
if the OK button (or ENTER) was used to close the box, or 0 (false) if the Cancel button (or ESC) was
used. The dialog box can also be closed using the Windows methods and the returned value will be 0
(false). se_Title will be used as a title (on the border frame of the box) to the dialog and is optional.

The file can be a simple text file or an RTF formatted file. You must specify the full file name
including the extension. If the file is an RTF format then the text formats (color, fonts etc.) will take
effect and will be displayed as specified by the formatting codes in the RTF file. If it is a plain text file
then it will be displayed as such.

You can override the default width, height and position (X,Y) with the additional parameters. If
ne_DoWrap is true then the text will wrap if it is too long for the width of the box and no horizontal
scroll bar will be shown. If ne_DoWrap is false or is not given then the text will not wrap and a
horizontal scroll bar will be shown if needed.

The box will be centered on the screen and there is a scroll bar to scroll the text in the vertical direction.
See the commands above for more user interaction commands and MsgBox() below.
 Example:

if TextBox("Test.RTF")
 print "OK"
else
 print "Cancel"
endif

StringBox(se_Text{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
Shows a dialog box with the content of the string se_Text which is a string with substrings separated
with CR/LF character pairs. The box will show each sub string on a line in the box. The dialog box has
two buttons (OK and Cancel). The user can terminate the box by pressing either button. The value
returned by the function is true if the OK button (or ENTER) was used to close the box, or false if the

RobotBASIC V4.2.0

Page 82 of 276

Cancel button (or ESC) was used. The dialog box can also be closed using the Windows methods and
the returned value will be false. se_Title will be used as a title (on the border frame of the box) to the
dialog and is optional.

You can override the default width, height and position (X,Y) with the additional parameters. If
ne_DoWrap is true then the text will wrap if it is too long for the width of the box and no horizontal
scroll bar will be shown. If ne_DoWrap is false or is not given then the text will not wrap and a
horizontal scroll bar will be shown if needed.

The box will be centered on the screen and there is a scroll bar to scroll the text in the vertical direction.
See the commands above for more user interaction commands and MsgBox() below.
 Example:

SetTextBuff ""
for i=0 to 30
 print "Test"+i
next
clearscr \ s = GetTextBuff()
if StringBox(s,"Testing...")
 print "OK"
else
 print "Cancel"
endif

ErrMsg(se_MessageText{,se_BoxTitle{,ne_Style}})
Shows a message box with the text se_MessageText inside the box and a title on the border. ne_Style is
a number that defines the buttons combination and the icon type as well as which button is the default
one. If it is zero then the default will be an OK button with no icon. The value should be created by
ORing the values given in the RobotBASIC Constants section. For example to have a box with the
buttons yes and no and the error icon (stop) and to have the no button (second one) as the default button
then use:

n=ErrMsg("Message here","Title here",MB_YESNO | MB_ERROR | MB_BUTTON2)

The returned value will be according to the values given in the RobotBASIC Constants section. So in
the above example if the user pushes the yes button then the returned value will be MB_YES (5) or the
user presses the no button, the value will be MB_NO (6).

When there is a Cancel button the box can be closed using the window close icon on the top right
corner and that would be the same as pushing the Cancel button. When there is no cancel button the
box close icon is not enabled. If you do not specify a default button then the default will be the first
button. Also in the cases where there is a Cancel button then pressing the ESC key on the keyboard will
do the same as pushing the Cancel button. Pressing the Enter key will also be the same as pushing the
default button.

When creating the value of ne_Style you can either use the constants' names or their values. If you do
not want an icon just don't specify it. If you want the default button to be the first button then there is
no need to specify one. If ne_Style is 0 then there will only be an OK button and no icon.

If ne_Style is not given the box will have just the "OK" button. If se_BoxTitle is not given it will be "".

RobotBASIC V4.2.0

Page 83 of 276

MsgBox(a_TextLines{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
Shows a dialog box with text as specified in the one-dimensional array a_TextLines. The dialog box
has two buttons (OK and Cancel). The user can terminate the box by pressing either button. The value
returned by the function is true if the OK button (or ENTER) was used to close the box, or false if the
Cancel button (or ESC) was used. The dialog box can also be closed using the Windows methods and
the returned value will be false.

The array a_TextLines has to be a one-dimensional array. Each element will be displayed in the text on
a line by itself. If the element is numeric it will be converted to string. If you need to have blank lines
use a null string (""). The first element to not have an assigned value will be the end of the text. Use
Data to create the array (or Dim).

If e_Title is not given or is an empty string ("") then the first element in the array will be used as a title
(on the border frame of the box) to the dialog; it will not show inside the box with the rest of the text. If
e_Title is given and is one space (" ") then the title will be "RobotBASIC Message...". If e_Title is
given and is anything other than one space or an empty string then that text will be the title. If it is a
number it will be converted to a string.

The box will be centered on the screen and will be as wide as needed to display the longest line of text,
but will not be wider than the screen. If the box is narrower than any line the line will wrap around.
Also there is a scroll bar to scroll the text in the vertical direction. See the commands above for more
user interaction. Also see TextBox(), StringBox(), mToString(), ErrMsg(), and mFromString. Also see
the buffer functions BuffWrite() and BuffRead().

You can override the default width, height and position (X,Y) with the additional parameters. If
ne_DoWrap is true then the text will wrap if it is too long for the width of the box and no horizontal
scroll bar will be shown. If ne_DoWrap is false or is not given then the text will not wrap and a
horizontal scroll bar will be shown if needed.

 Example:
Data msg;"this is a test message box.",""
Data msg;"the next lines are numerical data displayed as text"
Data msg;-1,3,5.2,6.1e12
Data msg;"","this is the end."
if MsgBox(msg)
 print "OK"
else
 print "Cancel"
endif

RobotBASIC V4.2.0

Page 84 of 276

Push Button Components

Push Button Commands

AddButton se_Name,ne_X,ne_Y{,ne_W{,ne_H{,se_Hint}}}
Creates a push button in the Terminal Screen at position ne_X,ne_Y. The button will have the name
se_Name and will display the given name as a caption inside the button. It will be of height ne_H and
width ne_W which are optional and if not given (or are less than 1) the button will be sized to fit the
caption. The button will remain active until removed with RemoveButton below. The name is
important, is case sensitive, and should be unique for each button you create. The name is used to
identify the button using the commands and functions relating to the button.

You can change the name of the button using RenameButton which will also change the caption inside
the button. You can change the caption in the button using SetButtonCaption without changing the
name as well. See the examples under these commands for a use for these actions.

se_Hint will be a hint text displayed when the user places the mouse cursor over the button and is
optional.

Note: In all the functions and commands dealing with push buttons, the name of the button must
be exactly the same as se_Name used to create the button with AddButton (case sensitive).

Note: The name is case sensitive and should be unique for each button.

Once you create buttons in the Terminal Screen, the interpreter will keep track of which button was
pressed last. You can find out what button was pushed last with GetButton and LastButton(). If no
button has been pushed since the last interrogation, the value returned will be a blank string. The value
returned from GetButton and LastButton() will be the name of the last button that was pushed. See
example below for details.

If you use the character '&' in the name before any letter then that letter will be displayed as an
underlined letter in the caption of the button and pressing Alt+ the letter will be the same as pushing the
button. If you desire to have the '&' letter display as is then use a double &&. But remember the caption
string will contain these letters and you must take them as part of the string when defining the name for
RemoveButton and when checking the returned string from GetButton and LastButton().

See the examples under the RenameButton, AddEdit, AddCheckBox, AddListBox,
AddRBGroup, AddSlider and AddMemo)

RemoveButton se_Name
Removes the button.

FocusButton se_Name
Sets the focus to the pushbutton. This can be useful for setting the user ready for pushing the button, or
for drawing attention to a particular button. The user can also push the button using the Enter or
SpaceBar keys. If se_Name is an empty string "" then focus will be removed from any control in the
Terminal screen that may currently have the focus.

Note: You cannot set focus to a disabled or hidden button.

RobotBASIC V4.2.0

Page 85 of 276

EnableButton se_Name{,true|false}
Makes the pushbutton enabled if true is given or is not given and disabled if false is given. A disabled
button will be grayed out and the user won't be able to push it. It is still visible but won't be pushable.
this command is useful in situations where a button should not be used by a user. If you remove a
button you have to Add it again if you wish to make it available for use again. This command and
HideButton are a more efficient way of making a button temporarily unusable.

HideButton se_Name{,true|false}
Makes the pushbutton invisible if true is given or is not given and visible if false is given. An invisible
button is still a valid button (as opposed to a removed button). But it will not be visible. This is useful
in certain situations where you want to make some buttons not available. You can then later make them
available. If you remove a button you have to Add it again if you wish to make it available for use
again. This command and EnableButton are a more efficient way of making a button temporarily
unusable.

SetButtonCaption se_Name{,e_Caption}
Changes the text displayed inside the push button to e_Caption. e_Caption can be numeric or string. If
it is numeric it will be made into a string. If it is not given it will be "".If e_Caption is not given or is ""
the button will have no text inside. This command does not change the name of the button. When the
button is pushed LastButton() or GetButton will return the name of the button as it was when it was
created. Changing the caption does not change the name and any command relating to the button
should use the name not the displayed caption. See RenameButton for a contrast. This command can be
helpful in changing the text of the button depending on the situation, however you still refer to the
button using its name which after this command would be different from the text displayed in it. See
the example under AddRBGroup for an example of the use of this command.

SetButtonDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
Sets the position (ne_X, ne_Y) and width and height of the button.

Example:
SetColor black,gray \ clearscr
xyText 20,200,"Is RobotBASIC the ","Times New Roman",30,fs_Bold
xyText -1,200,"Greatest","Times New Roman",30,fs_Bold|fs_Underlined|fs_Italic
xyText -1,200," language ","Times New Roman",30,fs_Bold
xyText -1,200,"Ever ?","Times New Roman",30,fs_Bold|fs_underlined|fs_italic
addbutton "Yes",130,300,100 \ addbutton "No",330,300,100
setmousepos 10,10 \ msg = "You ARE a CLEVER and Discerning Person!"
while true
 if LastButton() == "Yes" then Beep\ n =
ErrMsg(msg,"RobotBASIC...",MB_OK|MB_INFORMATION)
 readmouse x,y,mb \ bx = getbuttonx("No") \ by = getbuttony("No")
 if !within(x,bx-20,bx+120) || !within(y,by-20,by+50) then continue
 m = 130+random(20) \ bx = x+m \ if bx > 700 then bx = x-m
 mm = 60+random(10) \ by = y+mm \ if by > 570 then by = y-mm
 if random(1000) < 500 then bx = x-m \ if bx < 0 then bx = x+m
 if random(1000) < 500 then by = y-mm\ if by < 0 then by = y+mm
 setbuttondim "No",bx,by
wend

SetButtonFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
Sets the type, size, style and color of the font of the button. The details are the same as in xyText. If the
type is not given or is "" then the font type will not be changed. If the size is not given or is < 1 then
font size will not be changed. If the style value is not given or is < 0 then the font style will not be
changed. If the color is not given or is < 0 then the font color will not be changed. To find out what font
details the memo currently has, use GetButtonFont().

RobotBASIC V4.2.0

Page 86 of 276

RenameButton se_CurrentName,se_NewName
Renames the pushbutton se_CurrentName to se_NewName. The button will display the new text and
will be renamed accordingly. From that point onwards you have to refer to the button using the new
name in any commands and functions (see SetButtonCaption for a contrast). This is useful in situations
like a toggle switch. The button could be named "Start" and when pushed it becomes renamed "Stop",
and vice versa. This command makes it easy to do this kind of action without having to remove the
button and adding a new one with the new name. Another way to do a toggle action is to have two
buttons occupying the same space on the screen but one is hidden while the other is visible (see
HideButton). You then can have the action of pushing the visible button make it hidden and unhide the
invisible one.

Note: After renaming the button, you have to refer to it using the new name in any further
commands or functions. You can accomplish a similar action without renaming the button
by using SetButtonCaption to just change the text in the button while maintaining the same
name.

Example: Also see the example under AddRGBGroup.
//example for simulating TOGGLE switches with two methods
//RenameButton and HideButton
addbutton "Start",100,100,100
addbutton "Stop",100,100,100
addbutton "On",100,150,100
hidebutton "Stop",true
LED = on \ Runn = false
i = 0 \ xyText 220,100,i,,20,fs_Bold
while true
 getbutton b
 if b=="Start" then hidebutton "Stop",false \ hidebutton "Start",true \ Runn = True
 if b=="Stop" then hidebutton "Start",false \ hidebutton "Stop",true \ Runn = false
 if b=="Off" then renamebutton "Off","On" \ LED = On
 if b=="On" then renamebutton "On","Off" \ LED = off

 circlewh 220,150,20,20,red*LED,red*LED
 EnableButton "Start",LED \ EnableButton "Stop",LED
 if Runn && LED then xyText 220,100,i,,20,fs_Bold \ i=i+1
wend

GetButton vs_Name
Assigns the variable vs_Name the name of the last button pushed. The name returned is the string used
to create the button or to rename it if RenameButton was used. If no button has been pushed since the
last interrogation using this command or LastButton() the returned string will be an empty string ("").

Note: Once this command has been used (or LastButton()) there will be no more last button value (i.e.
an empty string) until another button is pushed again.

Example: Also see the examples under RenameButton, AddEdit, AddCheckBox, AddListBox,
AddRBGroup, AddSlider and AddMemo.

for i=0 to 4
 AddButton "Test&"+i,300,20+i*40
next
while true
 GetButton Btn
 if Btn != "" then xyString 10,10,Btn
 if Btn == "Test&3" then RemoveButton Btn
wend

RobotBASIC V4.2.0

Page 87 of 276

Push Button Functions

ButtonEnabled(se_Name)
Returns true if the pushbutton is enabled (i.e. you can push on it) and false if it is not.

ButtonHidden(se_Name)
Returns true if the pushbutton is hidden and false if it is visible.

GetButtonCaption(se_Name)
Returns the text displayed inside the button.

GetButtonX(se_Name)
GetButtonY(se_Name)
GetButtonW(se_Name)
GetButtonH(se_Name)

Returns the position (X,Y) and width (W) and height (H) of the button.

GetButtonFont(se_Name)
Returns a string that has 4 sections separated with CR/LF character pairs. The sections’ order is Font
Type, Size, Style and Color. The color will be 0-15 if it is one of RobotBASIC’s primary colors or the
RGB value if it is not. The Style will be 0 if no style, 1 if bold, 2 if italic and 4 if underlined and any
binary combination of these. You can AND the number with the constants from the Constants section
(fs_Bold etc.). You can extract the different sections using Extract() or you can put them into an array
using mFromString. To set the font, use SetButtonFont.

ButtonHasFocus(se_Name)
Returns true if the button has focus, or false otherwise. This function is useful in finding if the user is
able to press the button using the keyboard..

LastButton()
Returns the name of the last button pushed. The name returned is the string used to create the button or
the new name if it has been renamed using RenameButton. If no button has been pushed since the last
interrogation using this function (or GetButton), the returned string will be "" (zero length).

Note: Once this function has been used (or GetButton) there will be no more last button value (i.e. an
empty string) until another button is pushed again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSlider.

RobotBASIC V4.2.0

Page 88 of 276

Edit Box Components

Edit Box Commands

AddEdit se_Name,ne_X,ne_Y{,ne_W{,ne_H{,e_Text{,se_Hint}}}}
Creates an Edit Box in the Terminal Screen at position ne_X,ne_Y. se_Name is a name given to the
box. This name should be unique and is used to identify the box for other related commands and
functions. The box will be of height ne_H and width ne_W. The height and width are optional and if
not given (or are less than 1) the button will be sized to fit the initial text inside the box (e_Text), but if
there is no initial text or it is "" then the width will default to 100. se_Hint specifies a hint for the user
when the mouse button is placed over the box (see later for details). The box will remain active until
removed with RemoveEdit below.

The name of the box (se_Name) is important and should be unique for each box you create and is case
sensitive. The name is used to identify the box in related commands and functions. e_Text will be an
initial text to be set inside the edit box and if not specified it will be an empty string. If e_Text is a
numeric it will be converted to a string.

You can determine if the text inside an edit box has changed with EditChanged(). You can obtain the
string of text inside the box with GetEdit(). You can find if the user is still currently inside the box with
EditHasFocus().

You can remove the edit box from view and discard it with RemoveEdit. You can set the text inside the
box with SetEdit. Additionally, you can disable/enable input in a box using EnableEdit. Also you can
highlight a particular edit box with FocusEdit.

Note: In all the functions and commands dealing with edit boxes, the name of the edit box must
be exactly the same as the se_Name used to create the box with AddEdit (case sensitive).

Note: The name of the edit box is case sensitive and should be unique for each box.

Note: The end user can change the text inside the box at any time by clicking on it and typing text. If
the user presses Enter the edit box will be exited and the new text will remain there. If the user
presses the Esc button then the editing will be rejected and the box will be exited and the
previous text will remain unchanged.

If se_Hint is not given or is an empty text ("") then the edit box will have a default hint displayed when
the user places the mouse over the box. The default hint will say:

You can enter data in this text box. Esc will cancel any editing. Enter will finish editing.

If you wish to have a hint other than the default hint, or no hint at all, then you must specify se_Hint. If
se_Hint is just one character long (e.g. " " or "a") then there will be no hint displayed. If se_Hint is
longer than one character then the text in se_Hint will be displayed as a hint.

Upon creation of the box, the color of the background will be white and the color of the font will be
black. You can use SetEditColor and SetEditFont to change these colors and also the font size, type and
style.

Example: Also see the examples under AddCheckBox, AddRBGroup, AddListBox, AddSlider and
AddMemo.

RobotBASIC V4.2.0

Page 89 of 276

for i=0 to 4
 if i==0 then AddEdit "Field"+i,10,i*30+10,100,0,"test"+i," " //no hint
 if i==1 then AddEdit "Field"+i,10,i*30+10,100,0,"test"+i,"test hint"
 if i>1 then AddEdit "Field"+i,10,i*30+10,100,0,"test"+i //default hint
next
AddButton "&Exit",10,200
repeat
 n= LastEdit()
 if n != "" then xyString
200,tonumber(right(n,1))*30+10,GetEdit(n)+spaces(100)
until LastButton() != ""
for i=0 to 4
 RemoveEdit "Field"+i
next
RemoveButton "&Exit"
ClearScr \ xyText 100,150,"All Done",,50,fs_Bold

RemoveEdit se_Name
Removes the edit box.

FocusEdit se_Name
Puts the cursor inside the edit box and highlights the text inside it. This can be useful for setting the
user ready for inputting data into the box, or for drawing attention to a particular box. If se_Name is an
empty string "" then focus will be removed from any control that may currently have the focus.

Note: You cannot set focus to a disabled or hidden edit box.

EnableEdit se_Name{,true|false}
If false is specified the edit box will become a display box where the user cannot enter data and the box
will be grayed and it will not be possible to select the box or scroll through the text in it. If true is
specified or is not given then it becomes possible to enter data in the box.

HideEdit se_Name{,true|false}
Makes the edit box invisible if true is given or is not given and visible if false is specified. An invisible
edit box is still a valid one (as opposed to a removed one). But it will not be visible. This is useful in
certain situations where you want to make some edit boxes not available. You can then later make them
available. If you remove an edit box you have to Add it again if you wish to make it available for use
again. This command and EnableEdit are a more efficient way of making an edit box temporarily
unusable.

ReadOnlyEdit se_Name{,true|false}
If true specified or no value is given the edit box will become a display box where the user cannot enter
data. If false is given then it becomes possible to enter data in the box. A read only box will not be
grayed and it will still be possible to select the box and to scroll through the text in it, but no text entry
or changing will be possible.

SetEdit se_Name{,e_Value}
Assigns the text inside the edit box a new string (e_Value). e_Value can be a numeric or a string. If it is
numeric it will be made into a string. If it is not given it will be "".

SetEditColor se_Name{,ne_Color}
Sets the boxes background to the color ne_Color. If the color value given is 0 to 15 then the
RobotBASIC primary colors will be used (see RobotBASIC Constants section). If the value is an RGB
color value then it will be used. If ne_Color is not given then it will be Blue. See ConsToClr().

RobotBASIC V4.2.0

Page 90 of 276

BorderEdit se_Name{,true|false}
If true is specified or is not given, the Edit box will have a border around it and will make the edit box
appear slightly sunken into the screen. If false is given there will be no border.

SetEditDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
Sets the position (ne_X, ne_Y), width (ne_Width) and height (ne_H) of the edit box.

SetEditFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
Sets the type, size, style and color of the font of the edit box. The details are the same as in xyText. If
the type is not given or is "" then the font type will not be changed. If the size is not given or is < 1 then
font size will not be changed. If the style value is not given or is < 0 then the font style will not be
changed. If the color is not given or is < 0 then the font color will not be changed. To find out what font
details the box currently has, use GetEditFont().

Note: Setting the font size may change the height of the box. If you wish to keep it to a specific height
then use SetEditDim after setting the font size.

IntegerEdit se_Name{,true|false}
Restricts the input in the edit box to a valid integer (decimal, hexadecimal or binary) value. Any key
stroke that makes the text in the box an invalid integer will be rejected. If true is specified or is not
given then the Edit box will be restricted to input that can be converted to a valid integer or to an empty
string. If false is given then the Edit box will become free format. See the Numbers sub-section in the
Overview Of The Language section for a definition of a valid integer.

The text in the box is still text and GetEdit() will return a string, but it is a string that can be conveted to
a number by ToNumber(), unless it is empty in which case GetEdit() will be a string of zero length ("").
You can still use ToNumber() but give it a default [e.g. n=ToNumber(GetEdit("t"),0)]. See example
under FloatEdit.

Note: If you want to restrict the input in an Edit box to a special format like dates and phone number
then use SetEditMask.

FloatEdit se_Name{,true|false}
Restricts the input in the edit box to a valid floating point number value. Any key stroke that makes the
text in the box an invalid float will be rejected. If true is specified or is not given then the Edit box will
be restricted to input that can be converted to a valid float or to an empty string. If false is given then
the Edit box will become free format. See the Numbers sub-section in the Overview Of The Language
section for a definition of a valid float.

The text in the box is still text and GetEdit() will return a string, but it is a string that can be converted
to a number by ToNumber(), unless it is empty in which case GetEdit() will be a string of zero length
(""). You can still use ToNumber() but give it a default [e.g. n=ToNumber(GetEdit("t"),0)].

Note: If you want to restrict the input in an Edit box to a special format like dates and phone number
then use SetEditMask.

Example: Compare this example to the one under SetEditMask.
addedit "Int",10,10,120,0,0 \ IntegerEdit "Int"
addedit "Flt",340,10,130,0,"0.0" \ FloatEdit "Flt"
xytext 10,130,"Try to enter decimal, hex or binary integers on the

RobotBASIC V4.2.0

Page 91 of 276

left",,,fs_Bold
xytext 10,150,"Try to enter floats on the right",,,fs_Bold
while true
 if EditChanged("Int")
 rectangle 0,40,340,100,white,white
 t = getedit("Int")
 xystring 10,40,"Text="""+t+""""
 xystring 10,70,ToNumber(t,0)," - 1 = ",ToNumber(t,0)-1
 endif
 if EditChanged("Flt")
 rectangle 340,40,800,100,white,white
 t = getedit("Flt")
 xystring 340,40,"Text="""+t+""""
 xystring 340,70,ToNumber(t,0)," - 1 = ",ToNumber(t,0)-1
 endif
wend

SetEditMask se_Name,se_MaskSpecs
Assigns a mask to the edit box. The mask specifies what kind of characters are allowed and can be used
to format the input given to fit a desired format (e.g. phone numbers etc.). The specification of the
mask is as follows:

Use this command to restrict the characters a user can enter into the Edit box to valid characters and
formats. If the user attempts to enter an invalid character, the Edit box does not accept the character.
Validation is performed on a character-by-character basis.

A mask consists of three sections with semicolons separating them. You have to specify the first
section. The other two can be left out and will default as described below. The first section of the mask
is the mask itself. The second part is the character that determines whether the literal characters of a
mask are saved as part of the data. The third part of the mask is the character used to represent un-
entered characters in the mask.

Note: A mask is a strict format for how text is entered in the Edit box. You can use it to restrict the
input text to numeric but it is not a free form format. If you want a free form numeric Edit box you
would be better off to use IntegerEdit or FloatEdit.

These are the special characters used in the first field of the mask:

Character Meaning in mask

! If a ! character appears in the mask, optional characters are represented in the text as

leading blanks. If a ! character is not present, optional characters are represented in the text
as trailing blanks.

> If a > character appears in the mask, all characters that follow are in uppercase until the end

of the mask or until a < character is encountered.

< If a < character appears in the mask, all characters that follow are in lowercase until the end

of the mask or until a > character is encountered.

<> If these two characters appear together in a mask, no case checking is done and the data is
formatted with the case the user uses to enter the data.

\ The character that follows a \ character is a literal character. Use this character to use any of
the mask special characters as a literal in the data.

L The L character requires an alphabetic character only in this position (A-Z, a-z).

RobotBASIC V4.2.0

Page 92 of 276

l The l (lower case L) character permits only an alphabetic character in this position, but
doesn't require it.

A The A character requires an alphanumeric character only in this position (A-Z, a-z, 0-9).
a The a character permits an alphanumeric character in this position, but doesn't require it.
C The C character requires an arbitrary character in this position.
c The c character permits an arbitrary character in this position, but doesn't require it.
0 The 0 character requires a numeric character only in this position.
9 The 9 character permits a numeric character in this position, but doesn't require it.
The # character permits a numeric character or a plus or minus sign in this position, but

doesn't require it.
: The : character is used to separate hours, minutes, and seconds in times. If the character that

separates hours, minutes, and seconds is different in the regional settings of the Control
Panel utility on your computer system, that character is used instead.

/ The / character is used to separate months, days, and years in dates. If the character that
separates months, days, and years is different in the regional settings of the Control Panel
utility on your computer system, that character is used instead.

; The ; character is used to separate the three sections of the mask.
_ The _ character automatically inserts spaces into the text. When the user enters characters in

the box, the cursor skips the _ character.

Any character that does not appear in the preceding table can appear in the first section of the mask as a
literal character. Literal characters must be matched exactly in the edit control. They are inserted
automatically, and the cursor skips over them during editing. The special mask characters can also
appear as literal characters if preceded by a backslash character (\).

The second section of the mask is a single character that indicates whether literal characters from the
mask should be included as part of the text returned by GetEdit(). For example, the mask for a
telephone number with area code could be the following string:

(000)_000-0000;0;*

The 0 in the second section indicates that GetEdit() will return the 10 digits that were entered, rather
than the 14 characters that make up the telephone number as it appears in the edit box. A 0 in the
second section indicates that literals should not be included; any other character indicates that they
should be included.

The third section of the mask is the character that appears in the Edit box for blanks (characters that
have not been entered). By default, this is the same as the character that stands for literal spaces (_).
The two characters appear the same in an Edit box. However, when a user edits the text in a masked
Edit box, the cursor selects each blank character in turn, and skips over the space character. You can
change this to any character. If it is not given or is a blank then the default character (_) will be used.

Setting the Mask to an empty string removes the mask and there will be no formatting.

When the user enters text not in accord with the mask and presses enter there will be a message telling
the user that the text entered is not valid and should be reedited or ESC pressed to cancel any changes.

See GetEditMasked() and GetEdit().

RobotBASIC V4.2.0

Page 93 of 276

Example:
data Masks;"#9999;1","#9999;0; ","(000)-000-0000;0; ","(000)-000-0000;1;*"
for i=0 to 3
 addedit "t"+i,10,50+40*i,200 \ SetEditMask "t"+i,Masks[i]
next
m = "Masked"+spaces(12)+"UnMasked"+spaces(5)+"Calculation"
n=LastEdit() \ xyText 265,10,m,,15,fs_Bold|fs_Underlined
onedit eHandler
while true
wend
eHandler:
 le = LastEdit() \ n= tonumber(right(le,1))
 rectangle 230,53+n*40,800,93+n*40,white,white
 m = Center(""""+GetEdit(le)+"""","",20)
 um = Center(""""+GetEditUnMasked(le)+""""," ",20)
 x = "" \ xx = NoSpaces(GetEdit(le))
 if n < 2 then x = "5*"+xx+"="+ToNumber(NoSpaces(GetEdit(le)))*5
 xystring 230,53+n*40,m;um;x
 onEdit eHandler
Return

Edit Box Functions

EditEnabled(se_Name)
Returns true if the edit box is enabled (i.e. you can enter text in it) and false if it is not enabled (i.e. you
cannot enter text in it and cannot select it and is grayed).

EditHidden(se_Name)
Returns true if the edit box is hidden and false if it is visible.

EditReadOnly(se_Name)
Returns true if the edit box is a read only box (i.e. you cannot enter text in it but is still selectable and is
not grayed) and false if it is not read only.

EditHasFocus(se_Name)
Returns true if the user is inside the edit box entering text, or false otherwise.

When the user enters the edit box and starts typing text in the edit box, the cursor will be inside the box
until the user presses Esc or Enter. This function is useful in finding if the user is inside a particular
edit box.

EditChanged(se_Name)
Returns true if the text inside the edit box has changed since the last time you have interrogated its
status using this function. If it has not changed the function will return false.

GetEdit(se_Name)
Returns the text inside the edit box. If the box has a mask then the text retuned will be formatted as
specified by the mask. If you want the text before formatting then use GetEditUnMasked().

If you set a mask for the edit box (SetEditMask) then the text returned will not have the formatting
characters and will have spaces for any un-entered characters in the template. Use NoSpaces() or
Substitute() to remove these spaces. If the required text is a number then also use the ToNumber() to
convert it to a number. Also see IntgerEdit and FloatEdit if you want purely numeric inputs.

RobotBASIC V4.2.0

Page 94 of 276

GetEditUnmasked(se_Name)
Returns the text inside the edit box without being formatted by the mask. That is all mask characters
and formatting characters are part of the text. If you want the text formatted by the mask then use
GetEdit().

GetEditColor(se_Name)
Returns the color of the edit box’s background. If the color is one of RobotBASIC’s primary colors
then its number will be returned (0-15), otherwise the number will be the RGB code of the color.

EditBorder(se_Name)
Returns true if the Edit box has the border turned on, and false if not.

GetEditX(se_Name)
GetEditY(se_Name)
GetEditW(se_Name)
GetEditH(se_Name)

Returns the position (X,Y) and width and height (W,H) of the edit box.

GetEditFont(se_Name)
Returns a string that has 4 sections separated with CR/LF character pairs. The sections’ order is Font
Type, Size, Style and Color. The color will be 0-15 if it is one of RobotBASIC’s primary colors or the
RGB value if it is not. The Style will be 0 if no style, 1 if bold, 2 if italic and 4 if underlined and any
binary combination of these. You can AND the number with the constants from the RobotBASIC
Constants section (fs_Bold etc.). You can extract the different sections using Extract() or you can put
them into an array mFromString.

LastEdit()
Returns the name of the last edit box to have been changed since the last call of this function. If no edit
box has been changed since the last interrogation using this function the returned string will be "" (zero
length).

Note: Once this function has been used there will be no more last edit value (i.e. an empty string) until
another edit is or the same one changed again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see the example under AddSlider.

List Box Components

List Box Commands

AddListBox se_Name,ne_X,ne_Y{,ne_Width{,se_Items{,se_Hint}}}
Creates a List Box in the Terminal Screen at position ne_X,ne_Y with a width ne_W. The height is not
changeable. If the width is not given or is less than 1 it will be assumed to be 100. se_Name is a name
given to the box. This name should be unique and is used to identify the box for other related
commands and functions.

A list box has a list of items one of which can be selected by the user. When the user clicks on the
arrow of the box a list will be displayed (drop down/up). The user is then able to scroll to the required

RobotBASIC V4.2.0

Page 95 of 276

item and click on it to select it. The box will then close and the selected item text will be displayed in
the box.

You specify the list of items all in one string (se_Items). This string will have to have CR/LF pairs
separating the strings for each item in the list. You can use CrLf(). If the items string is not given then
the list will have no items. You can add items programmatically using AddListBoxItem. You can also
remove an item or clear all the items with RemoveListBoxItem and ClearListBox.

If se_Hint is given then the text will be displayed as a hint whenever the user rests the mouse over the
box.

When the list is first created there will be no selected item and there will be no text in the box. You can
force an item to be selected using SetListBox. Once the user selects an item there will be no way to
select NO item. However, you can force a no item selection programmatically using SetListBox with
an index of less than 1.

The color of the box's border and the color of the text will be according to the current default
foreground and background colors. Use SetListBoxColor to change the color, and SetListBoxFont to
set the font color and type.

The box will remain active until removed with RemoveListBox below.

You can determine the index number of the currently selected item using GetListBox() the text of the
selected item can be obtained using GetListBoxText() and the entire list of items can be recovered
using GetListBoxList(). You can obtain a particular item from the list with GetListBoxItem().

You can make the items in the box a sorted list with SortListBox and any item subsequently added will
be positioned correctly in the list. However, this will make the index number meaningless. But you can
always obtain the text of the selected item instead of the index.

You can remove the box from view and discard it with RemoveListBox. You can set the selected item
programmatically with SetListBox.

You can disable/enable the user from selecting items from the box with the mouse using
EnableListBox. Also you can highlight a particular list box with FocusListBox.

Note: In all the functions and commands dealing with List boxes, the name of the box must be
exactly the same as the se_Name used to create the box with AddListBox (case sensitive).

Note: The name of the List box is case sensitive and should be unique for each box.

See mToString(), CrLf(), Substitute() and mFromString. Also see the buffer functions BuffWrite() and
BuffRead().

Example:
ListName = "Test" \ s="" \CurrIndex = 0
data CBoxes;"Hidden","Enabled","Sorted"
for i=1 to 50
 if i < 4 then AddCheckBox CBoxes[i-1],250,45+i*25
 s=s+"Item"+i+crlf()
next
addlistbox ListName,10,100,200,s,"select one of these items"
setlistbox ListName,1 \ setListBoxColor ListName,Black

RobotBASIC V4.2.0

Page 96 of 276

SetListBoxFont ListName,,,,white
SetCheckBox CBoxes[0],ListBoxHidden(ListName)
SetCheckBox CBoxes[1],ListBoxEnabled(ListName)
SetCheckBox CBoxes[2],ListBoxSorted(ListName)
data Buttons;"Set Selection","Add Item","Show List"
AddButton Buttons[0],10,280,100 \AddButton Buttons[1],410,280,100
AddButton Buttons[2],250,150,100
xyText 10,220,"Index Selected Text Item To Add",,15
AddEdit "Index",10,250,50,,CurrIndex \ AddEdit "Text" ,100,250,200
IntegerEdit "Index"
AddEdit "Item" ,400,250,140,,"Item To be Added"
ReadOnlyEdit "Text",true
while true
 n = GetListBox(ListName)
 setedit "Text",GetListBoxText(ListName)
 if n != CurrIndex then CurrIndex = n \ SetEdit "Index",n
 hidelistbox ListName,GetCheckBox(CBoxes[0])
 enablelistbox ListName,GetCheckBox(CBoxes[1])
 sortlistbox ListName,GetCheckBox(CBoxes[2])
 getbutton b
 n = tonumber(getedit("Index"),0)
 if b == Buttons[0] then setlistbox ListName,n
 if b == Buttons[1] then Addlistboxitem ListName,getedit("Item")
 if b == Buttons[2] then n=StringBox(GetListBoxList(ListName),"Testing..")
wend

RemoveListBox se_Name
Removes the List box and discards it.

FocusListBox se_Name
Puts the focus on the List box and highlights the text in it if there is any. This enables the user to select
items using arrows. If se_Name is an empty string "" then focus will be removed from any controls in
the window that may currently have the focus.

Note: You cannot set focus to a disabled or hidden box.

ClearListBox se_Name
Deletes all the items in the list box.

EnableListBox se_Name{,true|false}
If false is given the List box will become disabled and the user cannot select items. If true is specified
or is not given then it becomes possible to select items.

HideListBox se_Name{,true|false}
Makes the List box invisible if true is specified or is not given and visible if false is given. An invisible
List box is still a valid one (as opposed to a removed one). But it will not be visible. This is useful in
certain situations where you want to make some boxes not available. You can then later make them
available. If you remove a box you have to Add it again if you wish to make it available for use again.
This command and EnableListBox are a more efficient way of making a box temporarily unusable.

SortListBox se_Name{,true|false}
If true is specified or is not given, the items in the list box will be sorted and will stay sorted when
items are added later. The list will not be unsorted when false is given, but, any items added later will
be added to the bottom of the list. Once the list is sorted it will not be unsorted to the original order
when sorting is turned off.

RobotBASIC V4.2.0

Page 97 of 276

Beware of sorting and using GetListBox(). The index of the selected item will be according to the
position of the selected item in the list of items as it is currently. If the list is sorted it may not be the
order in which you added the item to the list in the original AddListBox or later with AddListBoxItem.
You can use GetListBoxText() to get the actual selected item text. You can also obtain the entire list
with GetListBoxList() and then the index will be meaningful since you now have the up to date list.

SetListBox se_Name{,ne_Index}
Forces the selected item in the list to item number ne_Index. If ne_Index is not given it will be assumed
to be 1. Beware of sorted lists since the item index may not be the item you expect. If ne_Index is
greater than the number of items in the list then the last item will be selected. If ne_Index is less than 1
then no item will be selected and the text in the box will be blank.

SetListBoxColor se_Name{,ne_Color}
This sets the box’s background to the given color. If it is 0 to 15 then the RobotBASIC primary colors
will be used (see the Constants section). If it is an RGB color value then it will be used. If ne_Color is
not given then it will be Blue.

SetListBoxDim se_Name{,ne_X{,ne_Y{,ne_W}}}
Sets the position and width of the list box.

DeleteListBoxItem se_Name{,ne_Index}
Deletes an item from the list of items in the list box. ne_Index is the index of the item to be removed. If
it is not given then it will be assumed to be 1. Beware of sorted lists since the item index may not be the
item you expect. If it is greater than the number of items in the list then the last item will be removed. If
it is less than 1 then no item will be removed.

AddListBoxItem se_Name{,e_NewItem}
Will add an item (e_NewItem) to the list box. The item will be added to the bottom of the list unless the
list has been set to be a sorted list using SortListBox. e_NewItem can be numeric or string. If it is
numeric it will be made into a string. If it is not given it will be "".

SetListBoxItems se_Name{,e_ItemsList}
Will set the whole items list in one go also replacing any previous items in the list. The list will be the
CR/LF separated list of items as specified in e_ItemsList. e_ItemList can be numeric or string. If it is
numeric it will be made into a string. If it is not given it will be "". If it is "" or is not given then there
will be no items in the list, effectively erasing all the items in the list.

SetListBoxFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
Sets the type, size, style and color of the font of the list box. The details are the same as in xyText. If
the type is not given or is "" then the font type will not be changed. If the size is not given or is < 1 then
font size will not be changed. If the style value is not given or is < 0 then the font style will not be
changed. If the color is not given or is < 0 then the font color will not be changed. To find out what font
details the box currently has, use GetListBoxFont().

List Box Functions

ListBoxEnabled(se_Name)
Returns true if the List Box is enabled (i.e. the user can select items from it) and false if it is not.

ListBoxHidden(se_Name)
Returns true if the List Box is hidden and false if it is visible.

RobotBASIC V4.2.0

Page 98 of 276

ListBoxHasFocus(se_Name)
Returns true if the list box has focus, or false otherwise. This function is useful in finding if the user is
able to select items using the keyboard.

ListBoxSorted(se_Name)
Returns true if the List Box is a sorted list and false if it is not.

ListBoxItemsCount(se_Name)
Returns the number of items in the list box.

GetListBox(se_Name)
Returns the index number of the selected item from the List Box. The number returned starts with 1 as
the first button and 2 as the second and so on. The function returns 0 if no item is selected.

GetListBoxText(se_Name)
Returns the text of the selected item from the List Box. The function returns an empty string if no item
is selected.

GetListBoxItem(se_Name,ne_ItemIndex)
Returns the text of item number ne_ItemIndex from the list box. If the index is less than 1 or there are
no items in the list then an empty string will be returned. If it is more than the items count then the last
item will be returned.

GetListBoxList(se_Name)
Returns the entire list from the List Box. The list is one string with the items in the list separated with
Cr/Lf pairs of characters.

GetListBoxColor(se_Name)
Returns the color of the box’s background. If the color is one of RobotBASIC’s primary colors then its
number will be returned (0-15), otherwise the number will be the RGB code of the color. Use
ConsToClr() to convert RB color constants to RGB values.

GetListBoxX(se_Name)
GetListBoxY(se_Name)
GetListBoxW(se_Name)

Returns the position (X,Y) and the width (W) of the box.

GetListBoxFont(se_Name)
Returns a string that has 4 sections separated with CR/LF character pairs. The sections’ order is Font
Type, Size, Style and Color. The color will be 0-15 if it is one of RobotBASIC’s primary colors or the
RGB value if it is not. The Style will be 0 if no style, 1 if bold, 2 if italic and 4 if underlined and any
binary combination of these. You can AND the number with the constants from the Constants section
(fs_Bold etc.). You can extract the different sections using Extract() or you can put them into an array
using mFromString. To set the font, use SetListBoxFont.

LastListBox()
Returns the name of the last list box to have been clicked since the last call of this function. The name
given is as given to the box when added using AddListBox. If no box has been clicked since the last
interrogation using this function the returned string will be "" (zero length).

RobotBASIC V4.2.0

Page 99 of 276

Note: Once this function has been used there will be no more last box value (i.e. an empty string) until
another box or the same one is clicked again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSlider.

Radio Button Components

Radio Button Commands

AddRBGroup se_Name,ne_X,ne_Y{,ne_Width{,ne_Height{,ne_Columns{,se_Buttons{,se_Caption{,se_Hint}}}}}}
Creates a Radio button Group in the Terminal Screen at position ne_X,ne_Y, with a width ne_W and
height ne_H. The group will be set out in ne_Columns and as many rows as needed to list all the
buttons. If the width and height are not given or are less than 1, they will be set to 100. If ne_Columns
is not given or is less than 1 it will be set to 1.

se_Name is a name given to the group. This name should be unique and is used to identify the group
for other related commands and functions.

A radio button group has a collection of buttons that can be checked. However, only one of the buttons
from the group can be checked at a time. When the user checks a button, any previously checked button
will be automatically unchecked.

There will be a text to the right of each button. You specify the number of buttons and their texts all in
one string (se_Buttons). This string will have to have CR/LF pairs separating the strings for each
button. You can use CrLf(). The number of buttons is automatically determined from the number of
sub-strings in the overall string. You can add and remove buttons with AddRBGroupButton and
DeletRBGroupButton or you can remove all with ClearRBGroup.

The group will have a border around it and a title that is the same as the name of the group (se_NAme),
unless you override this with se_Caption. If se_Caption is not given or is an empty string ("") then the
group box will have the title as the name. If it is given and is a space (" ") then the box will not have a
title. If it is given and is not a space nor is an empty string then the title of the box will be se_Caption.

If se_Hint is given then the text will be displayed as a hint whenever the user rests the mouse over the
group.

The color of the group's border and the color of the caption text will be according to the current default
foreground and background colors. Use SetRBGroupColor to change the color. You cannot change the
font size or style.

The group will remain active until removed with RemoveRBGroup below.

You can determine which radio button is selected with GetRBGroup() which returns the number of the
button selected from among the list of buttons. If no button is selected then it returns 0.

You can remove the group from view and discard it with RemoveRBGroup. You can select a button
programmatically with SetRBGroup.

RobotBASIC V4.2.0

Page 100 of 276

Note: In all the functions and commands dealing with radio button groups, the name of the group
must be exactly the same as the se_Name used to create the group with AddRBGroup (case
sensitive).

Note: The name of the group is case sensitive and should be unique for each group.

See mToString(), CrLf(), Substitute() and mFromString. Also see the buffer functions BuffWrite() and
BuffRead().

Example:
s="" \rbgName = "Testing" \ edName = "Index" \CurrIndex = 0
AddEdit edName,10,250,100,,0
data Buttons;"","Hide","Disable","Unhide","Enable"
xyText 2,220,"Select a Button or type its number below","Ms San
Serif",15,fs_bold
for i=1 to 10
 if i < 3 then AddButton Buttons[i],250,50+40*i,100
 s=s+"Button"+i+crlf()
next
addrbgroup rbgName,10,10,230,200,3,s," ","select one of these options"
while true
 n = GetRBGroup(rbgName)
 if n != CurrIndex
 CurrIndex = n \ SetEdit edName,n
 xytext 120,250,GetrbGroupText(rbgName)+spaces(20),,20,fs_Bold
 endif
 if EditHasFocus(edName) && EditChanged(edName)
 n = Tonumber(GetEdit(edName),0)
 setrbGroup rbgName,n
 endif
 getbutton b
 if b == Buttons[1]
 hiderbgroup rbgName,!rbgrouphidden(rbgName)
 setbuttoncaption b,Buttons[rbgrouphidden(rbgName)*2+1]
 elseif b == Buttons[2]
 enablerbgroup rbgName,!rbgroupenabled(rbgName)
 setbuttoncaption b,Buttons[!rbgroupenabled(rbgName)*2+2]
 endif
wend

RemoveRBGroup se_Name
Removes the radio button group.

FocusRBGroup se_Name
Puts the focus on the group. This enables the user to check buttons using the keyboard. If se_Name is
an empty string "" then focus will be removed from any controls in the window that may currently have
the focus.

Note: You cannot set focus to a disabled or hidden group.

ClearRBGroup se_Name
Deletes all the buttons in the radio button group.

RobotBASIC V4.2.0

Page 101 of 276

EnableRBGroup se_Name{,true|false}
If false is given the radio button group will become disabled and the user cannot select a button from it.
If true is specified or is not given then it becomes possible to select a button from the group.

HideRBGroup se_Name{,true|false}
Makes the radio button group invisible if true is specified or is not given, and visible if false is given.
An invisible group is still a valid one (as opposed to a removed one). But it will not be visible. This is
useful in certain situations where you want to make some groups not available. You can then later
make them available. If you remove a group you have to Add it again if you wish to make it available
for use again. This command and EnableRBGroup are a more efficient way of making a group
temporarily unusable.

SetRBGroup se_Name{,ne_Index}
Checks one of the radio buttons in the group. If ne_Index is less than 1 then no button will be selected.
Button numbering starts with 1, so the first button in the list is 1 and the second is 2 etc. If ne_Index is
larger than the number of buttons in the group then the last button will be selected. If it is not given
then it will be assumed to be 1.

The user can only select one of the buttons. There is no way to select NONE once the user has selected
one. You can, however, select NONE programmatically using this command by making ne_Index a
zero.

SetRBGroupColor se_Name{,ne_Color}
This sets the group’s background to the given color. If it is 0 to 15 then the RobotBASIC primary
colors will be used (see the Constants section). If it is an RGB color value then it will be used. If it is
not given then it will be Blue. You can change the font of the text next to the buttons using
SetRBGroupFont.

SetRBGroupColumns se_Name{,ne_NumColumns}
This sets the number of columns in the group. If ne_NumColumns is not given or is less than 1 then it
will be 1.

SetRBGroupDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
Sets the position and width and height of the group.

AddRBGroupButton se_Name{,e_ButtonCaption}
Adds a button with the text e_ButtonCaption to the group. The button will be added as the last one in
the group. e_ButtonCaption can be numeric or string. If it is numeric it will be made into a string. If it
is not given it will be "". If it is "" then the button will not have a caption but there will still be a button.

DeleteRBGroupButton se_Name{,ne_Index}
Deletes the button with the index ne_Index from the group of buttons in the radio buttons group. If the
index is not given then it will be assumed to be 1 If it is greater than the number of buttons in the list
then the last button will be removed. If it is less than 1 then no button will be removed.

SetRBGroupButtons se_Name{,e_ButtonsList}
Will set the whole buttons list in one go also replacing any previous buttons in the list. The list will be
the CR/LF separated list of button names as specified in e_ButtonsList. e_ButtonsList can be numeric
or string. If it is numeric it will be made into a string. If it is not given it will be "". If it is "" then there
will be no buttons in the group, effectively removing all the buttons.

RobotBASIC V4.2.0

Page 102 of 276

SetRBGroupFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
Sets the type, size, style and color of the font of the group. The details are the same as in xyText. If the
type is not given or is "" then the font type will not be changed. If the size is not given or is < 1 then
font size will not be changed. If the style value is not given or is < 0 then the font style will not be
changed. If the color is not given or is < 0 then the font color will not be changed. To find out what font
details the group currently has, use GetRBGroupFont().

Radio Button Functions

RBGroupEnabled(se_Name)
Returns true if the radio button group is enabled (i.e. the user can select buttons from it) and false if it is
not.

RBGroupHidden(se_Name)
Returns true if the radio button group is hidden and false if it is visible.

RBGroupHasFocus(se_Name)
Returns true if the group has focus, or false otherwise. This function is useful in finding if the user is
able to check buttons using the keyboard..

GetRBGroupCaption(se_Name)
Returns the caption of the box around the radio button group.

GetRBGroup(se_Name)
Returns the index number of the selected button from the radio button group. The number returned
starts with 1 as the first button and 2 as the second and so on. The function returns 0 if no button is
selected.

GetRBGroupText(se_Name)
Returns the text of the checked button from the radio button group. The function returns an empty
string if no button is selected.

RBGroupItemsCount(se_Name)
Returns the number of buttons in the group.

RBGroupNumColumns(se_Name)
Returns the number of columns the group is set to.

GetRBGroupX(se_Name)
GetRBGroupY(se_Name)
GetRBGroupW(se_Name)
GetRBGroupH(se_Name)

Returns the position (X,Y) and width (W) and height (H) of the group.

GetRBGroupButton(se_Name,ne_Index)
Returns the text associated with button number ne_Index from the radio button group. If the index is
less than 1 or there are no buttons in the list then an empty string will be returned. If it is more than the
buttons count then the last button's text will be returned.

RobotBASIC V4.2.0

Page 103 of 276

GetRBGroupItems(se_Name)
Returns the entire list of buttons' text from the radio button group. The list is one string with the
buttons' texts in the group separated with Cr/Lf pairs of characters.

GetRBGroupColor(se_Name)
Returns the color of the group’s background. If the color is one of RobotBASIC’s primary colors then
its number will be returned (0-15), otherwise the number will be the RGB code of the color.

GetRBGroupFont(se_Name)
Returns a string that has 4 sections separated with CR/LF character pairs. The sections’ order is Font
Type, Size, Style and Color. The color will be 0-15 if it is one of RobotBASIC’s primary colors or the
RGB value if it is not. The Style will be 0 if no style, 1 if bold, 2 if italic and 4 if underlined and any
binary combination of these. You can AND the number with the constants from the Constants section
(fs_Bold etc.). You can extract the different sections using Extract() or you can put them into an array
using mFromString. se_Name must be a valid radio button group name and is case sensitive. To set the
font, use SetRBGroupFont.

LastRBGroup()
Returns the name of the last radio button group to have been clicked since the last call of this function.
The name given is as given to the group when added using AddRBGroup. If no group has been clicked
since the last interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more last group value (i.e. an empty string)
until another group or the same one is clicked again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSlider.

Check Box Components

Check Box Commands

AddCheckBox se_Name,ne_X,ne_Y{,se_Caption{,ne_Checked{,ne_LeftOrRight{,se_Hint}}}}
Creates a Check Box in the Terminal Screen at position ne_X,ne_Y. se_Name is a name given to the
box. This name should be unique and is used to identify the box for other related commands and
functions.

If se_Caption is not given or is an empty string ("") then the text that appears next to the box will be the
same as the name of the box. If it is a space (" ") then there will be no text next to the box. Otherwise,
se_Caption will be the text next to the box.

ne_Checked is optional and if not given or is false then the box will not be checked. If it is true then the
box will be checked. se_Hint is an optional hint text. If given the text will appear when the user rests
the mouse pointer over the box.

ne_LeftOrRight is optional and if not given or is false the text next to the box will be to the right of the
box. If it is true then the text will be to the left of the box.

The color of the box's border and the color of the caption text will be according to the current default
foreground and background colors. Use SetCheckBoxColor to change the color. You cannot change the

RobotBASIC V4.2.0

Page 104 of 276

font size or style. If you want to have more control over the caption then use no caption and use xyText
to write the caption next to the box as desired.

The box will remain active until removed with RemoveCheckBox below.

You can determine if the check box is checked or not with GetCheckBox(), which returns true or false.

You can remove the box from view and discard it with RemoveCheckBox. You can check and uncheck
the box programmatically with SetCheckBox.

You can disable/enable the box with the EnableCheckBox. If the box is disabled the user cannot check
or uncheck the box. Also you can highlight a particular check box with FocusCheckBox.

Note: In all the functions and commands dealing with check boxes, the name of the box must be
exactly the same as the se_Name used to create the box with AddCheckBox (case sensitive).

Note: The name of the check box is case sensitive and should be unique for each box.

Example: Also see the examples under AddSlider, AddMemo and AddListBox
data bx;"Option 1","Option 2","Option 3","Option 4"
addcheckbox bx[0],10,10 \addcheckbox bx[1],10,30,,false,true
addcheckbox bx[2],10,60,"testing",true,false,"Test hint"
addcheckbox bx[3],10,100," "
xyText 30,93,"Option 4","Times New Roman",20,fs_bold
data bt;"Check 1","Hide 2","Disable 3","Uncheck 1","Unhide 2","Enable 3"
for i=0 to maxdim(bt,1)/2-1
 addbutton bt[i],10+120*i,200,110
next
while true
 n = LastButton()
 if n==bt[0]
 SetCheckBox bx[0],!GetCheckBox(bx[0])
 elseif n==bt[1]
 HideCheckBox bx[1],!CheckBoxHidden(bx[1])
 setbuttoncaption bt[1],bt[checkboxhidden(bx[1])*3+1]
 elseif n==bt[2]
 EnableCheckBox bx[2],!CheckBoxEnabled(bx[2])
 setbuttoncaption bt[2],bt[!checkboxenabled(bx[2])*3+2]
 endif
 setbuttoncaption bt[0],bt[getcheckbox(bx[0])*3]
 m = MakeBit(0,0,getcheckbox(bx[0])) \ m = MakeBit(m,1,getcheckbox(bx[1]))
 m = MakeBit(m,2,getcheckbox(bx[2])) \ m = MakeBit(m,3,getcheckbox(bx[3]))
 xyText 250,10,"Status = "+bin(m,4),,20
wend

RemoveCheckBox se_Name
Removes the check box.

FocusCheckBox se_Name
Puts the focus on the check box and highlights the associated caption text if there is any. This enables
the user to check/uncheck the box using the Space Bar. If se_Name is an empty string "" then focus
will be removed from any control that may currently have the focus.

Note: You cannot set focus to a disabled or hidden box.

RobotBASIC V4.2.0

Page 105 of 276

EnableCheckBox se_Name{,true|false}
If false is given the check box will become disabled and the user cannot check/uncheck it. If is true is
specified or is not given, then it becomes possible to check/uncheck the box.

HideCheckBox se_Name{,true|false}
Makes the check box invisible if true is specified or is not given, and visible if false is given. An
invisible check box is still a valid one (as opposed to a removed one). But it will not be visible. This is
useful in certain situations where you want to make some boxes not available. You can then later make
them available. If you remove a box you have to Add it again if you wish to make it available for use
again. This command and EnableCheckBox are a more efficient way of making a box temporarily
unusable.

SetCheckBox se_Name{,true|false}
Checks the check box if true is specified or is not given, and un-checks it if false is given.

SetCheckBoxDim se_Name{,ne_X{,ne_Y}}
Sets the position of the check box.

SetCheckBoxCaption se_Name{,e_NewCaption}
Changes the text next to the check box to e_NewCaption. e_NewCaption can be numeric or string. If it
is numeric it will be made into a string. If it is not given it will be "". If it is not given or is "" the box
will have no text next to it.

SetCheckBoxColor se_Name{,ne_Color}
This sets the box’s background color. If it is 0 to 15 then the RobotBASIC primary colors will be used
(see the Constants section). If it is an RGB color value then it will be used. If it is not given then it will
be Blue.

Check Box Functions

CheckBoxEnabled(se_Name)
Returns true if the check box is enabled (i.e. the user can check or uncheck it) and false if it is not.

CheckBoxHidden(se_Name)
Returns true if the check box is hidden and false if it is visible.

CheckBoxHasFocus(se_Name)
Returns true if the check box has focus, or false otherwise. This function is useful in finding if the user
is able to check the box using the keyboard..

GetCheckBox(se_Name)
Returns true if the check box is checked and false if it is not.

GetCheckBoxCaption(se_Name)
Returns the text next to the check box.

GetCheckBoxColor(se_Name)
Returns the color of the box’s background. If the color is one of RobotBASIC’s primary colors then its
number will be returned (0-15), otherwise the number will be the RGB code of the color.

RobotBASIC V4.2.0

Page 106 of 276

GetCheckBoxX(se_Name)
GetCheckBoxY(se_Name)

Returns the position (X,Y)of the box.

LastCheckBox()
Returns the name of the last check box to have been clicked since the last call of this function. The
name given is as given to the box when added using AddCheckBox. If no box has been clicked since
the last interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more last check box value (i.e. an empty
string) until another box or the same one is clicked again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSlider.

Slider/Progress Bar Components

Slider/Progress Bar Commands

AddSlider se_Name,ne_X,ne_Y{,ne_Width{,ne_Min{,ne_Max{,ne_Vertical{,ne_TickFreq{,ne_BigIncr{,se_Hint}}}}}}}
Creates a Slider in the Terminal Screen at position ne_X,ne_Y with a width of ne_W. The height is not
changeable. If ne_W is not given or is less than 1 it will be 100. se_Name is a name given to the slider.
This name should be unique and is used to identify the slider for other related commands and
functions.

A slider allows the user to indicate a required number or setting by sliding a dial. The slider can be
vertical if ne_Vertical is true or horizontal (default) if it is not given or is false.

The slider will have a minimum and maximum as its limits and are specified by ne_Min and ne_Max
respectively. If ne_Min is not given then 0 will be assumed. If ne_Max is not given 100 will be
assumed. You can change these limits after creating the slider using SetSliderMax and SetSliderMin.
You can also obtain their values using GetSliderMax() and GetSliderMin() (see note below). Both or
either can be negative or positive.

The slider has a dial that can be moved by the user using the mouse. The dial can also be moved using
the arrow keys when the slider has the focus, by increments of 1. Another way to move the dial is by
clicking on the bar area to the left and right of the dial, or pressing the PgUp/Dn keys. This will cause
the dial to move by increments as specified by ne_BigIncr. If ne_BigIncr is not given or is less than 1
then this increment will be set to 20% of the range (Max-Min).

The slider will have incremental ticks at the Top (Left if vertical) of the bar. The frequency of the ticks
will be determined by ne_TickFreq. If it is not given or is less than 0 then the frequency of the ticks
will be set at 10% of the range (Max-Min). If it is 0 there will be no ticks.

Note: The tick frequency and big increments quantity do not change once the slider is created. If later
you change the Maximum and Minimum limits using SetSliderMax and SetSliderMin the tick
frequency does not change nor does the big increment.

se_Hint if given will be displayed as a hint when the user rests the mouse over the bar.

RobotBASIC V4.2.0

Page 107 of 276

When the slider is created the dial position will be at the minimum value. You can read the dial
position using GetSliderPos() and you can set it using SetSliderPos.

You can make the dial visible/invisible using HideSliderDial. If the dial is invisible the user can still
change its position using the Arrows and Page keys on the keyboard when the slider has the focus (you
can indicate the dial position using the progress bar see later). You can also hide/unhide the slider and
also enable or disable it using HideSlider and EnableSlider. A disabled slider cannot be used by the
user to slide the dial neither with the mouse nor the keyboard, but it can be changed programmatically.

The slider can also be used as a progress bar. The inside area of the bar can display a colored area
whose limits are set by SetSliderBarStart and SetSliderBarEnd. These limits will be set to within the
Max and Min values if you specify values outside the range. You can aslo read the values of these
limits with GetSliderBarStart() and GetSliderBarEnd().

You can also have the bar track the dial automatically by using ShowSliderBar. This will set the bar
start to the minimum value and will set the end at the position of the dial and will track it automatically
when the dial position is change by the user or programmatically even when the dial is not visible.

If the bar is not automatic you can still use it by setting its start and end values. This can be useful to,
say, indicate an optimal range where the dial should be positioned. If the bar's start and end values are
set to 0 the bar will be invisible.

The color of the slider's border will be as if it is a Button and you cannot change this.

The slider will remain active until removed with RemoveSlider below.

Also you can set the focus to a particular slider with FocusSlider.

Note: In all the functions and commands dealing with Sliders, the name of the slider must be
exactly the same as the se_Name used to create the slider with AddSlider (case sensitive).

Note: The name of the Slider is case sensitive and should be unique for each slider.

Example: Also see the example under the On[Control] description in the Flow Control Statements
section.

MainProgram:
 GoSub Initialization
 while true
 //wait for events
 wend
End
Initialization:
 SliderName = "Test"
 addslider SliderName,100,100,200,-20,300
 data CBoxes;"Hidden","Enabled","Hide Dial","Show Bar"
 data Buttons;"Set Dial Position","Animate","Stop"
 data Edits;"BSt",10,"BEn",130,"Pos",250
 AddButton Buttons[1],150,50,110
 AddButton Buttons[0],250,190,110
 for i=0 to 3
 AddCheckBox CBoxes[i],10+100*i,150,,0%0010 & 2^i
 if i < 3 then AddEdit Edits[i*2],Edits[i*2+1],220,110,0,0 \ IntegerEdit
Edits[i*2]
 next
 Tmr = "Animate" \ AddTimer Tmr,150 \ SetTimer Tmr,off

RobotBASIC V4.2.0

Page 108 of 276

 AddTimer "t2",100
 Pos = GetSliderPos(SliderName) \ FocusSlider SliderName
 xyText 90,180,"Type In","Time New Roman",10,fs_Bold
 xyText 20,200,"Bar Start"+spaces(15)+"Bar End","Time New Roman",10,fs_Bold
 xystring 90,80,GetSliderMin(SliderName)
 xystring 285,80,GetSliderMax(SliderName)
 OnButton BHandler \ OnCheckBox CBHandler \ OnEdit EdHandler
 OnTimer TmHandler \ OnAbort AbHandler
Return
TmHandler:
 lt = LastTimer()
 if lt=="t2"
 nn = GetSliderPos(SliderName)
 if nn != Pos then SetEDit "Pos",nn \ Pos = nn
 endif
 if lt==Tmr
 np = GetSliderPos(SliderName)+10
 if np > GetSliderMax(SliderName) then np = GetSliderMin(SliderName)
 SetSliderPos SliderName,np
 endif
 onTimer TmHandler
Return
EdHandler:
 le = LastEdit() //must be done at least once before returning
 v = ToNumber(GetEdit(le),0)
 if le == Edits[0] then SetSliderBarStart SliderName,v
 if le == Edits[2] then SetSliderBarEnd SliderName,v
 OnEdit EdHandler //must always be done before returning if
Return //you want to continue the event handling
BHandler:
 lb = LastButton() //must be done at least once before returning
 n =ToNumber(GetEdit("Pos"),0)
 if lb==Buttons[0] then SetSliderPos SliderName,n
 if lb==Buttons[1] then SetTimer Tmr \ RenameButton Buttons[1],Buttons[2]
 if lb==Buttons[2] then SetTimer Tmr,off \ RenameButton
Buttons[2],Buttons[1]
 OnButton BHandler //must always be done before returning if
Return //you want to continue the event handling
CBHandler:
 lc = LastCheckBox() //must be done at least once before returning

 cc = GetCheckBox(lc)
 if lc == CBoxes[0] then HideSlider SliderName,cc
 if lc == CBoxes[1] then EnableSlider SliderName,cc
 if lc == CBoxes[2] then HideSliderDial SliderName,cc
 if lc == CBoxes[3] then ShowSliderBar SliderName,cc
 OnCheckBox CBHandler //must always be done before returning if
Return //you want to continue the event handling
AbHandler:
 ab = ErrMsg("Do you want to abort?","Test",MB_YESNO|MB_QUESTION)
 if ab == MB_YES then exit
 onabort AbHandler
Return

RemoveSlider se_Name
Removes the Slider.

RobotBASIC V4.2.0

Page 109 of 276

FocusSlider se_Name
Puts the focus on the slider and allows the user to slide the dial using the arrow and page keys. If
se_Name is an empty string "" then focus will be removed from any controls in the Terminal Screen
that may currently have the focus.

Note: You cannot set focus to a disabled or hidden slider.

EnableSlider se_Name{,true|false}
If false is given the slider will become disabled and the user cannot change the dial position. It can still
be changed using SetSliderPos. If true is specified or is not given then it becomes possible to slide the
dial.

HideSlider se_Name{,true|false}
Makes the slider invisible if true is specified or is not given, and visible if false is given. An invisible
slider is still a valid one (as opposed to a removed one). But it will not be visible. This is useful in
certain situations where you want to make some sliders not available. You can then later make them
available. If you remove a slider you have to Add it again if you wish to make it available for use
again. This command and EnableSlider are a more efficient way of making a slider temporarily
unusable.

SetSliderPos se_Name{,ne_PositionValue}
Forces the dial to the position even if it is not visible. This is how the dial can be controlled by the
program. If it is not given then the position will be zero.

SetSliderMin se_Name{,ne_NewValue}
SetSliderMax se_Name{,ne_NewValue}

Sets the slider’s maximum and minimum ranges. If it is not given then the minimum will be zero and
the maximum 100.

SetSliderBarStart se_Name{,ne_Value}
SetSliderBarEnd se_Name{,ne_Value}

Sets the start and end positions of the progress bar. If you specify values outside the Maximum and
Minimum of the slider then they will be overridden to stay within the range. If the value is not given it
will be zero. If the start and end are both zero then the bar is not visible.

HideSliderDial se_Name{,true|false}
If true is specified or is not given the dial will become invisible and the user cannot change the value of
the position by using the mouse. However the user can still change the value of the position with the
keyboard. You can also do it programmatically. There will be no indication of the position since the
dial is not visible but if the progress bar is visible and is automatic then you will see it changing in
response to the programmatic or keyboard changing of the position value. If false is given then it
becomes visible again.

ShowSliderBar se_Name{,true|false}
If true is specified or is not given then the inside of the slider will be highlighted from the minimum up
to the current dial position. This effectively makes the bar into a progress bar that can follow with the
user input or can be changed programmatically. If false is given then the bar will be removed and it
will stop being automatic and will be reset to 0 on both limits.

SetSliderDim se_Name{,ne_X{,ne_Y{,ne_W}}}
Sets the position and width of the slider.

RobotBASIC V4.2.0

Page 110 of 276

Slider/Progress Bar Functions

SliderEnabled(se_Name)
Returns false if the slider is disabled and true if it is enabled.

SliderHidden(se_Name)
Returns true if the slider is invisible and false if it is visible.

GetSliderPos(se_Name)
Returns the value of the current position of the slider's dial.

GetSliderMin(se_Name)
GetSliderMax(se_Name)

Return the slider’s maximum and minimum range values.

GetSliderBarStart(se_Name)
GetSliderBarEnd(se_Name)

Returns the progress bar high light range start and end values.

SliderDialHidden(se_Name)
Returns true if the slider’s dial is not visible and true if it is.

SliderBarHidden(se_Name)
Returns true if the progress bar follows the dial's position automatically and false if not.

GetSliderX(se_Name)
GetSliderY(se_Name)
GetSliderW(se_Name)

Returns the position (X,Y) and width (W) of the slider.

SliderHasFocus(se_Name)
Returns true if the slider has focus, or false otherwise. This function is useful in finding if the user is
able to move the slider using the arrow keys.

LastSlider()
Returns the name of the last slider to have been changed since the last call of this function. The name
given is as given to the slider when added using AddSlider. If no slider has been changed since the last
interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more last slider value (i.e. an empty string)
until another slider or the same one is clicked again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSlider.

RobotBASIC V4.2.0

Page 111 of 276

Spinner Components

Spinner Commands

AddSpinner se_Name,ne_X,ne_Y{,ne_W{,ne_H{,ne_Min{,ne_Max{,ne_Incr{,ne_Vertical{,ne_Wrap{,se_Hint}}}}}}}}
Creates a Spinner in the Terminal Screen at position ne_X,ne_Y with a width of ne_W and height
ne_H. ne_Name is a name given to the Spinner. This name should be unique and is used to identify the
Spinner for other related commands and functions. If ne_W and ne_H are not given or are less than 1
then the spinner will have a default width of 17 and height 25.

A Spinner allows the user to increment/decrement a value by a certain incremental value (ne_Incr)
between a minimum (ne_Min) and a maximum (ne_Max). The maximum value can be +32767 and the
minimum -32768. You cannot exceed these values. The increment defaults to 1 if not given or is less
than 1. The maximum and minimum values are set to 100 and 0 respectively if not given.

The Spinner can be vertical if ne_Vertical is true or horizontal (default) if it is not given or is false.

The value of the spinner cannot be incremented beyond the limits, but if ne_Wrap is set to true then
wrapping around will happen (min max, max min). If it is not given or is false then no wrapping
will occur and when a limit is reached the value of the spinner stays at the limit.

se_Hint if given will be displayed as a hint when the user rests the mouse over the bar.

When the spinner is created the value of it will be the minimum limit. You can change the value of the
spinner using SetSpinner, you can also change the minimum, maximum, increment and wrap using
SetSpinnerMin/Max/Incr/Wrap.

You can also hide/unhide or enable/disable the control using EnableSpinner and HideSpinner. And you
can remove it with RemoveSpinner.

You can also interrogate the spinner for its min, max, increment, wrap and current value using
GetSpinner(), GetSpinnerMin/Max/Incr/Wrap(). Also you can find out if it is hidden or enabled using
SpinnerHidden() and SpinnerEnabled().

The color of the Spinner will be as if it is a Button and you cannot change this.

A spinner can be easily associated with a particular Edit box by using the OnSpinner event trapping
and then in the event handler you can set the edit box to the current value of the spinner. Also in the
Edit box's handler you can set the spinner value to reflect any editing of the edit box to keep the spinner
and the edit box in synchronization (see example).

Note: In all the functions and commands dealing with Spinners, the name of the Spinner must be
exactly the same as the se_Name used to create the Spinner with AddSpinner (case
sensitive).

Note: The name of the Spinner is case sensitive and should be unique for each Spinner.

Example: Also see the example under AddMemo.
addedit "ed1",10,10,90,0,0,"0" \ IntegerEdit "ed1"
addspinner "sp1",100,10,0,0,-100,300,1

RobotBASIC V4.2.0

Page 112 of 276

addspinner "sp2",120,10,25,25,-100,300,10,1
SetSpinner "sp1",0 \ SetSpinner "sp2",0
onspinner spHandler \ onedit eHandler
while true //wait on events
 xystring 10,100,"VSpinner=",getspinner("sp1"),spaces(20)
 xystring 10,120,"HSpinner=",getspinner("sp2"),spaces(20)
wend
end
spHandler:
 v = getspinner(LastSpinner())
 setedit "ed1",v
 setspinner "sp1",v
 setspinner "sp2",v
 onspinner spHandler
return
eHandler:
 vv = tonumber(getedit(LastEdit()),0)
 setspinner "sp1",vv
 setspinner "sp2",vv
 onedit eHandler
return

RemoveSpinner se_Name
Removes the Spinner.

FocusSpinner se_Name
Puts the focus on the spinner. This enables the user to increment/decrement the value using the
keyboard. If se_Name is an empty string "" then focus will be removed from any controls in the
window that may currently have the focus.

Note: You cannot set focus to a disabled or hidden spinner.

EnableSpinner se_Name{,true|false}
If false is given the Spinner will become disabled and the user cannot click it. It can still be changed
using SetSpinner. If true is specified or is not given then it becomes possible to click on it.

HideSpinner se_Name{,true|false}
Makes the Spinner invisible if true is specified or is not given and visible if false is given. An invisible
Spinner is still a valid one (as opposed to a removed one). But it will not be visible. This is useful in
certain situations where you want to make some Spinners not available. You can then later make them
available. If you remove a Spinner you have to Add it again if you wish to make it available for use
again. This command and EnableSpinner are a more efficient way of making a Spinner temporarily
unusable.

SetSpinner se_Name{,ne_Position}
Forces the value of the spinner position even if it is not visible or disabled. If ne_Position is not given it
will be zero.

SetSpinnerMin se_Name{,ne_NewValue}
SetSpinnerMax se_Name{,ne_NewValue}

Sets the Spinner’s maximum and minimum ranges. If the value is not given then the minimum will be
zero and the maximum will be 100.

RobotBASIC V4.2.0

Page 113 of 276

SetSpinnerIncr se_Name{,ne_Value}
Sets the increment by which the value of the spinner is incremented/decremented when the spinner is
clicked. If it is not given then it will be assumed to be 1.

SetSpinnerWrap se_Name{,true|false}
Sets whether the value of the spinner will wrap around when it is incremented/decremented beyond the
limits. If true is specified or is not given then wrap is enabled, if false is given then no wrapping will
occur.

SetSpinnerDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
Sets the position and width and height of the spinner.

Spinner Functions

SpinnerEnabled(se_Name)
Returns false if the Spinner is disabled and true if it is enabled.

SpinnerHidden(se_Name)
Returns true if the Spinner is invisible and false if it is visible.

SpinnerHasFocus(se_Name)
Returns true if the spinner has focus, or false otherwise. This function is useful in finding if the user is
able to change its value using the keyboard..

GetSpinner(se_Name)
Returns the value of the current value of the Spinner.

GetSpinnerMin(se_Name)
GetSpinnerMax(se_Name)

Return the Spinner’s maximum and minimum range values.

GetSpinnerIncr(se_Name)
Return the Spinner’s increment value.

GetSpinnerWrap(se_Name)
Return true if the Spinner is set to wrap around when limits are reached and false if it is not.

GetSpinnerX(se_Name)
GetSpinnerY(se_Name)
GetSpinnerW(se_Name)
GetSpinnerH(se_Name)

Returns the position (X,Y) and width (W) and height (H) of the spinner.

LastSpinner()
Returns the name of the last Spinner to have been clicked since the last call of this function. The name
given is as given to the Spinner when added using AddSpinner. If no Spinner has been changed since
the last interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more last Spinner value (i.e. an empty string)
until another Spinner or the same one is clicked again.

RobotBASIC V4.2.0

Page 114 of 276

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddSpinner.

Memo Box Components

Memo Box Commands

AddMemo se_Name,ne_X,ne_Y{,ne_W{,ne_H{,se_Text{,se_Hint}}}}
Creates a Memo box in the Terminal Screen at position ne_X,ne_Y with a width of ne_W and Height
ne_H. ne_W or ne_H are not given or are less than 1 then they will be set to 100. se_Name is a name
given to the box. This name should be unique and is used to identify the box for other related
commands and functions.

A memo box is an edit box that allows multiple lines and can have horizontal and vertical scroll bars to
scroll the box to see text longer than the width and/or the height of the box. The box has no scroll bars
by default but you can add vertical, horizontal, or both using SetMemoScrollBars.

The color of the box's background and the color of the text will be according to the current default
foreground and background colors. You can change them using SetMemoFont and SetMemoColor.
You can change the type, size, style and color of the font of the text using SetMemoFont. The box has a
border by default but can be turned off with BorderMemo.

If there is no horizontal scroll bar the text will word wrap around if it reaches the width limit of the
box. Word wrap is on by default and you can turn it off using WrapMemo. If the horizontal scroll bar is
set on then no word wrap will occur regardless of wrap is set on or off.

The user can type text in the box, but you can also populate it programmatically using AddMemoLine
and you can remove any line using DeleteMemoLine or clear all the lines with ClearMemo. Also when
you create the box you can have text in it by specifying se_Text. This is a string with all the lines in
one string separated with CR/LF character pairs.

se_Hint is a hint text that will be displayed when the user rests the mouse over the box. It is an empty
string by default.

The memo box can be made to be a display box with either EnableMemo or ReadOnlyMemo. A
disabled memo cannot be entered, while a read only one can be entered and scrolled and text can be
copied from it. You can also hide a memo with HideMemo.

You can get information about the memo with functions like GetMemoFont(), GetMemoColor(),
MemoLinesCount(), etc.

You can get the whole text content as one string with the lines as substrings separated with CR/LF
character pairs with GetMemoText() and GetMemoLine() allows you to get a particular line.

The box will remain active until removed with RemoveMemo below.

Note: In all the functions and commands dealing with Memos, the name of the box must be
exactly the same as the se_Name used to create the box with AddMemo (case sensitive).

RobotBASIC V4.2.0

Page 115 of 276

Note: The name of the memo is case sensitive and should be unique for each box.

See mToString(), CrLf(), Substitute() and mFromString. Also see the buffer functions BuffWrite() and
BuffRead().

Example:
MainProgram:
 GoSub Initialization
 while true

 //wait for events
 wend
End
Initialization:
 addmemo "m",20,20,500,400
 bordermemo "m",0 \ setmemocolor "m",RGB(204,204,255)
 setmemoscrollbars "m",1 \ setMemoFont "m",,13,fs_Bold
 Rectanglewh 18,18,510,520,black,black
 Rectanglewh 15,15,510,520,black,darkgray
 Line 19,425,519,425,3,gray
 AddMemoLine "m","Enter text here" \ FocusMemo "m"
 SetColor Black,DarkGray
 AddCheckBox "Wrap",22,430,,1
 AddCheckBox "Vert. Scroll Bar",22,450,,1
 AddCheckBox "Horz. Scroll Bar",22,470
 SetCheckBoxColor "Wrap",darkgray
 AddButton "Clear Memo",440,430,80 \ AddButton "Memo Color",440,460,80
 AddEdit "fntS",150,450,50,0,13 \ IntegerEdit "fntS"
 AddSpinner "fntS",203,450 \ setspinner "fntS",13
 xyText 150,435,"Font Size","Ms Sn Serif",8,fs_Bold
 data Fonts;"Courier New","Times New Roman","MS Sans Serif","Arial"
 AddListBox "fntT",225,430,120,mToString(Fonts)
 SetListBox "fntT",3 \ SetListBoxColor "fntT",white
 AddCheckBox "Bold",350,430,,1
 AddCheckBox "Italic",350,450
 AddCheckBox "Underlined",350,470
 AddButton "Font Color",230,465,100
 AddButton "Read From File",120,505,120
 AddButton "Save To File",260,505,120
 onSpinner sHandler \ onButton bHandler \ onCheckBox cHandler
 onEdit eHandler \ onListBox lHandler
Return
lHandler:
 ll = LastListBox() \ fntT = GetListBoxText("fntT")
 setmemofont "m",fntT
 onListBox lHandler
Return
eHandler:
 le = LastEdit() \ fntS= ToNumber(getedit(le),1)
 setspinner le,fntS \ setmemofont "m",,fntS
 OnEdit eHandler
Return
cHandler:
 lc = LastCheckBox() \ nn = getcheckbox(lc)
 if lc == "Wrap" then wrapmemo "m",nn
 if left(lc,1) == "V"
 if nn then setmemoscrollbars "m",setbit(memoscrollbars("m"),0)
 if !nn then setmemoscrollbars "m",clrbit(memoscrollbars("m"),0)
 endif
 if left(lc,1) == "H"
 if nn then setmemoscrollbars "m",setbit(memoscrollbars("m"),1)
 if !nn then setmemoscrollbars "m",clrbit(memoscrollbars("m"),1)

RobotBASIC V4.2.0

Page 116 of 276

 endif
 if Left(lc,1) == "B" || Left(lc,1) == "I" || Left(lc,1) == "U"
 fntSt = getCheckBox("Bold")|(getCheckBox("Italic")*2)
 fntSt = fntSt |(getCheckBox("Underlined")*4) \ setmemofont "m",,,fntSt
 endif
 onCheckBox cHandler
Return
bHandler:
 lb = LastButton()
 if lb == "Clear Memo" then clearmemo "m"
 if lb == "Memo Color" then setmemocolor
"m",promptcolor(constoclr(getmemocolor("m")))
 if lb == "Font Color"
 fc =
promptcolor(constoclr(tonumber(extract(getmemofont("m"),crlf(),4))))
 setmemofont "m",,,,fc
 elseif lb == "Save To File"
 fln = FileSave("*.txt")
 if fln !=""
 flh = FileCreate(fln)
 x = FileWrite(flh,GetMemoText("m"))
 x = FileClose(flh)
 endif
 elseif lb == "Read From File"
 fln = FilePrompt("*.txt")
 if fln !=""
 flh = FileOpen(fln,fo_Read|fo_DenyNone)

 x = FileRead(flh,FileSize(flh))
 SetMemoText "m",x
 x = FileClose(flh)
 endif
 endif

 onButton bHandler
return
sHandler:
 ls = LastSpinner() \ fntS = GetSpinner(ls)
 setedit ls,fntS \ setmemofont "m",,fntS
 onSpinner sHandler
return

RemoveMemo se_Name
Removes the memo.

FocusMemo se_Name
Puts the focus on the Memo. This enables the user to start typing lines. If se_Name is an empty string
"" then focus will be removed from any controls in the window that may currently have the focus.

Note: You cannot set focus to a disabled or hidden memo.

ClearMemo se_Name
Deletes all the lines in the memo.

EnableMemo se_Name{,true|false}
If false is given the Memo will become disabled and the user cannot type or select text from the memo.
If true is specified or is not given then it becomes possible to type lines.

RobotBASIC V4.2.0

Page 117 of 276

HideMemo se_Name{,true|false}
Makes the Memo invisible if true is specified or is not given and visible if false is given. An invisible
Memo is still a valid one (as opposed to a removed one). But it will not be visible. This is useful in
certain situations where you want to make some memo not available. You can then later make it
available. If you remove a memo you have to Add it again if you wish to make it available for use
again. This command and EnableMemo are a more efficient way of making a memo temporarily
unusable.

ReadOnlyMemo se_Name{,true|false}
If true is specified or is not given, the Memo will become disabled and the user cannot type text. But
the user can still scroll through the text in the memo and select and copy parts of it. If false is given
then it becomes possible to type lines.

WrapMemo se_Name{,true|false}
If true is specified or is not given, and the memo does not have a horizontal scroll bar then when the
user types text that will make a line longer than can be displayed in the width of the memo, then a word
wrap to the next line will occur. This is on by default. If false is given or there is a horizontal scroll
bar then the text will go beyond the width of the memo and will not be visible. You can of course scroll
the memo box using the scroll bar if there is one.

BorderMemo se_Name{,true|false}
If true is specified or is not given, the Memo will have a border around it and will make the memo
appear slightly sunken into the screen. If false is given there will be no border.

SetMemoColor se_Name{,ne_Color}
This sets the memo’s background color. If it is 0 to 15 then the RobotBASIC primary colors will be
used (see the Constants section). If it is an RGB color value then it will be used. If it is not given then it
will be Blue.

SetMemoDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
Sets the position and width and height of the memo.

DeleteMemoLine se_Name{,ne_LineNumber}
Deletes a line of text from the memo. ne_LineNumber is the index of the line to be removed. If it is not
given then it will be assumed to be 1. If it is greater than the number of lines in the list then the last line
will be removed. If it is less than 1 the no line will be removed.

SetMemoScrollBars se_Name{,ne_Value}
If ne_Value is 0 there will be no scroll bars. If it is 1 there will be a vertical one, if 2 a horizontal one
and if 3 there will be both. If it is not given it will be set to 1.

AddMemoLine se_Name{,e_Text}
Adds a line of text to the end of the current text in the memo. e_Text can be numeric or string. If it is
numeric it will be made into a string. If it is not given it will be "". If it is "" the line will be added but
will have no text.

SetMemoText se_Name{,e_Text}
Deletes any text in the memo and replaces it with se_Text. e_Text can contain substrings separated
with CR/LF character pairs. If it does then each substring will occupy a line in the Memo. e_Text can
be numeric or string. If it is numeric it will be made into a string. If it is not given it will be "". If it is ""
then the memo will not contain any text effectively erasing all the text in the memo.

RobotBASIC V4.2.0

Page 118 of 276

SetMemoFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
Sets the type, size, style and color of the font of the memo. The details are the same as in xyText. If the
type is not given or is "" then the font type will not be changed. If the size is not given or is < 1 then
font size will not be changed. If the style is not given or is < 0 then the font style will not be changed. If
the color is not given or is < 0 then the font color will not be changed. To find out what font details the
memo currently has use GetMemoFont().

SetMemoSelection se_Name{,ne_LineNumber{,ne_CharacterNumber{,ne_SelectionLength}}}}
Set the cursor inside the memo to the Line number ne_LineNumber at character number
ne_CharacterNumber. Then it highlights ne_SelectionLength characters in that line starting at the
ne_CharacterNumber character.

If the line number or the character number is not given or is less than 1 then it will be set to 1.
Character and line numbering start with 1. If selection length is not given or is less than 1 then there
will be no highlighted characters.

If ne_LineNumber is larger than the number of lines then the cursor would be positioned past the last
line. If ne_CharacterNumber is greater than the number of characters in the line then the cursor would
be positioned after the last character in the line. Also there would be no highlighted characters.

If the ne_CharacterNumber+ne_SelectionLength is longer than the length of text in the line then
highlighting will only be to the last character in the line.

SetMemoSelected se_Name{,ne_StartCharPosition{,ne_NumCharacters}}
Sets a section of text as highlighted text. ne_StartCharPosition specifies the char number in the
OVERALL memo text. ne_SelectionLength specifies the number of characters to be selected.

As opposed to SetMemoSelection this command treats ALL of the text in the Memo as one string and
rather than selecting the text by line number and character position within the line. This command will
select text over multiple line as well.

If the ne_StartCharPosition is not given or is less than 1 it will be made to be 1. Character counting
starts at 1.
If ne_NumCharacters is less than 0 or is not given it will be made 0.
If ne_NumCharacters is 0 then there will be no selected text but the cursor will be positioned just
before the character indicated.

Memo Box Functions

MemoChanged(se_Name)
Returns true if the text inside the memo box with the name has changed since the last time you have
interrogated its status using this function. If it has not changed the function will return false.

MemoEnabled(se_Name)
Returns true if the Memo is enabled (i.e. the user can type in it) and false if it is not.

MemoHidden(se_Name)
Returns true if the Memo is hidden and false if it is visible.

RobotBASIC V4.2.0

Page 119 of 276

MemoWrap(se_Name)
Returns true if the Memo has word wrap set and false if not.

MemoReadonly(se_Name)
Returns true if the Memo is set to read only and false if not.

MemoBorder(se_Name)
Returns true if the Memo has the border turned on, and false if not.

MemoScrollBars(se_Name)
Returns the code for what combination of scroll bars are turned on. 0= none, 1=Vertical, 2=Horizontal
and 3= Both.

GetMemoColor(se_Name)
Returns the color of the memo’s background. If the color is one of RobotBASIC’s primary colors then
its number will be returned (0-15), otherwise the number will be the RGB code of the color.

GetMemoX(se_Name)
GetMemoY(se_Name)
GetMemoW(se_Name)
GetMemoH(se_Name)

Returns the position (X,Y) and width (W) and height (H) of the memo.

MemoLinesCount(se_Name)
Returns the number of lines in the memo.

GetMemoText(se_Name)
Returns the text in the Memo. The various lines will be separated with a CR/LF character pair.

GetMemoSelection(se_Name)
Returns the text in the Memo that is currently highlighted. If there is none then "" will be returned.

GetMemoLineNo(se_Name)
Returns the number of the line where the cursor currently is inside the memo.

GetMemoCharNo(se_Name)
Returns the number of the character in the line where the cursor currently is inside the memo.

GetMemoCharPos(se_Name)
Returns the number of the character just after the position of the cursor or the number of the first
character in the selected text. First character is .

GetMemoLine(se_Name,ne_LineNumber)
Returns the text in line number ne_LineNumber from the Memo. If it is less than 1 or there are no lines
in the memo then an empty string will be returned. If it is more than the lines count then the last line
will be returned.

GetMemoFont(se_Name)
Returns a string that has 4 sections separated with CR/LF character pairs. The sections’ order is Font
Type, Size, Style and Color. The color will be 0-15 if it is one of RobotBASIC’s primary colors or the

RobotBASIC V4.2.0

Page 120 of 276

RGB value if it is not. The Style will be 0 if no style, 1 if bold, 2 if italic and 4 if underlined and any
binary combination of these. You can AND the number with the constants from the Constants section
(fs_Bold etc.). You can extract the different sections using Extract() or you can put them into an array
using mFromString. To set the font, use SetMemoFont.

MemoHasFocus(se_Name)
Returns true if the user is inside the memo box entering text, or false otherwise. This function is useful
in finding if the user is inside a particular memo box.

LastMemo()
Returns the name of the last memo to have been changed since the last call of this function. The name
given is as given to the memo when added using AddMemo. If no memo has been clicked since the last
interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more last memo value (i.e. an empty string)
until another memo or the same one is clicked again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements.

Timer Components

Timer Commands

AddTimer se_Name{,ne_Period}
Creates a Timer with the given period in milliseconds. If it is not given or is less than 1 it will default to
1000 milliseconds (1 sec). Once created the timer is turned on. You can turn a timer on/off with
SetTimer. se_Name is a name given to the Timer. This name should be unique and is used to identify
the Timer for other related commands and functions.

Once created a timer will start counting every period. So if you set the period to 250 ms then the timer
will increment a count (Ticks which is zero when the timer is created) every 250 ms. So if you read the
ticks with GetTimerTicks() and it is 20 then you know that 20*250 = 5000 ms have elapsed since the
last time the timer ticks were set to 0 (i.e. 5 seconds).You can set the ticks count to any number at any
time using SetTimerTicks.

You can change the period of the timer using SetTimerPeriod. However when you do this the ticks
count will be reset to 0 and the timer will be turned off. To use it you have to turn it on with SetTimer.

Every time you turn the timer on using SetTimer the ticks count will be reset to 0. However, the ticks
count is not changed when the timer is turned off.

You can discard a timer with RemoveTimer. Also you can interrogate the timer for its on/off status
with the TimerIsOn() and you can find out the period with GetTimerPeriod().

Note: In all the functions and commands dealing with Timers, the name of the Timer must be
exactly the same as the se_Name used to create the Timer with AddTimer (case sensitive).

Note: The name of the Timer is case sensitive and should be unique for each Timer.

RobotBASIC V4.2.0

Page 121 of 276

Example: Also see the examples under AddSlider and AddMemo.
addtimer "t1",100
addtimer "t2",500
addtimer "t3",1000
addedit "t3",10,10,100,0,0
addedit "t2",120,10,100,0,0
addedit "t1",240,10,100,0,0
ontimer tHandler
while true
 //just wait for events
wend
tHandler:
 n = lasttimer() \ setedit n,gettimerticks(n)
 ontimer tHandler
return

RemoveTimer se_Name
Removes the Timer. Once removed the timer is not valid for use any longer.

SetTimer se_Name{,true|false}
Turns the timer On if true is specified or is not given. If false is given the timer is turned off and it will
not increment its ticks count until turned back on again.

SetTimerPeriod se_Name{,ne_Period}
Sets the Timer’s period in milliseconds. If the period is not given it will default to 1000 (1 sec). When
you use this command the timer will be turned off and the ticks count will be reset to zero. To use the
timer you have to turn it back on with SetTimer.

SetTimerTicks se_Name{,ne_Count}
Sets the Timer’s tick count. If it is not given it will default to 0.

Timer Functions

TimerIsOn(se_Name)
Returns true if the timer is ticking, false otherwise.

GetTimerPeriod(se_Name)
Returns the Timer’s period (milliseconds).

GetTimerTicks(se_Name)
Returns the Timer’s ticks count.

LastTimer()
Returns the name of the last Timer to have incremented its ticks count since the last call of this
function. The name given is as given to the Timer when added using AddTimer. If no Timer has ticked
since the last interrogation using this function the returned string will be "" (zero length).

Note: Once this function has been used there will be no more Last Timer value (i.e. an empty string)
until another Timer or the same one ticks again.

See the use of this function in the example given in the Flow Control Statements section under the
On[CONTROL] flow control group of statements. Also see example under AddTimer.

RobotBASIC V4.2.0

Page 122 of 276

Screen & Bitmap Graphics
Note: See the notes at the top of the Standard User Interfacing section.

Note: With all the commands and functions that require a bitmap file name, if you specify a file extension
other than ".Bmp" RB will change this extension automatically to ".Bmp". If you do not specify an
extension RB will automatically assume that the extension is ".Bmp". So to work with a Bit Map file
it has to have a ".Bmp" extension and when specifying its name in the commands you can give the
full name with or without the extension. To convert files of different types to a BitMap format see
ToBMP.

Information About Colors
All the graphics commands that allow for color values or return color values will allow you to enter an
integer for the color value. If the value is 0 to 15 then the color from the list of colors in the
RobotBASIC Constants section will be used. Also if the color returned is one from the list of colors in
the RobotBASIC Constants section then its number (0 to 15) will be returned. Any other color (not in
the list of colors in the RobotBASIC Constants section) will be according to an integer value that
corresponds to the combination of Red-Green-Blue values. The integer number is actually the integer
value of the hexadecimal number 0xBBGGRR where BB is the value of the amount of blue to be used
to make the color (00 to FF i.e. 0 to 255), likewise for the green and red. You can make a color number
using RGB() or you can get a number (at design time) from the colors dialog invoked from the editor
screen from the Help-Colors menu. This dialog will allow you to choose a color and will copy its value
to the Clipboard. Use Ctrl-V to paste this value within your code. At run time you can obtain a color
value from the same dialog by using PromptColor() which will allow the user of your program to
choose a color. You can convert the constant color values (0 to 15) to an RGB color number using
ConsToClr(). You can obtain the values for the red/green/blue components of any color code (full RGB
code or the 0-15 constants) by using RedValue(), GreenValue() and BlueValue().

Color Manipulation

RGB(ne_RedValue,ne_GreenValue,ne_BlueValue)
Returns a number that is the color value for the color represented by the intensity combination of
ne_Red , ne_Green and ne_Blue. RGB(0,0,0) is the black color. RGB(255,255,255) is the white color.
Various shades are created by varying the parameters between 0 and 255. RGB(255,0,0) is red,
RGB(0,255,0) is green, RGB(0,0,255) is blue, RGB(255,255,0) is yellow, RGB(0,255,255) is cyan,
RGB(255,0,255) is magenta, RGB(128,128,128) is gray and so on. Also see PromptColor() below and
also the menu Help/Color in the Editor screen menu. Also see the discussion about colors above. See
below for an example.

ConsToClr(ne_ColorConstantValue)
Returns the RGB value of the color constant as specified in the RobotBASIC Constants section. If it is
a valid color constant (or the number 0 to 15) the value returned will be the RGB value of that color. If
it is not a valid color constant the returned value will be the value given. Also see the discussion about
colors above. See below for examples.

RobotBASIC V4.2.0

Page 123 of 276

PromptColor({ne_DefaultColor})
Causes a dialog box to pop up and allow the user to select a color. Returns a number that is the color
value selected. Also see RGB() above. Also see the discussion about colors above.
Example:

c = PromptColor(ConsToClr(blue)) //prompt with default blue color
r = RedValue(c) \ g = GreenValue(c) \ b = BlueValue(c)
Rectangle 100,100,200,200,c, c //rectangle with color chosen
c = RGB(r/2,g/2,b/2) //make color half as bright
Rectangle 300,300,400,400,c,c //rectangle with color twice darker than chosen

RedValue(ne_Color)
GreenValue(ne_Color)
BlueValue(ne_Color)

Returns the Red, Green or Blue saturation of the RGB (or constant color as defined in the RobotBASIC
Constants section) color.

An RGB color is made up of saturation values for the three primary colors Red/Green/Blue. Using
RGB() above will allow you to create a color as described above. However, if you read a color from the
screen using ReadPixel you will either get a constant value (0-15) if the color is one of the 16 colors
defined in the RobotBASIC Constants section, or a number that represents the RGB value. Using this
command you can obtain the individual saturations for each primary color from the returned value.

b = RedValue(n) is equivalent to: b = GreenValue(n) is equivalent to: b =
BlueValue(n) is equivalent to:
b = ConsToClr(n) & 255 b = (ConsToClr(n) >> 8) & 255 b = (ConsToClr(n)
>> 16) & 255

print RedValue(RGB(10,20,200)) //should return 10
print GreenValue(RGB(10,20,200)) //should return 20
print BlueValue(RGB(10,20,200)) //should return 200

Note: RedValue(RGB(10,20,200)) should return 10 but on some machines it may not. Some machines
will change the color value to fit the nearest color that can be displayed and may not be exactly
the value you specified. RGB() returns the nearest value for the color and may not be what you
specified and thus RedValue() will return the modified red value.

FactorColor(ne_Color,ne_Factor)
Returns the value of ne_Color made brighter or darker by the factor ne_Factor. ne_Factor can be a
floating point number >=0. If it is less than 0 it will be made positive. If it is less than 1 the color will
be made darker. If it is greater than 1 the color will be made brighter. ne_Color can be either a
RobotBASIC color constant or an RGB value, however the value returned is always an RGB value.

mCombineClr a_RedValues,a_GreenValues,a_BlueValues,a_RGBvalues
a_Red, a_Green, a_Blue have to be two-dimensional arrays with the exact same dimensions. If they are
not, an error will be issued. This command is used to do the same action as RGB() but on entire arrays.
a_Red holds the red values, a_Green the green values, and a_Blue the blue values. a_RGBvalues will
be created (if it already exists it will be deleted first) to be the same dimensions as the given arrays.

This is the equivalent of doing a_RGBvalues[i,j] = RGB(a_Red[i,j], a_Green[i,j], a_Blue[i,j]) for all
i and all j. See mReadBMP.

RobotBASIC V4.2.0

Page 124 of 276

Printing The Screen Graphics

PrintScr
Sends the Terminal Screen to the printer as a graphic. The entire Terminal Screen will be printed as a
graphic on the default printer. You can set the default printer through the Windows OS or through the
menu option on the Editor screen or programmatically using PrinterSetup.

PrinterSetup
Shows a dialog box that allows the user to select the printer and to configure it. This will be the printer
that will be used from that point onwards whenever the user pushes the Print button from the bottom of
the Terminal Screen. It will also be the printer used whenever PrintScr is issued.

Screen Output Buffer Control

SetTextBuff {se_Text}
Sets the Terminal Screen text buffer to the given text. If it is "" or not given, the text buffer is cleared.
Read about the text buffer in the Terminal Screen subsection of the IDE section. Also see
GetTextBuff().

TextBuffToCB
Sends the Terminal Screen text buffer to the Windows Clipboard. Read about the Text buffer of the
Terminal Screen section in The Integrated Development Environment (IDE) section.

GetTextBuff()
Returns a string that is the text in the Terminal Screen text buffer. If there is no text in the buffer then
the returned string will be empty (""). If the text in the buffer has multiple lines then the string will
contain the two character combination Char(13)+Char(10) (CR/LF) to indicate the line breaks. You
can use Extract() and NumParts() to extract each line separately.

Read about the text buffer in the Terminal Screen section of The Integrated Development Environment
(IDE) section.

Screen Manipulation

ScrSetMetrics {ne_X{,ne_Y{,ne_Width{,ne_Height{,ne_PanelVisible{,ne_AllowResize}}}}}}
This commands allows you to set the Terminal Screen's position (X,Y) and its width and height.
Additionally it allows you to hide or show the Control Panel at the bottom of the Terminal Screen, if
ne_PanelVisible is not given or is set to true the Panel will be visible and if set to false the panel will be
hidden. Furthermore, you can enable or disable the user to manually resize the window using the
mouse. If ne_AllowResize is not given or is set to false then the window is not manually resizable. If it
is set to true then the window can be resized using the mouse.

If the Control Panel is hidden RB will automatically revert to InlineInputMode on since now the input
cannot be performed using the Control Panel's Input Area. When you set the panel to hidden then the
inline input mode is automatically activated. If you set the Panel to visible then the inline input mode is
automatically deactivated. If you wish to keep the inline input mode active after setting the panel to
visible then you must issue an independent InlineInputMode on (see this command above). As long as
the Control Panel is hidden you will not be able to deactivate the inline input mode (i.e.
InlineInputMode off will not have any effect).

RobotBASIC V4.2.0

Page 125 of 276

Resizing the Terminal screen (manually or programmatically) will not allow resizing the Terminal
screen to bigger than the original screen width and height on startup. This will usually be 800x600
on most systems but may be smaller on some systems.

Example: (also see the example under MediaPlay).
scrsetmetrics ,,,,0,1
print "Press up/Dn Lft/Rt arrows to demo moving the screen"
print "under program control"
print "Press PgUp, PhDn, - + to demo sizing the screen"
print "under program control"
data Buttons;"Show &Panel","Not Allow &Manual Sizing","Hide &Panel","Allow
&Manual Sizing"
b1 = 0 \ b2 = 1
AddButton Buttons[0],1,120,160
AddButton Buttons[1],170,120,160
s = char(kc_LArrow)+char(kc_RArrow)+char(kc_UArrow)+char(kc_DArrow)
s = s+char(kc_PUp)+char(kc_PDn)+char(189)+char(187)
xystring 1,70," X,Y";"";" Width,Height"
while true
 ScrGetMetrics x,y,w,h,p,r
 xystring 1,90,x,",",y;"";" ",w,",",h
 getbutton b
 if b==Buttons[0]
 b1 = !b1
 SetButtonCaption Buttons[0],Buttons[2*b1]
 ScrSetMetrics ,,,,b1,b2
 elseif b==Buttons[1]
 SetButtonCaption Buttons[1],Buttons[1+2*b2]
 b2 = !b2
 ScrSetMetrics ,,,,b1,b2
 endif
 if KeyDown()

 if keydown(kc_LArrow) then x -= 5
 if keydown(kc_RArrow) then x += 5
 if keydown(kc_UArrow) then y -= 5
 if keydown(kc_DArrow) then y += 5
 if keydown(kc_PUp) then h -= 5
 if keydown(kc_PDn) then h += 5
 if keydown(189) then w -= 5

 if keydown(187) then w += 5
 k = KeyDown()
 if InString(s,char(k)) then scrsetmetrics x,y,w,h,p,r
 endif
wend

ScrGetMetrics {vn_X{,vn_Y{,vn_Width{,vn_Height{,vn_PanelVisible{,vn_AllowResize}}}}}}
Will set the variables to their corresponding screen metrics.

Flip {on|off}
This command controls how all the screen drawing and manipulations commands will behave. If Off
then all drawing or printing commands will take place on the visible screen. If On then all drawing and
printing commands will take place on a non-visible background screen and will not be visible. If no
parameter is given or is negative then the non-visible background screen will be copied to the visible
screen, effectively showing any previously drawn images.

This command is useful during animations. If you draw and erase then draw on the visible screen there
will be a perceptible flicker. If instead, you activate background drawing using Flip on then only show
the final screen by using Flip the animation will be flicker free. To activate background drawing issue

RobotBASIC V4.2.0

Page 126 of 276

Flip on, to deactivate it issue Flip off. To cause the background screen to be copied to the visible screen
issue Flip.

You only need to issue Flip on once at the beginning of the program. However you need to issue Flip
whenever you need the results of any drawings or printing to show.

The default state upon starting any program is off. To make drawing take place in the background you
must issue Flip on. Flip without parameters will only take effect if Flip on has been previously issued
(i.e. flipping is on).

ClearScr {ne_Color}
Clears the screen with the given color. If the color is not given, the default color is used (see list of
colors in the RobotBASIC Constants section and discussion about colors above). The specified color
does not set the default color.

ScrLimits vn_XLimit,vn_YLimit
Assigns the maximum X coordinate of the screen, and the maximum Y coordinate of the screen. This
command allows you determine the extent of the screen X,Y coordinates. Zero is always the lower
limit.
This Example will draw a rectangle with a border of 1-pixel all around the screen. You should see all 4
sides just perfectly fitting within the Terminal Screen:

ScrLimits X,Y
Rectangle 0,0,X,Y,red

SaveScrWH {ne_X1{,ne_Y1{,ne_Width{,ne_Height}}}}
SaveScr {ne_X1{,ne_Y1{,ne_X2{,ne_Y2}}}}

Saves a copy of a portion of the screen to memory. If you do not specify any parameters the entire
screen will be saved. The Expressions specify the coordinates of the top left corner and coordinates of
the bottom right corner of the portion to be saved (in the WH version of the command it is the width
and height of the portion to be saved that you specify in the 3rd and 4th parameters). ne_X1 and ne_Y1
default to 0. ne_X2 defaults to the Terminal Screen's maximum x-coordinate and ne_Y2 defaults to the
Terminal Screen's maximum y-coordinate (ne_Width defaults to Terminal Screen's width and
ne_Height to its height).

This command is useful in animations and in drawing temporary objects on top of existing ones and
then erasing them without having to redraw the original screen (See CopyToScr below for an example).

Note: CopyScr provides more versatility than these two commands.

RestoreScr {ne_X{,ne_Y}}
Restores an already saved copy of a portion of the screen from memory. If you do not specify any
parameter then the saved portion will be restored to top left corner of the screen. ne_X and ne_Y
default to 0. If you specify parameters then the previously saved rectangle will be restored over the area
starting at ne_X, ne_Y coordinate. The width and height are determined by the saved data specified in
SaveScr. If a SaveScr has not been previously issued (i.e. the buffer is empty) then this command will
have no effect. The buffer is not cleared between program runs. The transparent state is disregarded,
the bitmap in the memory is always restored as non-transparent.

Note: CopyToScr provides more versatility than this command.

RobotBASIC V4.2.0

Page 127 of 276

CopyScr {ne_CopyNumber{,ne_X1{,ne_Y1{,ne_Width{,ne_Height}}}}
Makes copy of a portion of the screen ne_Width wide and ne_Height high starting from the position
ne_X, ne_Y and saves it to the memory location ne_CopyNumber. If you do not specify
ne_CopyNumber or it is less than 0 then 0 will be assumed.

If you do not specify any parameters the entire screen will be saved. The parameters specify the
coordinates of the top left corner and the width and height of the portion to be saved. ne_X1 and ne_Y1
default to 0. ne_Width defaults to Terminal Screen's width and ne_Height to its height.

This command is useful in animations and in drawing temporary objects on top of existing ones and
then erasing them without having to redraw the original screen (See CopyToScr below for an
example).Also see mScrFromArray, mScrToArray, and CopyToScr.
Example:

rectanglewh 100,100,200,200,red,blue
savescrWH 100,100,200,200
savescr 100,100,299,299
copyscr 0,100,100,200,200
mScrToArray A,100,100,200,200

Flip on
for i=0 to 400 step 5
 clearscr black
 //--umcomment the line you want to test from the three lines below
 //--and comment the other two
 //restorescr i,i
 copytoscr 0,i,i
 //copyfitscr 0,i,i
 //mScrFromArray A,i,i //notice this one is a lot slower
 //mscrfitarray A,i,i //notice this one is a lot slower
 flip
next
copytoscr 0,300,10,40,50,160,150 //restore a portion of the saved bitmap
mscrfromarray A,300,100,40,50,160,150 //restore a portion of the array
flip

CopyToScr {ne_CopyNumber{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}
Reads a rectangular portion ne_Width by ne_Height starting at the point ne_MapX,ne_MapY from
within the Bitmap that has been previously copied to memory location ne_CopyNumber and places it
on the Terminal Screen starting at the position ne_ScreenX,ne_ScreenY within the screen.

Any unspecified parameters will default to 0. Any parameters less than 0 will be made zero.

If the width is zero it will become the entire remaining width of the bitmap from the x position. If the
height is zero it becomes the entire remaining height of the bitmap from the y position.

When placing the read portion of the bitmap onto the terminal screen it will be clipped if its width or
height do not fit the remaining space from the specified x,y position in the terminal screen. If you
specify a copy number that does not have a previously save copy then nothing will happen.

All the colors of the bitmap will be copied onto the terminal screen regardless of the transparent state,
the bitmap in the copy is always restored as non-transparent. Also see mScrFromArray, mScrToArray,
and CopyScr.

RobotBASIC V4.2.0

Page 128 of 276

CopyFitScr {ne_CopyNumber{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
Reads the bitmap in the copy memory area number specified and fits it into the rectangular area
ne_Width wide by ne_Height high starting at the point ne_X,ne_Y onto the Terminal Screen. Any
unspecified parameters will default to 0. Any parameters less than 0 will be made zero.

If the width is zero it will become the entire remaining width of the screen from the x position. If the
height is zero it becomes the entire remaining height of the screen from the y position. If you specify a
copy number that does not have a previously save copy then nothing will happen.

When placing the bitmap within the rectangular area onto the terminal screen it will be resized
(enlarged or shrunk) to fit the rectangular area. All the colors of the bitmap will be copied onto the
terminal screen unless Transparent on has been issued. In which case the bitmap will be copied but the
color of the top left hand (0,0) pixel of the original bitmap will be considered as transparent and any
pixels in the bitmap that have that color will not be copied to the terminal screen, effectively becoming
transparent. Also see CopyScr, FitBMP.

WriteScr {se_FileName}
Saves the screen to a bitmap file on disk. If you do not specify the file name it will default to
"RobotBASICScreen.Bmp". See the note at the top of this section regarding the ".Bmp" extension.

ReadScr {se_FileName}
Restores the screen from a bitmap file on disk. If you do not specify the file name it will default to
"RobotBASICScreen.Bmp". See the note at the top of this section regarding the ".Bmp" extension. If
the bitmap is smaller or larger than the width and height of the screen it will be resized
(enlarged/shrunk) to fit the screen limits. The transparent state is disregarded, the bitmap is always
restored as non-transparent.

mScrToArray a_Pixels{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
Saves a rectangular portion ne_Width by ne_Height starting at the position ne_X,ne_Y from the
Terminal Screen as a bitmap to the array a_Pixels.

Any unspecified parameters will default to 0. Any parameters less than 0 will be made zero.

If the width is zero it will become the entire remaining width of the terminal screen from the x position.
If the height is zero, it will become the entire remaining height of the terminal screen from the y
position. Also see mScrFromArray, mReadBMP, mWRiteBMP, CopyScr, and CopyToScr.

Note: For animation purposes CopyScr and CopyToScr are much faster and should be used.

mScrFromArray a_Pixels{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_ArrayX{,ne_ArrayY}}}}}}
Reads a rectangular portion ne_Width by ne_Height starting at the point ne_ArrayX,ne_ArrayY from
the Bitmap that has been previously created (or saved) in the array a_Pixels and places it on the
Terminal Screen starting at the position ne_ScreenX,ne_ScreenY within the screen. a_Pixels has to
exist and has to be two-dimensional. Any unpopulated elements or non-numeric elements in the array
will be assumed to be zero. Floating point values will be rounded.

Any unspecified parameters will default to 0. Any parameters less than 0 will be made zero.

If the width is zero it will become the entire remaining width of the bitmap from the x position. If the
height is zero it becomes the entire remaining height of the bitmap from the y position.

When placing the read portion of the bitmap onto the terminal screen it will be clipped if its width or

RobotBASIC V4.2.0

Page 129 of 276

height do not fit the remaining space from the specified x,y position in the terminal screen.

All the colors of the bitmap will be copied onto the terminal screen regardless of the transparent state,
the bitmap in the array is always restored as non-transparent. Also see mScrToArray, mReadBMP,
mWRiteBMP, CopyScr, and CopyToScr.

Note: For animation purposes CopyScr and CopyToScr are much faster and should be used.

mScrFitArray a_Pixels{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
Reads the bitmap contained in the array a_Pixels and fits it into the rectangular area ne_Width wide by
ne_Height high starting at the point ne_X,ne_Y onto the Terminal Screen. Any unspecified parameters
will default to 0. Any parameters less than 0 will be made zero. a_Pixels has to exist and has to be two-
dimensional. Any unpopulated elements or non-numeric elements in the array will be assumed to be
zero. Floating point values will be rounded.

If the width is zero it will become the entire remaining width of the screen from the x position. If the
height is zero it becomes the entire remaining height of the screen from the y position.

When placing the bitmap within the rectangular area onto the terminal screen it will be resized
(enlarged or shrunk) to fit the rectangular area. All the colors of the bitmap will be copied onto the
terminal screen unless Transparent on has been issued. In which case the bitmap will be copied but the
color of the top left hand (0,0) pixel of the original bitmap will be considered as transparent and any
pixels in the bitmap that have that color will not be copied to the terminal screen, effectively becoming
transparent. Also see CopyScr, and FitBMP.

DeskTopWidth()
DeskTopHeight()

Returns the width/height of the computer screen's (Desktop) width and height.

Bitmap Manipulation

Transparent {on|off}
This command switches the mode of reading a bitmap onto the terminal screen. If it is on (or not
given), the bitmap read will have a transparent color. This color is indicated by the top left hand (0,0)
pixel color in the bitmap. Any pixel in the bitmap with this color will not be copied on to the terminal
screen, effectively becoming transparent. When the mode is off then all pixels of the bitmap will be
copied onto the terminal screen (i.e. no transparent color). This option is useful for creating sprite
animation.

PromptBMP({se_Filter})
Opens a file selection dialog box and allows the user to select a bitmap file. se_Filter is optional and if
not given will be considered to be a null string. It specifies a filter to select from a similar group of
files. Do not include the .Bmp extension, it will be included automatically (if you do you will get an
incorrect filter). The difference between this dialog and the one in FilePrompt() is that it is specific for
pictures (BMPs) and allows a preview of the bitmaps highlighted.

If the user selects a file the full file's name including the directory and drive will be returned but
without the .Bmp extension. If the user closes the dialog without selecting a file or cancels then the
returned value will be a blank string (i.e. "").For Example:

fName = PromptBMP("Tiles_*")
if fName != "" then ReadBMP fName,10,10,500,500

RobotBASIC V4.2.0

Page 130 of 276

ReadBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}

Reads a rectangular portion ne_Width by ne_Height starting at the point ne_MapX,neMapY from the
bitmap file specified and places it on the Terminal Screen starting at the position
ne_ScreenX,ne_ScreenY within the screen.

Any unspecified parameters will default to 0 and the file name will default to
"RobotBASICScreen.Bmp". Any parameters less than 0 will be made zero. See the note at the top of
this section regarding the ".Bmp" extension.

If se_FileName is blank then it will become "RobotBASICScreen.Bmp". If the width is zero it will
become the entire remaining width of the bitmap from the x position. If the height is zero it becomes
the entire remaining height of the bitmap from the y position.

When placing the read portion of the bitmap onto the terminal screen it will be clipped if its width or
height do not fit the remaining space from the specified x,y position in the terminal screen.

All the colors of the bitmap will be copied onto the terminal screen unless Transparent on has been
issued. In which case the bitmap will be copied but the color of the top left hand (0,0) pixel of the
original bitmap will be considered as transparent and any pixels in the bitmap that have that color will
not be copied to the terminal screen, effectually becoming transparent. Also see mReadBMP and
mWRiteBMP.

WriteBMP {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
Saves a rectangular portion ne_Width by ne_Height starting at the position ne_X,ne_Y from the
Terminal Screen as a bitmap file specified.

Any unspecified parameters will default to 0 and the file name will default to
"RobotBASICScreen.Bmp". See the note at the top of this section regarding the ".Bmp" extension. Any
parameters less than 0 will be made zero.

If se_FileName is blank then it will become "RobotBASICScreen.Bmp". If the width is zero it will
become the entire remaining width of the terminal screen from the x position. If the height is zero, it
will become the entire remaining height of the terminal screen from the y position. Also mReadBMP
and mWRiteBMP.

mReadBMP a_Pixels{,se_FileName{,ne_ClrCode}}
This command reads a bitmap file defined into an array a_Pixels. It will be created and populated with
the color values of the pixels of the bitmap (see below for details). It will be two-dimensional and the
number of its rows will be the height of the bitmap and the number of its columns will be the width.
See the note at the top of this section regarding the ".Bmp" extension.

An error will be issued if the bitmap does not exist or could not be read into memory. a_Pixels does not
have to exist and if it does it will be erased and recreated as a two-dimensional array and then
populated.

If the file name is not given or is an empty string ("") then the image will be read from the Windows
Clipboard. If the CB does not contain a valid image then a_Pixels will be a 1x1 array and the value will
be the RGB value of white (16777215 = 0xFFFFFF) for the non-color specific option and 255 for the
color specific ones.

If ne_ColorCode is not given or is 0 then the array will contain the RGB color values of the pixels. If it

RobotBASIC V4.2.0

Page 131 of 276

is 1 or Blue then the elements will be the Blue component of the colors of the pixels. If it is 2 or Green
then the elements will be the Green component of the colors of the pixels. If it is other than 0, 1 or 2
(e.g. 3, 4 or Red) then the elements will be the Red component of the colors of the pixels.

See mCombineClr for a method of combining the separate color arrays back into one array just as with
RGB().

mWriteBMP a_Pixels{,se_FileName}
This command will write the data in the two-dimensional array defined by a_Pixels to a bitmap file
se_FileName. a_Pixels has to exist and has to be two-dimensional. Any unpopulated elements or non-
numeric elements in the array will be assumed to be zero. Floating point values will be rounded. The
bitmap width will be the number of columns in the array and the height will be the number of rows. If
the file exists it will be overwritten. See the note at the top of this section regarding the ".Bmp"
extension. An error will occur if the array is not the right dimensions or does not exist.

If the file name is not given or is an empty string ("") then the image will be saved to the Windows
Clipboard.

RotateBMP {se_FileName{,ne_Angle{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}}
This command executes the same action as ReadBMP except with the added parameter ne_Angle (all
others are moved over). This parameter is an angle of rotation. The bitmap will be drawn exactly as in
ReadBMP but the image will be rotated by the angle given. If it is not given it will default to 90.
Positive numbers are counter-clockwise rotations. Negative numbers are clock-wise rotations. The
angles are in degrees (integers).

FlipBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne__MapY}}}}}}}
This command executes the same action as ReadBMP except the bitmap will be upside down. The
bitmap will be drawn exactly as in ReadBMP but the image will be flipped upside down (i.e. mirrored
about the horizontal axis).

MirrorBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne__MapY}}}}}}}
This command executes the same action as ReadBMP except the bitmap will be mirrored about the
vertical axis. The bitmap will be drawn exactly as in ReadBMP but the image will be flipped left to
right (i.e. mirrored about the vertical axis).

FitBMP {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
Reads the bitmap file specified and fits it into the rectangular area ne_Width wide by ne_Height high
starting at the point ne_X,ne_Y onto the Terminal Screen. Any unspecified parameters will default to 0
and the file name will default to "RobotBASICScreen.Bmp". See the note at the top of this section
regarding the ".Bmp" extension. Any parameters less than 0 will be made zero.

If the file name is blank then it will become "RobotBASICScreen.Bmp". If the width is zero it will
become the entire remaining width of the screen from the x position. If the height is zero it becomes the
entire remaining height of the screen from the y position.

When placing the bitmap within the rectangular area onto the terminal screen it will be resized
(enlarged or shrunk) to fit the rectangular area. All the colors of the bitmap will be copied onto the
terminal screen unless Transparent on has been issued. In which case the bitmap will be copied but the
color of the top left hand (0,0) pixel of the original bitmap will be considered as transparent and any
pixels in the bitmap that have that color will not be copied to the terminal screen, effectively becoming
transparent. Also see mReadBMP and mWRiteBMP.

RobotBASIC V4.2.0

Page 132 of 276

SizeBMP se_FileName,vn_Width,vn_Height
Assigns the width and height of the bitmap to the variables. See the note at the top of this section
regarding the ".Bmp" extension.

ResizeBMP {se_SourceFileName{,ne_Width{,ne_Height{,se_ToFileName}}}}
Will change the width and height of the bitmap file to the new width and height and save it to a new
file name. If the source file name is not given or is "" then the image will be taken from the Windows
Clipboard. If destination file name is not given or is "" then the resulting image will be written to the
CB. If ne_Width is not given or is <=0 then the new width will be the same as the original width. If
ne_Height is not given or is <=0 then the new height will be the same as the original height. See the
note at the top of this section regarding the ".Bmp" extension. Any parameters less than 0 will be made
zero.

The effect of this command can be achieved with FitBMP (or CbFitBMP) then WriteBMP (or
CbToBMP) but this command is much faster and it is one operation.

ToBMP se_SourceFile{,se_ToFile}
Converts an image file of the type JPG, WMF or ICO to a bit map file (BMP). se_SourceFile is the
name of the file to be converted and should be specified in full with the extension and path. se_ToFile
is the name of the file to be created as a BMP and if it is not specified then the BMP file will have the
same name as se_SourceFile but with the .BMP extension. If it is given then it does not matter if you
do or do not give an extension since the extension will always be made .BMP (see the note at the top
of this section regarding the ".Bmp" extension). If the source file does not exist or is not of an allowed
type an error will occur.

BmpToGray se_SourceFileName{,se_ToFileName{,ne_RedRatio{,ne_GreenRatio{,ne_BlueRatio}}}}
Converts the bitmap color image file to a gray scale bitmap file. If the se_ToFileName is not specified
or is a blank string (""") then the gray scale image will be put in the Windows Clipboard. If the source
is a blank string ("") then the source image will be obtained from the Windows Clipboard (if there is no
image in the CB then no action is taken). See the note at the top of this section regarding the ".bmp"
extension.

The ratio numbers if not provided will default to 0.3 for red, 0.6 for green and 0.1 for blue. There is no
checking done on the numbers so you can use any numbers to get some interesting effects. However,
the default ratios give a good gray scale result and if you wish to maintain normal gray scale results the
three ratios must add up to 1. Nevertheless, you can get some curios results if you use numbers that do
not add up to 1 or even negative numbers.

The operation multiplies the intensity level of the R/G/B values and then adds the results and then sets
the intensity of all of them to the sum value.

Note: This command may take a few seconds to complete processing, depending on the size of the
BMP file. You may want to display a message to the user of your program to indicate a wait.

Note: If you require to process an image from the screen, use WriteBMP or ScrToCb to save the
portion of the screen you want to process. Also, to see the resultant image use ReadBMP,
ScrFromCb, FitCb or FitBMP to read the image into the screen.

RobotBASIC V4.2.0

Page 133 of 276

BmpNegative se_SourceFile{,se_ToFile}
Converts the bitmap color image file to its negative and saves it to another file. If the destination is not
specified or is a blank string (""") then the negative image will be put in the Windows Clipboard. If
source is a blank string ("") then the source image will be obtained from the Windows Clipboard (if
there is no image in the CB then no action is taken). See the note at the top of this section regarding the
".bmp" extension.

Note: See the notes under BmpToGray.

BmpToBW se_SourceFile{,ne_Threshold{,se_ToFile}}
Converts the bitmap color image file to a black and white bitmap file. If the destination file is not
specified or is a blank string (""") then the black and white image will be put in the Windows
Clipboard. If the source file is a blank string ("") then the source image will be obtained from the
Windows Clipboard (if there is no image in the CB then no action is taken). See the note at the top of
this section regarding the ".bmp" extension. This is a black and white not gray scale, that is there will
only be two color values (white and black), no grays or other colors.

If a pixel in the image when converted to gray scale is below ne_Threshold value it will be made black,
otherwise it will be white. If ne_Threshold is not given or is <= 0 then 128 will be assumed. If it is >
255 it will be made 255.

Note: See the notes under BmpToGray.

BmpEdges se_SourceFile{,ne_Threshold{,se_ToFile{,ne_EdgeType}}}
Converts the bitmap image file to a black and white bitmap file but only the edges of any objects in the
image will be defined. If the destination file is not specified or is a blank string (""") then the edges
image will be put in the Windows Clipboard. If source file is a blank string ("") then the source image
will be obtained from the Windows Clipboard (if there is no image in the CB then no action is taken).
See the note at the top of this section regarding the ".bmp" extension.

If the threshold is not specified or is <= 0 then the file will be assumed to be a black and white image.
If it is > 0 then the routine will convert the image to a black white image first (internally, no file
created) before it does edge detection using the threshold value given. If it is > 255 it will be set to 255.

If ne_EdgeType is not specified or is 0 then the edges will be black and the rest of the image will be
white. If it <> 0 then the edges will be white and the rest of the image will be black.

Note: See the notes under BmpToGray. This command may take much longer time than other image
processing commands, and especially if the image has to be converted to BW first.

BmpRGB se_SourceFile,ne_Rratio,ne_Gratio,ne_Bratio{,se_ToFile}
Increases/decreases the RGB color values in the source bitmap according to the ratios and saves the
new bitmap to the file destination file. The ratio has to be a float between -1 and 1, so for example 50%
will be 0.5. If the ratio is positive the color will be increased. If the ratio is negative the color will be
decreased. If the ratio is greater than 1 then it will be made 1. If it is less than -1 it will be made -1.

If the destination file is not specified or is a blank string (""") then the new image will be put in the
Windows Clipboard. If the source file is a blank string ("") then the source image will be obtained from
the Windows Clipboard (if there is no image in the CB then no action is taken). See the note at the top
of this section regarding the ".bmp" extension.

You can also use this command to brighten/darken the image. To do this, use the same ratio

RobotBASIC V4.2.0

Page 134 of 276

increase/decrease for all the colors.

Note: See the notes under BmpToGray.

BmpContrast se_SourceFile,ne_Ratio{,ne_Threshold{,se_ToFile}}
Increases/decreases the contrast of the source bitmap by the ratio and saves the resultant image to the
destination file. The ratio has to be a float between -1 and 1, so for example 50% will be 0.5. If the ratio
is positive the contrast will be increased. If the ratio is negative the contrast will be decreased. If the
ratio is greater than 1 then it will be made 1. If it is less than -1 it will be made -1.

ne_Threshold specifies a threshold (1-255) value for contrasting. If it is <=0 or is not given, it will be
made 128. If it is > 255 it will be made 255.

If the destination file is not specified or is a blank string (""") then the new image will be put in the
Windows Clipboard. If source file is a blank string ("") then the source image will be obtained from the
Windows Clipboard (if there is no image in the CB then no action is taken). See the note at the top of
this section regarding the ".bmp" extension.

Note: See the notes under BmpToGray.

BmpCompare se_SourceFile,se_CompareFile{,se_ToFile{,ne_Tolerance}}
Compares the source bitmap file against the compare bitmap file with a tolerance level. The result of
the comparison will be saved in the destination file. If the destination is not specified or is a blank
string (""") then the resulting comparison image will be saved to the Windows Clipboard. If the source
is a blank string ("") then the source image will be taken from the Windows Clipboard. The compare
file has to be a valid bitmap file name. See the note at the top of this section regarding the ".bmp"
extension.

ne_Tolerance specifies a percentage to apply to each individual component color. So if it is 0.3 then the
Red component of the pixel has to be within the lower value RedValue(color)*0.7 and the upper value
RedValue(color)*1.3 (the same for green and blue).

ne_Tolerance has to be a float 0 to 1. If it is <0 or is not given then it will be set to 0.1 (i.e. 10%).

The result file will be a black and white image where all pixels that were equal (within the tolerance) in
the source and compare files, will be black. Any pixels that were not equal will be set to white. The
result file will be the same size as the source file. Any pixels in the source that do not have a
corresponding pixel in the compare file due to difference in sizes, will make the corresponding pixels
in the output file white.

Note: See the notes under BmpToGray.

BmpChangeClr se_SourceFile,ne_FromColor,ne_ToColor{,ne_Tolerance}
Looks through the source bitmap for any pixels with the ne_FromColor with an optional tolerance
ne_Tolerance and changes them to the color ne_ToColor. If the source file name is a blank string ("")
then the source image will be obtained from the Windows Clipboard.

The resultant bitmap image will be saved to the Windows Clipboard. If you wish to save it to a file or
to display it on the screen then use CBToBmp and ScrFromCB or any of the other Clipboard Bitmap
related commands.

The colors can be an RGB color values or one of the constant color values (0-15) from the

RobotBASIC V4.2.0

Page 135 of 276

RobotBASIC Constants section. ne_Tolerance specifies a percentage that defines how far away a color
can be from ne_FromColor and still would be considered as a color to change. The larger the tolerance
fraction the more the departure of the color can be from ne_FromColor and it would still be considered
as similar to the color. ne_Tolerance has to be a float 0 to 1 (i.e. 0 to 100%). If it is <0 or is not given
then it will be set to 0.2 (i.e. 20%).

BmpFindClr se_SourceFile,ne_Color,vn_Result{,vn_Confidence{,ne_ClrTolerance{,ne_ConfidenceTolerance{,ne_GridSize{a_SectorsCount}}}}}

Looks through the source bitmap for the given color with an optional tolerance. If the color is not found
then vn_Result will be set to -1. If the color is found the variable vn_Result will be set to the number of
the sector in which the color was found with the maximum density. If the source file name is a blank
string ("") then the source image will be obtained from the Windows Clipboard. See the note at the top
of this section regarding the ".bmp" extension.

The color can be an RGB color value or one of the constant color values (0-15) from the RobotBASIC
Constants section. ne_ClrTolerance specifies a percentage to apply to each individual component
primary color (R/G/B). So if it is 0.3 then the Red component of the pixel has to be within the lower
value RedValue(ne_Color)*0.7 and the upper value RedValue(ne_Color)*1.3 (the same for green and
blue).

ne_ClrTolerance has to be a float 0 to 1. If it is <0 or is not given then it will be set to 0.2 (i.e. 20%).

vn_Confidence is optional but if specified it will contain a count of how many sectors contain the
search color with a density that is within ne_ConfidenceTolerance of the maximum density. This value
should normally be 1 if the search color lies wholly within one sector. But if the color spans many
sectors in such a way so as to be distributed over these sectors within a tolerance of 1 -
ne_ConfidenceTolerance, then vn_Confidence will contain a count of these sectors (not where they are,
just how many). You can use this value to get a measure of the confidence in the reported maximum
sector. If it is large in comparison to the number of sectors then you may conclude that the color is not
a suitable color to be searching for since it is distributed (with the given tolerance) over too many
sectors.

ne_ConfidenceTolerance has to be a float 0 to 1. If it is <0 or is not given then it will be set to 0.1 (i.e.
10%).

ne_GridSize is the grid size to divide the bitmap into. If it is < 3 or is not given it will be made 5. It has
to be >= 3 and <= 20. If you specify a grid size that results in each sector being <10 pixels high or wide
vn_Result will be set to -2. You must specify a grid size that will be correct for the bitmap you are
trying to search.

The bitmap will be sectored into an ne_GridSize x ne_GridSize grid (5x5 normally). The number
returned in vn_Result will report the sector number where the color was found with a maximum
density. Since there are 5x5 = 25 sectors then the 25th sector will be sector number 24 and the first
sector is sector number 0. The numbering scheme is starting from top left corner, going along the row
to the right then going down to the next row and counting right and so forth. So if the grid size is 5 (i.e.
5x5) and the number reported is 17 then the color was found on the 17/5 = 3 (i.e. 4th row) and 17#5 = 2
(i.e. 3rd column). Row and column numbers start at 0. So a sector on the 2nd row, 3rd column will be
sector number 1*5+2 = 7 (i.e. 8th sector).

If you specify a_SectorCount (array name) then the array will be a 2-dimensional array with the size of
GridSize x GridSize. The elements will contain a number representing the number of pixels within the
sector that are the search color (within the tolerance). You can use this array to look for other sectors
that contain the search color if you need to do so.

RobotBASIC V4.2.0

Page 136 of 276

Note: See the notes under BmpToGray.

Example:
FitBmp "SomeFile" //---fits it on the entire screen
CircleWH 270,170,130,130,red,red
WriteBmp "TempFile"
BmpFindClr "TempFile",red,Sctr,Conf,,.3 //---default tolerance = 0.2, GridSize= 5
Row = Sctr/5
Column = Sctr#5
print "Sector=",Sctr, " Row=",Row," Column=",Column ," Conf = ",Conf
W = 800/5 //---Sector width
H = 600/5 //---Sector height
eRectangleWH Column*W,Row*H,W,H,3,white //--outline sector

BmpStats a_Stats{,se_FileName}
Creates statistics about the bitmap file. If the file name is not given or is an empty string ("") then the
image will be taken from the Windows Clipboard area. See the note at the top of this section regarding
the ".bmp" extension.

a_Stats will be deleted if it exists and will be recreated as a one-dimensional array with 10 elements as
follows:

a_Stats[0] = Average value for the Red components of the colors of the pixels in the image.
a_Stats[1] = Average value for the Green components of the colors of the pixels in the image.
a_Stats[2] = Average value for the Blue components of the colors of the pixels in the image.
a_Stats[3] = Average of the above three averages.
a_Stats[4] = Standard Deviation of the Red components of the colors of the pixels in the image.
a_Stats[5] = Standard Deviation of the Green components of the colors of the pixels in the image.
a_Stats[6] = Standard Deviation of the Blue components of the colors of the pixels in the image.
a_Stats[7] = Average of the above three Standard Deviations.
a_Stats[8] = Width of the image.
a_Stats[9] = Height of the image.

If there is no image on the clipboard the array will contain all values of 0. If you specify a bitmap file
and it cannot be opened, you will get an error.

Clipboard Manipulation

SetCBText {se_Text}
Sets the windows clipboard to the given text. se_Text can contain CR/LF separated substrings. If
se_Text is not given then it will be "", effectively clearing the clipboard. Also see GetCBText().

GetCBText()
Returns a string that is the text in the Windows Clipboard. If the Clipboard does not contain valid text
then the returned string will be empty (""). If the text in the Clipboard has multiple lines then the string
will contain the two character combination Char(13)+Char(10) (CR/LF) to indicate the line breaks.
You can use Extract() and NumParts() to extract each line separately.

RobotBASIC V4.2.0

Page 137 of 276

ClrCB
Clears the Windows Clipboard, whether it contains text or an image. The Clipboard will become blank.

SizeCb vn_Width,vn_Height
Assigns the width and height of the image in the Windows Clipboard area to the variables. If there is no
image then they will be assigned 0. Use this command to find if the CB has an image and what
dimensions it has.

ScrToCb {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
Saves a portion of the screen width by height starting at the ne_X, ne_Y position, to the Windows
Clipboard. If you do not specify any parameters the entire screen will be saved. If ne_X or ne_Y is less
than 0 or is not given then it will be set to 0. If ne_width or ne_Height is less than 1 or is not given or is
> Terminal Screen width/height then it will be set to the Terminal Screen width/height. If the
width/height specified exceeds the remaining width/height from the starting point then it will be made
to be the remaining width/height (see ScrFromCb).

ScrFromCb {ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}
Reads a rectangular portion width by height starting at the point ne_MapX,ne_MapY from the image in
the Windows Clipboard and places it on the Terminal Screen starting at the position
ne_ScreenX,ne_ScreenY within the screen. If there is no image in the CB no action is taken.

Any unspecified parameters will default to 0. Any parameters less than 0 will be made zero. If the
width is zero it will become the entire remaining width of the image from the x position. If the height is
zero it becomes the entire remaining height of the image from the y position.

When placing the read portion of the image onto the terminal screen it will be clipped if its width or
height do not fit the remaining space from the specified x,y position in the Terminal Screen.

All the colors of the image will be copied onto the terminal screen unless Transparent on has been
issued. In which case the image will be copied but the color of the top left hand (0,0) pixel of the
original image will be considered as transparent and any pixels in the image that have that color will
not be copied to the Terminal Screen, effectually becoming transparent.

FitCb {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
Fits the image in the Windows Clipboard into the rectangular area width by height starting at the point
ne_X,ne_Y onto the Terminal Screen. Any unspecified parameters will default to 0. Any parameters
less than 0 will be made zero. If the width is zero it will become the entire remaining width of the
screen from the x position. If the height is zero it becomes the entire remaining height of the screen
from the y position.

When placing the image within the rectangular area onto the terminal screen it will be resized (enlarged
or shrunk) to fit the rectangular area. All the colors of the image will be copied onto the terminal screen
unless Transparent on has been issued. In which case the image will be copied but the color of the top
left hand (0,0) pixel of the original image will be considered as transparent and any pixels in the image
that have that color will not be copied to the terminal screen, effectively becoming transparent.

BmpToCb {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
Reads a rectangular portion width by height starting at the point ne_X,ne_Y from the bitmap file
specified and places it in the Windows Clipboard area.

Any unspecified parameters will default to 0 and the file name will default to

RobotBASIC V4.2.0

Page 138 of 276

"RobotBASICScreen.Bmp". Any parameters less than 0 will be made zero. See the note at the top of
this section regarding the ".Bmp" extension.

If ne_FileName is blank then it will become "RobotBASICScreen.Bmp". If the width is zero it will
become the entire remaining width of the bitmap from the X position. If the height is zero it becomes
the entire remaining height of the bitmap from the Y position. All the colors of the bitmap will be
copied into the CB regardless of Transparent on.

CbToBMP {se_FileName}
Saves the image in the Windows Clipboard to the bitmap file. If the file name is blank or not given then
it will become "RobotBASICScreen.Bmp". See the note at the top of this section regarding the ".Bmp"
extension.

CbFitBMP {se_FileName{,ne_Width{,ne_Height}}
Reads the bitmap file specified and fits it into the rectangular area width by height starting at the origin
(0,0) into the Windows Clipboard. Any unspecified parameters will default to 0 and the file name will
default to "RobotBASICScreen.Bmp". See the note at the top of this section regarding the ".Bmp"
extension. Any parameters less than 0 will be made zero.

If the file name is blank then it will become "RobotBASICScreen.Bmp". If the width is zero it will
become width of the Terminal Screen. If the height is zero it becomes the height of the Terminal
Screen.

When placing the bitmap within the rectangular area into the CB it will be resized (enlarged or shrunk)
to fit the rectangular area. All the colors of the bitmap will be copied regardless of Transparent on.

FlipCb
Flips the image in the Windows Clipboard and puts it back in the Clipboard.

MirrorCb
Mirrors the image in the Windows Clipboard and puts it back in the Clipboard.

RotateCb {ne_Angle}
Rotates the image in the Windows Clipboard by the angle of rotation given. If the angle is not given it
will default to 90. Positive numbers are counter-clockwise rotations. Negative numbers are clock-wise
rotations. The angles are in degrees (integers). The resulting image will be placed back in the CB.

TWAIN Image Capture

CaptureRdy()
Returns a 1 (true) if the TWAIN_32.DLL is available and the EZTW32.DLL is loaded. Otherwise it
will return a 0 (false). Use this function to ascertain if the Capture system is available for the capture
functions below.

The capture system provided relies on the TWAIN standard for communicating with various devices
that can provide images (Scanners, WebCams and the like). Many devices are TWAIN compliant and
thus will be usable to RobotBASIC programs through the Capture functions below.

In order for RB to be able to use the devices, your system has to have the Twain_32.DLL file in the
Windows directory. If you have installed a TWAIN compliant device then this DLL would be also

RobotBASIC V4.2.0

Page 139 of 276

installed with the device's drivers. Additionally, another file (EZTW32.DLL) will have to be available
in the same directory where RobotBASIC.exe resides. This DLL is provided with the downloadable
Zip file from www.RobotBASIC.com. See example below.

Note: Some devices may cause a "floating point error" when you try to set them to certain resolutions.
This error has to do with the devices' drivers and RB has no control over this. However the
capture operation may still work if you just accept their default settings.

CaptureSrc()
Opens a dialog box that allows the user to select from among various devices like Scanners, WebCams,
and others, available on the system. The user can select the device that is desired to be the source of
images for CaptureImage() and CaptureDlg().

The function will return 1 (true) if the operation succeeded and the user did actually select a device. If
the user cancels the dialog or the dialog box did not open then the return value will be 0 (false).

Be aware that the dialog box will show the drivers for the devices that are available. However, the
selected device may not actually be connected. If that is the case the Capture functions will fail. See
example below.

CaptureDlg({se_FileName})
Opens a dialog box that allows the user to configure the default device [as selected by CaptureSrc()] as
desired (resolution, color, etc.). In addition to allowing for configuring the various options, this dialog
also allows the user to press a button to capture an image and send it on to RobotBASIC.

If the file name is not given or is a blank string then the image will be put on the Windows Clipboard
area. Otherwise, the image will be saved to a file. See the note at the top of this section regarding the
".Bmp" extension.

The function will return 1 (true) if it performed the action successfully and an image was actually saved
to the Clipboard or the file. Otherwise the returned value will be 0 (false).

The capture process may not be a speedy one. It depends on your device. If it is a scanner the process
may take several minutes. If it is a WebCam then seconds. The program flow in RB will not continue
until an image is captured or the operation fails. See example below.

CaptureImage({se_FileName})
Captures an image from the default device [as selected by CaptureSrc()] and sends it on to
RobotBASIC. No dialog will be shown. The capture will occur automatically with the default settings
as previously set using CaptureDlg().

If the file name is not given or is a blank string then the image will be put on the Windows Clipboard
area. Otherwise, the image will be saved to a file. See the note at the top of this section regarding the
".Bmp" extension.

The function will return 1 (true) if it performed the action successfully and an image was actually saved
to the Clipboard or the file. Otherwise the returned value will be 0 (false).

The capture process may not be a speedy one. It depends on your device. If it is a scanner the process
may take several minutes. If it is a WebCam then seconds. The program flow in RB will not continue
until an image is captured or the operation fails.

RobotBASIC V4.2.0

Page 140 of 276

Example:
data Buttons;"&Select Device","Con&figure Device","&Capture","S&top"
for i=0 to 2
 Addbutton Buttons[i],2+110*i,2,110
next
while true
 getbutton btn
 if btn == Buttons[0]
 if !CaptureSrc() then GoSub ErrMsg \ continue
 elseif btn == Buttons[1]
 if !CaptureDlg() then GoSub ErrMsg \ continue
 FitCB 5,30,790,565
 elseif btn == Buttons[2]
 if !CaptureRdy() then GoSub ErrMsg \ continue
 RemoveButton Buttons[2]
 AddButton Buttons[3],222,2,110
 while true
 GetButton btn
 if btn == Buttons[3] then break
 if !CaptureImage() then GoSub ErrMsg \ break
 FitCB 5,30,790,565
 wend
 RemoveButton Buttons[3]
 Addbutton Buttons[2],222,2,110
 endif
wend
End
ErrMsg:
 n=ErrMsg("No Device Is Available","TwainTest.Bas",MB_OK|MB_ERROR)
Return

2D Screen Graphics Drawing

PixelClr(ne_X,ne_Y)
Returns the color of the pixel at the given screen position. See the RobotBASIC Constants section and
the discussion about colors at the top of this section. Also see ReadPixel.

GetXY vn_X,vn_Y
Reads the current pen position on the Screen and the values in the variable parameters

GotoXY {ne_X{,ne_Y}}
Sets the pen position to a point on the screen. If any of the parameters is not given it will be 0.

SetColor {ne_PenColor{,ne_BackGroundColor}
Sets the default Pen and Background colors. The color values can be 0-15 (i.e. color constants see
RobotBASIC Constants section) or and RGB value. If either of the parameters is not given or is -1 then
the corresponding default color will not be changed.

GetColor vn_PenColor,vn_BkgrndColor
Read pen and background colors and assigns them to the variable parameters.

ReadPixel ne_X,ne_Y,vn_Color
Reads the Pixel color at the position and assigns it to vn_Color (see the RobotBASIC Constants section
and the discussion about colors at the top of this section. Also see FloodFill and PixelClr().

RobotBASIC V4.2.0

Page 141 of 276

SetPixel {ne_X{,ne_Y{,ne_Color}}}
Sets the color of the pixel at the position to the color. (see the RobotBASIC Constants section and
discussion about colors at the top of this section. Also see FloodFill)

If the color is not given or is -1 then it will default to the current default Foreground (Pen) color.

If ne_X is not given or is -1 then it will default to the current X position as set due to the last graphic
command. If ne_Y is not given or is -1 then it will default to the current Y position as set due to the last
graphic command.

LineWidth {ne_Width}
Sets the pen width for drawing lines and other drawing primitives. If ne_Width is not given or is less
than 1 then it will be made 1. If it is a float it will be truncated.

GetLineWidth vn_Width
Assigns the variable parameter with the current pen width for drawing lines and other drawing
primitives.

LineTo ne_X,ne_Y{,ne_PenWidth{,ne_PenColor}}
Draws a line from the current pen position to ne_X,ne_Y. If the pen width is given then the pen width
will be temporarily set to the given value. If the pen color is given then pen color will be temporarily
set to the value.

The pen width and color will only affect the line drawn, not any subsequent lines or other drawings. If
you desire to specify the color you must also specify the width but if the width is less than 1 it will be
ignored. Also if the color is less than 0 it will be ignored. If you do not specify a width and color the
current default width and color will be used.

Line ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenWidth{,ne_PenColor}}
Draws a line from the point ne_X1,ne_Y1 to the point ne_X2,ne_Y2. ne_PenWidth and ne_PenColor
will temporarily set the pen width and color while drawing the line and will affect any subsequent lines
or other drawings. If you desire to specify the color you must also specify the width, but if it is less
than 1 it will be ignored. Also if the color is less than 0 it will be ignored. If you do not specify a width
and color the current default width and color will be used.

Rectangle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenColor{,ne_FillColor}}
Draws a rectangle defined by ne_X1,ne_Y1 and ne_X2,ne_Y2 filled with ne_FillColor and bordered
with ne_PenColor. If the colors are not given then the default background color will be used for filling
and the pen color for the border. If you want to specify the fill color you must also give the pen color
but any color value less than 0 will be ignored. ne_X1,ne_Y1 are coordinates on the screen of the top
left corner, and ne_X2,ne_Y2 are of the bottom right corner of the rectangle.

RectangleWH ne_X,ne_Y,ne_Width,ne_Height{,ne_PenColor{,ne_FillColor}}
Draws a rectangle starting at the screen coordinate ne_X,ne_Y with ne_Width ne_Height filled with
ne_FillColor and bordered with ne_PenColor. If the colors are not given then the default background
color will be used to fill and the pen color will used for the border. If you want to specify the fill color
you must also give the pen color but any color value less than 0 will be ignored.

The width and height values specify the actual width and height in pixels So when you say
RectangleWH 100,100,200,150 this will be the same as saying Rectangle 100,100,299,249 since the

width will then be 299-100+1 = 200 and likewise the height would be 249-100+1 = 150.

RobotBASIC V4.2.0

Page 142 of 276

eRectangle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenWidth{,ne_PenColor}}
The above command (Rectangle) will always draw the rectangle and fill it with the color specified or
the default background color. This means the inside of the rectangle will be overdrawn if there happens
to be any previous drawings there. This command only draws the perimeter of the rectangle and does
not fill the inside. Thus any previous drawings inside the area of the rectangle will still be visible.

The rectangle is defined by ne_X1,ne_Y1 and ne_X2,ne_Y2. ne_PenWidth and ne_PenColor will
temporarily set he pen width and color for drawing the rectangle and not any subsequent drawings. If
you desire to specify the color you must also specify the width, but if values less than 1 it will be
ignored. Also if the color is less than 0 it will be ignored. See the example given under Pie.

eRectangleWH ne_X1,ne_Y1,ne_Width,ne_Height{,ne_PenWidth{,ne_PenColor}}
The above command (RectangleWH) will always draw the rectangle and fill it with the color specified
or the default background color. This means the inside of the rectangle will be overdrawn if there
happens to be any previous drawings there. This command only draws the perimeter of the rectangle
and does not fill the inside. Thus any previous drawings inside the area of the rectangle will still be
visible.

The rectangle is started at the screen coordinate ne_X,ne_Y with ne_Width and ne_Height.
ne_PenWidth and ne_PenColor will temporarily set he pen width and color for drawing the rectangle
and not any subsequent drawings. If you desire to specify the color you must also specify the width, but
if values less than 1 it will be ignored. Also if the color is less than 0 it will be will be ignored. See the
example given in Pie.

The width and height values specify the actual width and height in pixels So when you say
eRectangleWH 100,100,200,150 this will be the same as saying eRectangle 100,100,299,249 since the
width will then be 299-100+1 = 200 and likewise the height would be 249-100+1 = 150.

Circle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenColor{,ne_FillColor}}
Draws a circle/ellipse inside a rectangle defined as in Rectangle. If the rectangle is a square then it is a
circle, otherwise it is an ellipse.

CircleWH ne_X1,ne_Y1,ne_Width,ne_Height{,ne_PenColor{,ne_FillColor}}
Draws a circle/ellipse inside a rectangle defined as in RectangleWH. If the rectangle is a square then it
is a circle, otherwise it is an ellipse.

The width and height values specify the actual width and height in pixels So when you say CircleWH
100,100,200,150 this will be the same as saying Circle 100,100,299,249 since the width will then be
299-100+1 = 200 and likewise the height would be 249-100+1 = 150.

Arc ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_StartAngle{,ne_ArcLength{,ne_PenWidth{,ne_PenColor}}}}
The above command (Circle) will always draw the circle/ellipse and fill it with the color specified or
the default background color. This means the inside of the circle/ellipse will be erased if there happens
to be any previous drawings there. This command only draws the perimeter of the circle/ellipse and
does not fill the inside. Thus any previous drawings inside the area of the circle/ellipse will still be
visible. Additionally this command allows you to draw a fraction of the arc of the circle or ellipse.

The circle/ellipse is defined by the bounding rectangle defined by ne_X1, ne_Y1 and ne_X2, ne_Y2.
ne_PenWidth and ne_PenColor will temporarily set he pen width and color for drawing the rectangle
and not any subsequent drawings. If you desire to specify the color you must also specify the width, but

RobotBASIC V4.2.0

Page 143 of 276

if values less than 1 it will be ignored. Also if the color is less than 0 it will be will be ignored.

ne_StartAngle and ne_ArcLength are angles in radians that specify the start point of the arc and the
length of the arc. The angles are defined counter-clock-wise from the right hand horizontal position
(i.e. positive x-axis). If the arc length is zero or an even multiple of Pi() (i.e. 0,360,720 ...degrees) the
entire circle/ellipse will be drawn. Both values default to 0 if not given. ne_StartAngle defines the
angle (in radians) from the positive x-axis (counter-clockwise) at which to start drawing the arc.
ne_ArcLength defines the length of the arc (angle inside the arc in radians). To specify angles in
degrees use DtoR().

Pie ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_StartAngle{,ne_ArcLength{,ne_PenColor{,ne_FillColor}}}}
This command is very similar to Arc above. The difference is that radials from the center of the
bounding rectangle to the start and end points of the arc will also be drawn. Also the inside will be
filled with the default background color or the color ne_FillColor if given. This command allows for
creating Pie graphs.

The circle/ellipse is defined by the bounding rectangle defined by ne_X1, ne_Y1 and ne_X2, ne_Y2. If
ne_FillColor is given the pie is filled with the color value given.

ne_StartAngle and ne_ArcLength are angles in radians that specify the start point of the arc and the
length of the arc. The angles are defined counter-clock-wise from the right hand horizontal position
(i.e. positive x-axis). If the arc length is zero or an even multiple of Pi() (i.e. 0,360,720 ...degrees) the
entire circle/ellipse will be drawn. Both values default to 0 if not given. ne_StartAngle defines the
angle (in radians) from the positive x-axis (counter-clockwise) at which to start drawing the arc.
ne_ArcLength defines the length of the arc (angle inside the arc in radians). To specify angles in
degrees use DtoR().

Example:
n = 360/16.0
for i=0 to 15
 Pie 100,100,500,500,DtoR(i*n),DtoR(n),i,i
next
Arc 100,100,500,500,,,3,blue
eRectangle 97,97,503,503,5,lightgreen

mPolygon a_Vertices{,ne_FillColor}
This command is used to draw multiple polygons on the screen with one command rather than use
looping and LineTo,GotoXY, and/or Rectangle. The polygons can be filled with a specified color or the
default pen color. a_Vertices must be a One-Dimensional array created with Dim or Data. It must
contain only numbers. If any element in the array contains non-numbers it will be ignored and will not
affect the pairing of data, it would be treated as if it were not there.

The data in a_Vertices is a set of pairs of X,Y coordinates. The command will do a LineTo X,Y or
GotoXY X,Y or FloodFill X,Y{,ne_FillColor} depending on the following logic:

- If the X and Y value-pair are both positive then a LineTo X,Y is executed.
- If the X is negative and Y is positive then a GotoXY -X,Y is executed.
- If the Y is negative and X is positive then a FlooFill X,-Y,ne_FillColor is executed. If the fill

color is not given then FloodFill X,-Y is executed.(see FloodFill below)
- If Both X and Y are negative they are both made positive and LineTo is executed.

If there are not enough pairs then drawing will occur only to the last pair. The array can contain any
number of point pairs. For example:

data p;-100,100,200,100,200,200,100,200,100,100,120,-120

RobotBASIC V4.2.0

Page 144 of 276

data p;-500,100,600,100,600,200,500,200,500,100,520,-120
mPolygon p //will draw the above and use default pen color for any
filling
mPolygon p,blue //will draw the above and use blue for any filling

mBezier a_Vertices{,ne_PenWidth{,ne_PenColor}}
Used to draw Bezier curves using the endpoints and control points specified by the data in a_Vertices.
The first curve is drawn from the first point to the fourth point, using the second and third points as
control points. Each subsequent curve in the sequence needs exactly three more points: the ending point
of the previous curve is used as the starting point, the next two points in the sequence are control
points, and the third is the ending point.

This command draws lines using the pen width specified if given or the default pen width if not or is
less than 1. The pen color will be as specified or if not given or is less than 0 the default color will be
used. Both values default to -1.

The array a_Vertices is a one dimensional array with pairs of point coordinates (x,y). The minimum
number of points needed is 4. Also the number of points used for drawing the curve will be (n*3)+1. So
if there are 9 points (i.e. 18 elements x,y) only 4 (i.e. 8 elements) will be used if 11 only 10 will be
used. So if the number of element pairs (points x,y) is not a multiple of 3 plus 1 then only the first
correct number of pairs will be used. If any element in the array is not a valid number (float or integer)
it will be ignored and will not count as part of the elements count.

mGraphPaper a_Specs
Draws a graph paper area with a border, minor vertical and horizontal lines and major vertical and
horizontal lines at a particular location on the screen with a width and height.

a_Specs is a one dimensional array whose elements define the parameters of the graph paper as
follows:

data a_Specs;x,y,width,height,border-forecolor,border-backcolor,border-width
data a_Specs;x-minor-line-freq ,x-major-line-freq,y-minor-line-freq,y-major-line-freq
data a_Specs;x-minor-line-width ,x-major-line-width,y-minor-line-width,y-major-line-width
data a_Specs;x-minor-line-color ,x-major-line-color,y-minor-line-color,y-major-line-color

Anay elements of a_Specs that are not assigned or are not a valid numeric will be assigned as -1. You
can also assign an element a -1. Any elements assigned as -1 will be assigned a default value as
follows:

x =200, y =100, w =400, h =400, border-forecolor =Green, border-backcolor =White, border-width
=4
x-minor-line-freq =10, x-major-line-freq =50
y-minor-line-freq = x-minor-line-freq, y-major-line-freq = x-major-line-freq
x-minor-line-width =1, x-major-line-width = 2
y-minor-line-width = x-minor-line-width, y-major-line-width = x-major-line-width
x-minor-line-color = border-forecolor , x-major-line-color = x-minor-line-color
y-minor-line-color = x-minor-line-color, y-major-line-color = x-major-line-color

The frequency values are in pixels. So a frequency of 10 means every 10 pixels.

Example:
InlineInputMode \ ScrSetMetrics ,,,,0
Data a;-1

RobotBASIC V4.2.0

Page 145 of 276

mGraphPaper a //draws a graph paper with All the defaults
Waitkey k
clearscr
Data b;50,50,700,500
mGraphPaper b //draws a graph paper area with all the defaults but puts it on 50,50
 //with width of 700 and height of 500
WaitKey k
clearscr
Data c;100,100,600,,yellow,blue,,5,,20,100
mGraphPaper c //draws a graph paper with yellow lines on blue background
 //at position 100,100 width of 600 height of default (400)
 //with x-axis minor lines every 5 pixels and major lines
 //every 50 pixels (default) color yellow (as border)
 //with y-axis minor lines every 20 pixels, and major ones
 //every 100 pixels, color yellow (as x-axis)

mPlotXY a_Specs,a_Xvalues,a_Yvalues
mPlotXY a_Specs,a_XYvalues

Plots a graph of Xs vs Ys on the screen. The data points are either in two separate one-dimensional
arrays or are combined in one two-dimensional array.

In the two separate arrays format, a_Xvalues and a_Yvalues have to be one dimensional and have to
contain at least one element each. Also they have to contain the same number of elements. Any
elements not assigned or are not numeric will be considered to be zero. The elements can be integers or
floats.

In the combined array format, a_XYvalues has to be two dimensional and has to contain at least one
data point (x,y). The first row is the X values and the second row is the Y values. Both rows have to
contain the same number of elements. Any elements not assigned or are not numeric will be considered
to be zero. The elements can be integers or floats.

a_Specs contains the specification for plotting the graph. It has to be one-dimensional and must contain
at least one element. Any elements in a_Specs from a_Specs[0] to a_Specs[5], that are not assigned or
are not numeric will be made to be -1. Any elements that are -1 will be assigned a default value as
follows:

a_Specs[0]=200, a_Specs[1]=100, a_Specs[2]=400, a_Specs[3]=400, a_Specs[4]=blue,
a_Specs[5]=2

They are: The X,Y position and the width, height of the square area where the plot is to be placed. The
plot will have the color specified in a_Specs[4] and the line will have a thickness in pixels as defined
by a_Specs[5].

Once the plot is generated the array a_Specs will be populated with 6 extra elements as follows:
a_Specs[6] = Minimum X value, a_Specs[7] = Maximum X value
a_Specs[8] = Minimum Y value, a_Specs[9] = Maximum Y value
a_Specs[10] = X-Scale Factor, a_Specs[11] = Y-Scale Factor

Except..... Elements a_Specs[6] to a_Specs[9] will not be assigned calculated values if they
already hold a numeric value. This allows you to change the limits (and scaling) of the plot.
Elements a_Specs[10] and a_Specs[11] will always be populated with the calculated X-Scale and
Y-Scale according to the values in the Mi-Max elements whether calculated or assigned.

RobotBASIC V4.2.0

Page 146 of 276

So if Any of the elements a_Specs[6] to a_Specs[9] are not assigned or are a string then the
command will calculate the maximum or minimum from the Xvalues and Yvalues arrays and
assign the elements of a_Specs accordingly. But if any of these elements is a numeric then it will be
taken as the min or max accordingly. See the example for how this affects the plot.

If a_Specs contains less than 12 elements (0-11) it will be expanded to do so and elements 6-11 will be
populated as above. If it already contains 12 elements or more, it will be kept as is, but elements 6-11
will be populated as above.

The values in elements 6-11 are useful for converting Screen-coordinates to Graph-coordinates and
Graph-Coordinates to Screen-Coordinates on a point by point basis. Also see Map().

To convert a Graph-X coordinate to a Screen-X coordinate use the following formula:
Sx = (Gx-a_Specs[6])*a_Specs[10]+a_Specs[0] or you can use Sx =
Map(Gx,a_Specs[6],a_Specs[7],a_Specs[0],a_Specs[2])

To convert a Graph-Y coordinate to a Screen-Y coordinate use the following formula:
Sy = (Gy-a_Specs[9])*a_Specs[11]+a_Specs[1] or you can use Sy =
Map(Gy,a_Specs[8],a_Specs[9],a_Specs[3],a_Specs[1]) (notice min is [3] not [1] to make sure
graph is right way up)

To convert a Screen-X coordinate to a Graph-X coordinate use the following formula:
Gx = (Sx-a_Specs[0])/a_Specs[10]+a_Specs[6] or you can use Gx =
Map(Sx,a_Specs[0],a_Specs[1],a_Specs[6],a_Specs[7])

To convert a Screen-Y coordinate to a Graph-Y coordinate use the following formula:
Gy = (Sy-a_Specs[1])/a_Specs[11]+a_Specs[9] or you can use Gy =
Map(Sy,a_Specs[3],a_Specs[1],a_Specs[8],a_Specs[9]) (notice min is [3] not [1] to make sure
graph is right way up)

The above formulas can be used once a graph is plotted to allow for converting a selected point on the
screen from within the graph area to an X,Y real values and vice versa. You can only use the values
from a_Specs after you have invoked the command and a_Specs has been populated with the calculated
values.

If you combine this command with mGraphPaper you can plot an X-Y plot and have it all
automatically scaled and plotted all in one command. If you wish to label the axis and so forth, you can
do so with xyText or xyString. Also if you wish to plot more than one X-Y plot on the same graph
paper then repeat the command with different arrays. You can share the same a_Xvalues and the same
a_Specs but if you don't wish to use the returned maximums and minimums you may need to use a
different a_Specs for each plot, and you may need to change the color (and/or thickness) values
(a_Specs[4] and a_Specs[5]).

Example:
X = -Pi()
While X < PI()+0.1 //generate Xs from -PI() to Pi() in steps of 0.1*Pi()
 Data Xs;X //and Ys = Sin(Xs)
 Data Ys;Sin(X)
 X = X+PI(0.1)
Wend
data GP_Specs;"" //accept all default specs for graph paper
Data G_Specs;,,,,,,-5,,,2 //accept defaults for plot area but override MinX and
MaxY
 //play with different values for minx,maxx,miny,maxy,

RobotBASIC V4.2.0

Page 147 of 276

mGraphPaper GP_Specs //plot Graph paper
mPlotXY G_Specs,Xs,Ys //plot the X-Y data
xytext 200-30,100-10,G_Specs[9] //YAxis Labels
xytext 200-30,500-10,G_Specs[8]
xytext 200-20,500+20,G_Specs[6] //X-Axis Labels
xytext 600-20,500+20,G_Specs[7]
xytext 350,100-30,"Y = Sin(X)" //Title Label
end

FloodFill {ne_X{,ne_Y{,ne_NewColor{,ne_OldColor}}}}
Given a coordinate ne_X,ne_Y the interpreter will start filling the area surrounding this coordinate with
color ne_OldColor and replacing it with ne_NewColor. It will do so as long as the pixels have the
OldColor, but it will not convert any pixels with a different color from ne_OldColor. So if you have a
box that has color white while surrounded by a color blue, doing FloodFill X,Y,Red,White will fill the
box with the new color Red, but only the box since it will not flow into the blue areas. (See ReadPixel
and SetPixel).

Both colors are optional. If ne_OldColor is not given (or is < 0) then the color of the pixel at the
specified position will be used as the ne_OldColor. If the new color is not given (or is < 0) then the
current pen color will be used as the ne_NewColor.

If ne_X or ne_Y is not given or is -1 then the current Pen's X or Y position will be used.

FloodFill2 {ne_X{,ne_Y{,ne_NewColor{,ne_BorderColor}}}}
Given a coordinate ne_X,ne_Y the interpreter will start filling the area surrounding this coordinate with
color ne_NewColor stopping when it encounters the color ne_BorderColor. So if you have a box that
has a black border and white interior, doing FloodFill X,Y,Red,Black will fill the box with the color
Red, but only the box since it will not flow into the border or outside it. (ReadPixel and SetPixel).

Both colors are optional. If ne_BorderColor is not given (or is < 0) then the color of the pen will be
used as a ne_BorderColor. If ne_NewColor is not given (or is < 0) then the current background color
will be used as the Fill Color.

If ne_X or ne_Y is not given or is -1 then the current Pen's X or Y position will be used.

DrawShape se_Shape,ne_X,ne_Y{,ne_Scale,ne_Color}
Draws an image specified by the string in ne_Shape, at the screen position ne_X, ne_Y. Optional
ne_Scale and ne_Color specify a Scale factor (pixels) and Color correspondingly. If Scale is not given
then 1 is assumed and if Color is not given the Default Pen color is used. If you are to specify the color
you must specify the Scale. If color is a negative number then the color will be the background color.
This is handy in appearing to erase the image. The data in se_Shape indicates how to move (lineTo)
from the X,Y position. Also see RotShape().

Example:
ship = "lllllluulllddddddrrrdllllllllurrruuuuuuuurrrrr"
ship = ship+"uuwwwrruurrddrrsssddrrrrrddddddddrrrd"
ship = ship+"llllllllurrruuuuuulllddllllllUU"
flame1 = "DDDDqqaqqauurrrrrrrlDDDDwwswwsuullllllDD"
flame2 = "DDDDDqqqqlqrrrrrrrrrrrralaaaaUU"
ShipScale = 10 \ flip on \ XI = 300 \ YI = 200
DrawShape ship, XI, YI ,ShipScale
FloodFill ,,RGB(255,136,0)
savescr 200,200,400,400
while true
 DrawShape flame1, XI, YI+1,ShipScale, red

RobotBASIC V4.2.0

Page 148 of 276

 FloodFill ,,Red
 flip \ delay 50 \ restorescr 200,200
 DrawShape flame2, XI, YI+1,ShipScale, red
 FloodFill ,,Red
 flip \ delay 50 \ restorescr 200,200
wend

The details of the action of this command are as follows:
- This command will draw an image specified by the string.
- At screen position ne_X,ne_Y.
- If Scale is not given then 1 is assumed and if Color is not given the Default Pen color is used. If

you are to specify the color you have to specify the Scale.
- If color is a negative number then the color will be the background color. This is handy in

appearing to erase the image.
- The data in se_Shape indicates how to move (lineTo) from the X,Y position. It contains a list of

letters "UDLRQAWS" or "udlrqaws" and "-0123456789" U=Up, D=Down, L=Left, R=Right,
Q=Diagonal to left and up, W= Diagonal to Right and up, A=Diagonal to left and down,
S=Diagonal to right and down. If lowercase letter is used then drawing and moving will take
place. If uppercase letter is used then only moving will occur.

- Starting at the start coordinate the interpreter will draw a line to the next pixel (or scale pixels)
up/dn and so on if the letter used is lower case. If it is upper case it will move to the position
instead of drawing a line, and thus next letter will cause drawing or moving from that new
position.

- The pen color will be as given or as specified in the next paragraph. If a number e.g. 4 or 12 is
given, it will be taken to indicate a change of color from the specified color in ne_Color, or
default pen color if no color is specified. The change will take effect until another number is
given or -. If - is given then the color will revert back to ne_Color or default color. This action
will only take place if ne_Color is not negative (see above).

- When you specify numbers refer to the Colors Table in the RobotBASIC Constants section. If you
specify a number greater than the last color it will revert to the last color. Any other characters
will be ignored. This command can be emulated with a combination of GotoXY and LineTo
combined with SetColor.

RotShape(se_ShapeString,ne_Direction)
This will return a string that can be used in DrawShape. The new string will be such that when drawn it
will be an (ne_Direction x 90°) rotation of the original string resulting from se_ShapeString.
ne_Direction can be a positive integer for clockwise rotations and negative for counter-clockwise
rotations of multiples 90°. So if ne_Direction is 3 then that is 270° clockwise and if it is -2 then that is
180° counter-clockwise: Example:

Scale = 20 \ X = 400 \ Y = 300
UpArrow = "UUlulwwssldlUU" //The shape data to draw an up
arrow.
drawshape UpArrow,X,Y,Scale
FloodFill
drawshape RotShape(UpArrow,3),X,Y,Scale //the same string is rotated +270° to
make left arrow.
FloodFill
drawshape RotShape(UpArrow,1),X,Y,Scale //the string is rotated to +90° to
make right arrow
FloodFill
drawshape RotShape(UpArrow,-2),X,Y,Scale //the string is rotated to +90° to
make right arrow
FloodFill
for i=0 to 3 //this is a better way to do the same as above
 DrawShape RotShape(UpArrow,i),300,100,20

RobotBASIC V4.2.0

Page 149 of 276

 FloodFill
next
end

TextWidth(se_Text{,se_FontName{,ne_FontSize{,ne_FonctStyle}}})
TextHeight(se_Text{,se_FontName{,ne_FontSize{,ne_FonctStyle}}})

Will return the width/height in pixels that the string se_Text will occupy on the screen with the
specified font and size and style. See xyText for explanations for the font parameters. If the
se_FontName is not specified or is "" then Courier New will be assumed. If ne_FontSize is not given or
is < 1 then 11 will be assumed. If ne_FontStyle is not given or is < 0 then 0 will be assumed (i.e. no
style).

3D Screen Graphics Drawing

ge3Dto2DV ne_X,ne_Y,ne_Z,ne_Rho,ne_Theta,ne_Phi,ne_Dist,ne_CenterX,ne_CenterY,vn_ScrX,vn_ScrY
This command will convert an X,Y,Z world 3D coordinate point to screen 2D coordinate ScrX,ScrY.
All parameters must be integer or float except for the last two which have to be variables that will be
assigned float values..

ne_Rho the distance of the camera from the origin.
ne_Theta the angle (radians) from the X-axis in the XY-plane, counter-clockwise is positive
ne_Phi the angle (radians) from the Z-axis, counter-clockwise is positive and positive Z is up

towards the camera.
ne_Dist the distance of the projection plane from the origin
ne_CenterX the screen X-coordinate of the center point of the window (usually 400)
ne_CenterY the screen Y-coordinate of the center point of the window (usually 300)

The command will calculate the screen ScrX,ScrY coordinate and assign the variables vn_ScrX and
vn_ScrY the values. There will be no clipping if the ScrX,ScrY coordinates are outside the window
limits. It is up to you what to do with the data returned. The values will be floats.

ge3Dto2DVA ne_X,ne_Y,ne_Z,a_CameraSpecs,vn_ScrX,vn_ScrY
This command will convert an X,Y,Z world 3D coordinate point to screen 2D coordinate ScrX,ScrY.
This command is similar to ge3Dto2DV but instead of the camera data being specified as 6 parameters
this command uses an array (a_CameraSpecs) as in ge3Dto2DA.

ge3Dto2DA a_3DPoints,a_CameraSpecs
This command will convert an array of world 3D coordinates to screen 2D coordinates.

a_3DPoints must be a two-dimensional array with the dimensions being [n,>=5] where n is the number
of points that need to be converted. The first 3 elements in each row are X,Y,Z (coordinates of the
point), the 4th and 5th elements will be filled by the command with the screen X,Y coordinates. The
number of columns has to be a minimum of 5 but can be more if you are going to encode more
information about vertices.

a_CameraSpecs must be one-dimensional and must have 6 elements (or more but not less). The
elements are parameters that describe the position of the Camera position in space using polar
coordinates. The elements in order are as follows:

Rho the distance of the camera from the origin.
Theta the angle (radians) from the X-axis in the XY-plane, counter-clockwise is positive

RobotBASIC V4.2.0

Page 150 of 276

Phi the angle (radians) from the Z-axis, counter-clockwise is positive and positive Z is up
towards the camera.
D the distance of the projection plane from the origin
Cx the screen X-coordinate of the center point of the window (usually 400)
Cy the screen Y-coordinate of the center point of the window (usually 300)

The command will calculate the screen X,Y coordinate for each point using the parameters provided.
There will be no clipping if the X,Y coordinates are outside the window limits. It is up to you what to
do with the data returned.

Example (also see example under gePlotSurface):
data Eye;120,pi(.25),pi(.35),1550,400,300 //rho,theta,phi,d,Cx,Cy
x = 20 \ data points;0,0,0,0,0, x,0,0,0,0, 0,x,0,0,0, 0,0,x,0,0
x = 15 \ data points;x,0,0,0,0, 0,x,0,0,0, x,x,0,0,0, x,x,x,0,0
dim Points[10,5] \ mcopy points,Points //make appropriate array of vertices
flip on
while true
 ge3dto2da Points,Eye //calculated screen coordinates
 for i=1 to 3
 line Points[0,3],Points[0,4],Points[i,3],Points[i,4],2,0
 line Points[6,3],Points[6,4],Points[3+i,3],Points[3+i,4],1,red
 if i < 3 then line
Points[0,3],Points[0,4],Points[5+i,3],Points[5+i,4],i,blue+i
 next
 line Points[7,3],Points[7,4],Points[6,3],Points[6,4],1,green
 flip \ clearscr \ Eye[1] = Eye[1]+.01
wend

geVisibles a_3DPoints,a_CameraSpecs,a_SurfacesSpecs{,a_Edges{,ne_ColorFactor}}
This command will process an array of surfaces to evaluate which ones are visible. The surfaces are
defined by vertex numbers from within a vertices array. The surface must have at least three vertices.

a_3DPoints and a_CamerSpecs are the vertices and camera data arrays as described in ge3Dto2D
above.

a_SurfacesSpecs is an array of surfaces. Must be two-dimensional. Each surface is a row. Each row has
the following elements (remember 1st element is element number zero):

1st element is the color of the surface. This value can be a RobotBASIC constant color (e.g. red)
or can be an RGB value.

2nd element will be set by this command to true (1) if the surface is redeemed to be visible or false
(0) if not.

3rd element onwards is a number representing the vertices that define the surface. The vertex
numbers are the index within the vertices array a_3dPoints. There must be a minimum of 3
vertices but you can have more. Only the first three vertices will be used by the command. The
order of the vertices has to be counter-clockwise as the surface is viewed from the front. The
order is very important it is what defines visible and invisible surfaces.

a_Edges is optional and is an array that will be created by the command if the parameter is defined. The
array will be two-dimensional. It is an array of edges that are visible. Each row is an edge. The
elements of the row will be as follows:

1st element is the vertex number of the first point of the edge. The vertex number is an index
within the array a_3DPoints.

2nd element is the vertex number of the other point of the edge. The vertex number is an index
within the array a_3DPoints.

RobotBASIC V4.2.0

Page 151 of 276

3rd element is a count of how many surfaces share this edge.
4th element is an RGB color value that will be 10% darker than the color of the first surface that

the edge belongs to. That is it will be a factor of 0.9 of the original color. You can change this
factor by specifying the parameter ne_ColorFactor as the value you need as a number between 0
and 1. If a_ColorFactor is not given it will be 0.9. If you give a number less than 0 it will be 0 and
if greater than 1 it will be 1.

5th element is an RGB color value that will be the color of the first surface that the edge belongs
to.

The command uses the vertices and camera data as well as the surfaces data to evaluate which surface
is visible inserting the value in the 2nd element of each row (element number 1) of the surfaces array.
The command also creates (if desired) an array of edges that are visible. See gePlotEdges and
gePlotSurfaces.

gePlotSurfaces a_3DPoints,a_SurfacesSpecs{,ne_DoFilling{,ne_LineWidth{,ne_OnlyVisible{,ne_CentroidAll}}}}
This command will use the array of surfaces and a corresponding array of vertices that have already
been processed using ge3Dto2DA and geVisibles to render the surfaces on the screen.

a_3DPoints is the vertices data arrays as described in ge3Dto2D above and you need to have already
called the command to process the array as described in the command details.

a_SurfacesSpecs is the surfaces array as described in geVisible and you need to have already have
called the command to process the array as described in the command details.

The command uses the vertices and surfaces data to plot the surfaces on the screen. By default a
surface's edges will be plotted and then they will be filled with the color of the surface as specified
inside the array (see geVisibles), but if you set ne_DoFilling to off then only the edges of the surfaces
will be plotted and no filling will occur. By default the edges will be plotted with a line width of 2, but
you can specify any other value >= 1. By default only the surfaces that have been calculated to be
visible after calling geVisibles will be plotted. But if you set to ne_OnlyVisible to false then all
surfaces will be plotted. During the processing of the command the centroid of the surface has to be
calculated to be able to do the filling. Normally only the first three vertices that define the surface will
be used to do this calculation. However, you may need in some situations to use all of the vertices to
get a better centroid position. This will slow the calculations but will give a more accurate centroid. If
ne_CentroidAll is set to true then all vertices that define the surface will be used for the calculation
(note that this will slow the command down).

Example:
data Eye;120,pi(.25),pi(.25),1550,400,300 //rho,theta,phi,d,Cx,Cy
data points;0,0,0,0,0, 20,0,0,0,0, 0,20,0,0,0, 0,0,20,0,0
dim Points[maxdim(points,1)/5,5] \ mcopy points,Points //make
appropriate array of vertices
data surfaces;red,0,2,0,3, blue,0,2,3,1, green,0,1,3,0, yellow,0,0,2,1
//surfaces
dim Surfaces[4,5] \ mcopy surfaces,Surfaces //create surfaces array
flip on
while true
 ge3dto2da Points,Eye //calculated screen coordinates
 geVisibles Points,Eye,Surfaces,Edges //calculated visible surfaces
 gePlotSurfaces Points,Surfaces //Plot and fill visible surfaces
 gePlotEdges Points,Edges,3,-2
 geCentroids Points,Surfaces,Centroids //Get Centroids data
 for i=0 to 3 //plot visible centroids
 if Surfaces[i,1] then circlewh Centroids[i,0]-5,Centroids[i,1]-

RobotBASIC V4.2.0

Page 152 of 276

5,10,10,white,white
 next
 flip \ clearscr
 Eye[1] = Eye[1]+.01 \ Eye[2] = Eye[2]+.02 //move the camera
 if keydown(Ascii("X")) then geRotateA Points,.05,1
 if keydown(Ascii("Y")) then geRotateA Points,.05,2
 if keydown(Ascii("Z")) then geRotateA Points,.05,3
 xytext 0,0,"Press X,Y and/or Z to see a nice effect"
wend

geCentroids a_3DPoints,a_SurfacesSpecs,a_Centroids
This command will use the array of surfaces and a corresponding array of vertices that have already
been processed using ge3Dto2DA and geVisibles to create an array that contains as many rows as there
are rows in the surfaces array and 5 elements per row.

a_3DPoints is the vertices data arrays as described in ge3Dto2D above and you need to have already
called the command to process the array as described in the command details.

a_SurfacesSpecs is the surfaces array as described in geVisible and you DO NOT need to have
already have called the command to process the array as described in the command details.

The command uses the vertices and surfaces data to calculate the Triangular and Polygonal Centroids
as well as the area of the polygon representing the surface as it would be drawn on the screen in
response to all the calculations after calling ge3Dto2DA you may have also called the geVisibles too
but that is not needed for the calculations of the centroids. The data will be put in the array a_Centroids
which if it already exists will be erased and will be recreated and populated with data.

a_Centroids will be two dimensional and will contain as many rows as there are in a_SurfacesSpecs. In
each row it will contain TCx,TCy,PCx,PCy,A. Where T means triangular. P means polygonal and Cx
means X-Coordinate of the centroid and Cy means the Y-Coordinate of the centroid. A means the area.

So for each surface in a_SurfacesSpecs using the vertices as defined in the array and using the already
calculated Screen X,Y coordinates for each vertex in the a_3DPoints array after it has already been
processed as described in ge3Dto2DA this command will calculate the Centroid of the Surface using
two methods. The first method will use only the first THREE vertices of the surface and calculates the
centroid of the TRIANGLE formed by these vertices. The second method will use ALL the vertices
and will calculate the AREA and REAL centroid of the surface as it would be drawn on the screen.

These centroid are the same as the ones used in gePlotSurfaces to do a FILLING of the surface after
drawing its edges. gePlotSurfaces uses the triangular centroid by default since it is quite an adequate
method since the triangular centroid will always lay inside the surface and since it only uses three
vertices it is a much quicker calculation than using all the vertices of the surface. But the command can
be told to use the polygonal centroid instead. geCentroids gives you the coordinates of these centroids
which can be helpful in doing further plotting of the surface other than in gePlotSurfaces.

Note: If the surface is triangular then of course both the triangular and polygonal centroids will be the
same.

Note: The centroids and the area are for the surface as it would be drawn on the 2D screen since they
are calculated from the 2D coordinates as calculated in ge3Dto2DA from the 3D coordinates of
the vertices in the a_3DPoints array and inserted into that array .

RobotBASIC V4.2.0

Page 153 of 276

gePlotEdges a_3DPoints,a_Edges{,ne_LineWidth{,ne_LineWidth{,ne_Color}}
This command will use the array of edges and a corresponding array of vertices that have already been
processed using ge3Dto2DA and geVisibles to render the surfaces on the screen.

a_3DPoints is the vertices data arrays as described in ge3Dto2D above and you need to have already
called the command to process the array as described in the command details.

a_Edges is the edges array as described in geVisibles and you need to have already have called the
command to process the array as described in the command details.

The command uses the vertices and edges data to plot the edges on the screen. The edges will be
plotted with the current default line width if ne_LineWidth is not given or is < 1. Also the edges will be
plotted with the current default pen color if ne_Color is not given or is -1. You can specify either a
RobotBASIC color constant or an RGB color. If ne_Color is -2 then the edge will be plotted using the
color as specified in the 4th element of the corresponding row in the edges array. This element is an
RGB color value that would have been created by geVisibles as described in the command's details.

geRotVx ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'
geRotVy ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'
geRotVz ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'

These three commands will rotate the point (ne_X, ne_Y, ne_Z) about the X/Y/Z-Axis by the angle
ne_RotAngle (radians). Counter-Clockwise is positive. The new coordinates of the point will be
assigned to vn_X', vn_Y', vn_Z'. Positive angles are counterclockwise and negative angles are
clockwise (using the left-handed rule).

geRotateA a_3DPoints,ne_RotAngle,ne_AxisCode{,ne_From{,ne_To}}
This command will use an array of 3D points and will rotate them by the specified ne_RotAngle
(radians) about the specified ne_AxisCode (1=X-Axis, 2=Y-Axis, 3=Z-Axis).

a_#DPoints has to be a 2 two dimensional array with as many rows as there are points and in each row
there has to be at least three elements where the first element is the X-Coordinate, the second is the Y-
Coordinate and the third is the Z-Coordinate of the point. You may have more elements in each row as
would for instance be required for the a_3DPoints array in the above other commands.

The resulting new (X',Y',Z') values. will be placed back over the original (X,Y,Z) values. Positive
angles are counterclockwise and negative angles are clockwise (using the left-handed rule).

ne_From specifies the row number (i.e. vertex number) to start from within the a_3DPoints array and
ne_To specifies the row number to finish at. If ne_From is not given or is less than 0 it will be set to 0.
If ne_To is not given or is less than NumberOfRows-1 or is greater than NumberOfRows-1 then it will
be set to NumberOfRows-1.

Note: The original coordinates will be overwritten with the resulting coordinates due to the rotation.
Use mCopy to keep a copy of the original array.

RobotBASIC V4.2.0

Page 154 of 276

Creating & Using Arrays
Note: See the notes at the top of the Standard User Interfacing section. Also see the note at the top of the

Screen & Bitmap Graphics section concerning the .BMP extension when specifying a file name for
the bitmap functions.

Note: See ge3Dto2DA, ge3Dto2DVA, geVisibles, gePlotSurfaces, geCentroids, mReadBMP,
mWriteBMP, BmpFindClr, mPolygon, mBezier and JoystickE.

Arrays Creation & Manipulation

Dim a_Name1[ExprN{,ExprN...}]{ , a_Name2[ExprN{,ExprN...}] {,}}}...
This will specify that a_Name1 is an Array of the dimensions [ExprN{,ExprN...}] the [and] are
required and so is the , between each dimension. You can use an array element anywhere as any
variable (see the Overview Of The Language section). The Dim statement establishes the maximum
value for each dimension and the over all dimension of the array. The Index of the dimension starts at 0
and ends at ExprN-1. ExprN must result in an integer value, otherwise an error will occur. Each
element of the array can be any of the data types (String, Float or Integer).

In version 4.1.0 and upwards you can specify multiple arrays' dimensions using the same DIM
statement by separating the specifications with commas.

If you try to access any un-assigned element an error will occur. If you try to access outside the
specified range in the DIM statement an error will occur.

If you have a two dimensional Array Dim N[4,5] then there are 4 rows and 5 columns i.e. there are 4
rows with 5 elements in each row. If you have Dim N[6,7,8] then there are 6 rows where each element
in the row constitutes a matrix in itself, where those matrices each have 7 rows and 8 columns.

This can go on for as long as you care, but remember that the row count is the first dimension and the
second dimension is a count of elements in each row. Each element in the row can be a string, integer,
float or another matrix as described above.
Dim XY[2,4,5] , AB[3,2]
//means that XY is an array of 3D. The first dimension goes from 0 to 1
//second dimension from 0 to 3 third dimension from 0 to 4
//Also AB is a 2D array with 3 rows and 2 elements in each row (2 columns)
AB[0,0] = 5 //assigns 1st element in first row in AB the
value 5
XY[1,3,2] = sin(pi(2.0/3))+4 //assigns element [1,3,2]
print AB[0,0]; XY[1,3,2] //prints element [1,3,2]
XY[2,4,5] = 9 //causes an error because range is XY[1,3,4]
Print AB[0,1] //causes an error because AB[0,1] was not
assigned

Data a_Name;Expr{,Expr....}
This command creates an array of 1 dimension named a_Name and puts all the resulting values from
the Expr's into the array. a_Name is the array name, the ; after the name is necessary to separate the
name from the data. The data is separated by a ,. Expr can result in any value type (String, Integer, or
Float). If you specify the same array name in two or more Data statements then the data is appended
together. If you desire to erase the array, so as to start populating it at the first element, use Dim
a_Name[0] where a_Name is the array name used in the data statement. If you have previously

RobotBASIC V4.2.0

Page 155 of 276

dimensioned a_Name before issuing the Data statements, then you must use the Dim a_NAme[0]
before you use the Data statements. If you do not the data will not be loaded into the array.

If you do not wish to give a specific value to an element and skip it (i.e. use it as a place holder) then
just put a space between the commas for that element. See example below.

data test;1,2,"some text",4.5,sin(3/4.6),length("test")
data test;,,,66,44.5,log(3)
print test[10] //print 44.5
print test[2] //prints 'some text'
print test[0]+test[3] //prints 5.5
print test[7] //causes an error since element 7 is not defined
 //due to the ,, since no value was given for that
 //element position
print test[8] //also causes an error since again this element is
 //not specified due to the ,,

Dim test[0] //effectively erases the array data
data test;"again",3 //repopulate the array
print test[0] //prints 'again'
print test[7] //gives an error since there are not 7 elements

mDim(a_Name)
Returns the dimension of the array. If it does not exist 0 will be returned. The dimension of the array
starts at 1. For example if an array MyData has been created with the statement Dim MyData[4,5,6]
then mDim(MyData) returns 3.

This function can be useful if you read an array from a file with mRead (see above). The array read
from a file will have the dimensions of the array that was used to write the file. It may be unknown to
you as a programmer and this function and MaxDim can be used to determine details of the matrix.

MaxDim(a_Name{,ne_Dimension})
Returns the limit of the specified dimension. This function can be useful if you read an array from a file
with mRead (see above). The array read from a file will have the dimensions of the array that was
used to write the file. It may be unknown to you as a programmer and this function and mDim can be
used to determine the details of the matrix. The dimension constraint has a minimum value of 1. If
ne_Dimension is not given or is less than 1 it will be made to be 1.
 dim MyData[4,5,9]
 gosub populate_mydata //some routine to put data in the array
 mWrite MyData,"Test.Txt"
 //later on in any program you read the data from a file
 mread NewData,"test.Txt"
 print mDim(NewData) //=== prints 3
 for i = 1 to mDim(NewData)
 print MaxDim(NewData,i) // will print 4 then 5 then 9
 next
 //===print out all the data elements
 for i = 0 to MaxDim(NewData,1)-1
 For j = 0 to MaxDim(NewData,2)-1
 for k=0 to MaxDim(NewData,3)-1
 print NewData[i,j,k]
 next
 next
 next

RobotBASIC V4.2.0

Page 156 of 276

mType(a_Name[...])
This function is used to determine the type of an array element. You specify the array element in the
normal way as described in the description for Dim or Data above. The returned values are:

102 = Ascii("f") floating point number
105 = Ascii("i") integer number
115 = Ascii("s") string
0 No Value i.e. has not been assigned a value

The values above are also defined in the RobotBASIC Constants section
Float = Floating point number
Integer = Integer number
String = String
NoValue = Not a defined element

This function can be useful in iterating through arrays where you may need to determine if an element
is a valid element before using it. If you try to use an invalid array element an error will occur. This
function can be used to prevent this.

mCopy a_Source,a_Destination
a_Source must be a existing previously dimensioned array, or an array created by Data above.
a_Destination does not have to exist. If it does not then it will be created by the command and will be
an exact copy of a_Source, including the dimension, and dimensional constraints. If it does exist and
has been dimensioned, the data in a_Source will be copied into a_Destination row wise. That is each
data element from a_Source will be copied into elements of a_Destination until all the elements of the
first row are filled, then it starts with the elements from the next row and so on until a_Destination is
filled or a_Source runs out of elements.

This command is useful for looking at the data of one array in different row-column dimensions. Data
can only create 1-dimensional arrays with all the data in one row. But if you want to load the data into a
2-dimensional array then dimension an array according to desired dimensions and copy the array
created by Data into it.

Data a;1,2,3,4,5,6,7,8,9
Print a[5] //will print 6
Dim b[3,3]
mCopy a,b
Print b[1,2] //will print 6

mWrite a_Name,se_FileName
Will write the contents of the array to the specified file. When specifying the file name you can use
directory structures for example:

"C:\RobotBasic\Programs\MySimulation.sim"
The directory must exist. The file does not have to exist, and if it does it will be overwritten. Any error
in writing to the file will cause an error to be issued. The array has to be a valid previously
dimensioned array or an array created with Data. See mTextFW and mTextFR below.

Note: The command in version 2.1.0 and later will not write files compatible with older versions.

mRead a_Name,se_FileName
Will create a new array (if it already exists it will be erased first) and will populate its elements with the
data from the specified file. The file must exist and it must be of the right format written previously
with mWrite (see above). The array will be dimensioned the same as the matrix that was used to write

RobotBASIC V4.2.0

Page 157 of 276

the file in the first place. You can find out the dimensions of a_Name with mDim() and MaxDim().
Any elements that were unpopulated in the original matrix will still be unpopulated in the new matrix.
You will get an error if the file does not exist or if it is the wrong format. If the file is the correct format
but there was an error in reading it an error message will be issued. See mTextFW and mTextFR
below.

Note: The command in version 2.1.0 and later is not compatible with files created in older versions.
You must convert files created with older versions using mReadOld. Write a program to read the
old file with mReadOld and write it again with the new mWrite. There is no mWriteOld; it is not
needed. The syntax for mReadOld is the same as for mRead. mReadOld may be removed in later
versions.

mTextFW a_Name,se_TextFileName
Will write the contents of the one-dimensional array to the text file. When specifying the file name you
can use directory structures for example:

"C:\RobotBasic\Programs\MySimulation.sim"
The directory must exist. The file does not have to exist, and if it does it will be overwritten. You must
specify the file name in full including the extension. Any error in writing to the file will cause an error
to be issued. The array has to be a valid one-dimensioned array or an array created with Data.

The file will be a plain text file with each element of the array written on one line as text. If the element
is a number it will be converted to the text representation of the number. Each element will be one line
of text in the file. That is a line with a CR/LF at the end of it. The first non-valid element (i.e. not
assigned) will be redeemed to be the end of the array.

This command is useful in creating text files that can be easily read by humans. You can use formatting
functions and other functions to create elements in the array that are combinations of data from various
other arrays and/or variables to create a nice printable (or readable by humans) report file.

This is not like the above mWrite which will create coded unreadable files that can only be read by
mRead. mTextFW will create text files that can be easily modified, read or printed.

mWrite and mRead are easier to use if you need to save and read a database. However mTextFW and
mTextFR are more suited for creating and reading report files.

mTextFR a_Name,se_TextFileName
Will create a new array a_Name (if it already exists it will be erased first) and will populate its
elements with the text from the text file. The file must exist and it must be plain text file. The array will
be one-dimensional and each element will be one line from the text file. Each element will be assigned
the line of text as a string regardless if it is a number or text. You can use Extract(), SubString(),
ToNumber() and other functions to manipulate the data. So if a line contains multiple fields of data you
can use code to separate the fields into individual data and assign them to variables or elements of
another (properly dimensioned) array.

You will get an error if the file does not exist. You must specify the file name in full including the
extension.

mWrite and mRead are easier to use if you need to save and read a database. However mTextFW and
mTextFR are more suited for creating and reading report files.

RobotBASIC V4.2.0

Page 158 of 276

mFromString a_Name,se_String{,se_Separator}
se_String is a string that contains substrings separated with the characters in se_Separator. If the
separator is not given then it will be a CR/LF pair of characters [char(13)+char(10) = CrLf()]. The
string will be parsed into its substrings using the separator characters and each substring is then placed
into an element in the array in order. Any substring that can be converted to an integer or a float will be
converted and will be placed into the array as an element of the correct type (the numbers in the string
must be the string representation of the numbers not binary) .

a_Name will be a one dimensional array. It does not have to exist and if it does it will be deleted and
recreated with the new dimension and data.

If se_String is an empty string then the array will have one element with the value being an empty
string.

Also see mToString(), Substitute() and CrLf(). Also see the buffer functions BuffWrite() and
BuffRead().

Example:
data a;10,3.45,"test",2.34e245,0xFFFFF,0%1110001110101,"testing this"
s = mToString(a) //by default the separator will be CR/LF
addlistbox "tt",100,100,200,s
SetListBox "tt",1
AddRBGroup "Select One",400,100,350,300,3,s
mFromString b,s //notice by default the separator is Cr/Lf
for i=0 to maxdim(b,1)-1
 n=b[i]
 xystring 10,200+i*20,n;" "
 if isnumber(n) then xystring -1,-1,n*2
next
s = "test1,3.4,6,Test2,Test3"
mFromString b,s,"," //now the separator is ,
for i=0 to maxdim(b,1)-1
 n=b[i]
 xystring 10,400+i*20,n;" "
 if isnumber(n) then xystring -1,-1,n*2
next

mToString(a_TextLines{,se_Separator})
Returns a string that is all the elements in the array put together into one string. If any element in
the array is a number it will be converted to a string representation. The elements are separated
with the characters in the string se_Separator if given or the character pair CR/LF
[char(13)+char(10) = crlf()] if not given. The array has to exist and has to be a one-dimensional
array and must not have any non-assigned elements. The returned string will contain the elements
up to the first unassigned element if there is one.

Also see mFromString and the example there. Also see CrLf() and Substitute(). Also see the buffer
functions BuffWrite() and BuffRead().

mToCommaText(a_TextLines)
Returns a string that has all the elements in the array put together into one string. If any element
in the array is a number it will be converted to a string representation. The elements are separated
with a comma. Any strings that contain a comma or a space will be surrounded with quotations
(""). If the string contains a quotation already then it will be doubled just like when you want to
specify a quotations in an RB normal string (see examples). Also see mFromString and the
example there. Also see CrLf(), ToCommaString() and Substitute(). Also see the buffer

RobotBASIC V4.2.0

Page 159 of 276

functions BuffWrite() and BuffRead().

ObjectGet a_ObjectArray,ne_ObjectNumber or RecordGet a_DataBaseArray,ne_RecordNumber

ObjectPut a_ObjectArray,ne_ObjectNumber or RecordPut a_DataBaseArray,ne_RecordNumber
These two commands can be useful in creating a pseudo-object based action or a simple database
system.

The array a_ObjectArray (or a_DataBaseArray) has to be a 2-dimensional array. The 0th row in the
array is assumed to hold the names of the elements (fields) of the instances of the object (records in the
database). The next row (row 1) onwards hold the actual values for each instance of the object (record
in the data base).

ObjectGet/RecordGet will look into the array and will create as many variables as there are elements in
the 0th row and each of these variables will have the name as specified in the element. Then it will go
to the row specified by ne_ObjectNumber/ne_RecordNumber (ranging from 1 onwards) and will get
the values of each element in that row and assign that value to the variable corresponding to that
element. So after invoking this command there will be a collection of variables whose names
correspond to the elements of the object (fields of the database) and whose values correspond to the
values in the desired instance of the object (record).

ObjectPut/RecordPut will look into the array and will fetch the value of a local variable whose name
corresponds to the name in each element in the 0th row and then it will go to the row specified by
ne_ObjectNumber/ne_RecordNumber (ranging from 1 onwards) and will put the value of the variable
in the corresponding element in that row. So after invoking this command the collection of variables
whose names correspond to the elements of the object (fields of the database) will have their values
stored in the row that corresponds to the desired instance of the object (record).

Also see varSet and varType() and varValue() as well as vType() and mType().

This is best appreciated with an example:
Main:
 InlineInputMode on
 call CreateSTUDENTclass() // create the class
 STUDENT.Sam =0 // create three objects
 STUDENT.John=1
 STUDENT.Mary=2
 call CreateSTUDENT(STUDENT.John) // demo calls to class methods
 call CreateSTUDENT(STUDENT.Mary)
 call PrintSTUDENT(STUDENT.John)
 call PrintSTUDENT(STUDENT.Mary)
 call EditSTUDENT(STUDENT.John)
 call PrintSTUDENT(STUDENT.John)
End
Sub CreateSTUDENTclass()
 Dim STUDENT[11,4] // create a Class of Type STUDENT capable of handling
10 students
 mConstant STUDENT,0 // initialize all to 0 to make all objects inactive
 STUDENT[0,0]="Active" //create the object's elements in the 0th row
 STUDENT[0,1]="Name" //they have to be names that can become valid variable
names
 STUDENT[0,2]="Gender" //so when the ObjectGet and ObjectPut commands are
called then
 STUDENT[0,3]="Avge" //variables by these names will be created and will be
assigned
return //the values pertaining ot the desired object (i.e.

RobotBASIC V4.2.0

Page 160 of 276

row).
Sub CreateSTUDENT(n)
 ObjectGet STUDENT,n
 print crlf(),"ENTER DATA FOR NEW STUDENT"
 Input "Enter Name:|Enter Gender:|Enter Grade Average (0-
100):",Name,Gender,Avge
 Active=1 // indicate that the object has been created
 ObjectPut STUDENT,n
return
Sub PrintSTUDENT(n)
 ObjectGet STUDENT,n
 if Active
 Print crlf()+"Name:",Name,crlf(),"Gender:",Gender,crlf(),"Average:",Avge
 else
 print crlf(),"This object has not been created"
 endif
return
Sub EditSTUDENT(n)
 ObjectGet STUDENT,n
 if Active
 print crlf(),"Enter new grade average for: ",Name
 Input "Average = ",Avge
 else
 print crlf(),"This object has not been created"
 endif
 ObjectPut STUDENT,n
return

Here is another example that uses RecordGet and RecordPut
Main:
 call DB_Initialize(4)
 Call DB_SetVals(1,"Sam",50,"30043")
 Call DB_SetVals(2,"Pam",20,"30055")
 for i=1 to 2
 Call DB_GetVals(i,OName,OAge,OZipCode)
 print OName;OAge;OZipCode
 next
End
Sub DB_Initialize(HowMany)
 Dim DB[HowMany,3]
 DB[0,0] = "Name"
 DB[0,1] = "Age"
 DB[0,2] = "ZipCode"
Return
Sub DB_GetVals(Which,&Name,&Age,&ZipCode)
 RecordGet DB,Which
Return
Sub DB_SetVals(Which,Name,Age,ZipCode)
 RecordPut DB,Which
Return

RobotBASIC V4.2.0

Page 161 of 276

Array Math Commands

mAND a_Name,ExprN
mOR a_Name,ExprN
mXOR a_Name,ExprN
mShiftL a_Name,ExprN
mShiftR a_Name,ExprN

Will bitwise AND/OR/XOR/ShiftLeft/ShiftRight each element in the array by the result of the numeric
expression ExprN. a_Name has to exist. Also all the elements must be numeric. If an element is not
numeric it will not be affected. If an element is a float it will be converted to an integer and the
operation is performed on the integer and the element will become an integer. Any uninitialized
elements will remain so.

mNOT a_Name
Will bitwise NOT (invert) each element in the array by the result of the numeric expression ExprN.
a_Name has to exist. Also all the elements must be numeric. If an element is not numeric it will not be
affected. If an element is a float it will be converted to an integer and the operation is performed on the
integer and the element will become an integer. Any uninitialized elements will remain so.

mScale a_Name,ExprN
Will multiply each element in the array by the result of the numeric expression ExprN. a_Name has to
exist. Also all the elements must be numeric.

mConstant a_Name,Expr
Will fill each element in the array by the result of the expression Expr. It has to exist. Expr can be
numeric or string.

mDiagonal a_Name,Expr
Will fill all the diagonal elements in the array by the result of the expression Expr. It has to exist. Expr
can be numeric or string. If Expr is numeric then all the other elements will be zero. If Expr is a string
then all the other elements will be blank. a_Name must be two-dimensional.

mmAND a_Source,a_Destination
mmOR a_Source,a_Destination
mmXOR a_Source,a_Destination
mmShiftL a_Source,a_Destination
mmShiftR a_Source,a_Destination

This equivalent to saying a_Destination = a_Destination (op) s_Source. Where (op) is bitwise
AND/OR/XOR/ShiftLeft/ShiftRight. Both arrays must exist and must be of the same dimension and of
the same dimensional constraints. If any element in a_Source that is a string or not initialized will be
considered 0. Any element in either array that is a float will be made into an integer to do the operation
but only a_Destination's element will be changed to integer type. Any element in a_Destination that is
not initialized or is a string will remain so. Remember it is a_Destination = a_Destination (op)
a_Source.

mAdd a_Source,a_Destination
Will Add elements of a_Source to a_Destination. This equivalent to saying a_Source = a_Destination +
a_Source. Both arrays must exist and must be of the same dimension and of the same dimensional
constraints. If any element is a string and the corresponding element to be added is a numeric then the
result will be a string concatenation of the string with the numeric converted to a string. If the elements
to be added are both strings then the result is a concatenation. If one element is an integer while the

RobotBASIC V4.2.0

Page 162 of 276

other is a float then the result is a float.

mSub a_Source,a_Destination
Will subtract elements of a_Source from a_Destination. This equivalent to saying a_Source =
a_Destination - a_Source. Both arrays must exist and must be of the same dimension and of the same
dimensional constraints. If any element is a string then there will be no operation done. If one element
is an integer while the other is a float then the result is a float.

mMultiply a_Left,a_Right,a_Result
Will multiply a_Left and a_Right and put the result in a_Result. This equivalent to saying a_Result =
a_Left x a_Right. The order is important a_Left x a_Right is not equal to a_Right x a_Left. a_Result
does not have to exist, but if it does it will be erased and recreated. Both arrays must be two-
dimensional. The number of Columns of a_Left must be the same as the number of Rows of a_Right.
That is if a_Left has the dimension [R1,C1] and a_Right has the dimension [R2,C2] then multiplication
is possible only if C1=R2. The resultant a_Result will have the dimension [R1,C2]. Also, the elements
of a_Left and a_Right must be numeric.

mInvert a_Source,a_Inverse,vn_Determinant
Will calculate the inverse of array a_Source and assign it to a_Inverse, and also the determinant of
a_Source will be assigned to vn_Determinant. That is equivalent to saying a_Inverse = a_Source-1 and
vn_Determinant = |a_Source|. a_Inverse does not have to exist, but if it does it will be erased and
recreated. a_Source must be two-dimensional and a square matrix. That is the number of rows must
equal the number of columns. All elements in a_Source must be numeric and if it is not invertible then
vn_Determinant = 0 and elements of a_Inverse will be all zeros.

mDet a_Source,vn_Determinant
Will calculate the determinant of the array and assign it to vn_Determinant. That is equivalent to saying
vn_Determinant = |a_Source|. a_Source must be two-dimensional and a square matrix. That is the
number of rows must equal the number of columns. All elements in the array must be numeric.

mTranspose a_Source,a_Transpose
Will transpose a_Source and assign the result to a_Transpose which does not have to exist, but if it
does it will be erased and recreated. a_Source must be two-dimensional. a_Source[i,j] =
a_Transpose[j,i].

mRegression a_XYdata,vn_Slope,vn_Intercept
Will do a regression analysis (Line Fit) on the data in the array a_XYdata which must be two-
dimensional and all data must be numeric. The first row contains the X values, and the second row
contains the Y values. There must be a Y value for each X value. Any non-numeric or undefined
elements will be taken as 0. The line formula is Y=mX+b where m is the slope and b the Y-Axis
intercept. vn_Slope will be assigned the slope (m). vn_Intercept will be assigned the intercept (b).

mExpFit a_XYdata,vn_Exponent,vn_Factor
Will do an Exponential Curve Fit on the data in the array a_XYdata which must be two-dimensional
and all data must be numeric. The first row contains the X values, and the second row contains the Y
values. There must be a Y value for each X value. Any non-numeric or undefined elements will be
taken as 0. The formula is Y= be(aX), where a will be assigned to vn_Exponent and b to vn_Factor.

Note: eX is the exponential to the base e, which is Exp() in RobotBASIC.

RobotBASIC V4.2.0

Page 163 of 276

mLogFit a_XYdata,vn_Factor,vn_Translation
Will do a Logarithmic Curve Fit on the data in the array a_XYdata which must be two-dimensional
and all data must be numeric. The first row contains the X values, and the second row contains the Y
values. There must be a Y value for each X value. Any non-numeric or undefined elements will be
taken as 0. The formula is Y=aLn(X)+b . a will be assigned to vn_Factor and b to vn_Translation.

Note: Ln() is the natural logarithm, which is NLog() in RobotBASIC.

mPolyFit a_XYdata,a_Coefficients
Will do a Polynomial Curve Fit on the data in the array a_XYdata which must be two-dimensional and
all data must be numeric. The first row contains the X values, and the second row contains the Y
values. There must be a Y value for each X value. Any non-numeric or undefined elements will be
taken as 0. The formula is Y = A0+A1X+A2X

2+……+AmXm. You must specify the required order of
the polynomial in a_Coefficients[0]. After the command executes the array a_Coefficients will contain
m+1 elements where a_Coefficients[0] = A0, a_Coefficients[1] = A1, a_Coefficients[2] = A2,
......a_Coefficients[m] = Am. Where m is the number that was originally in a_Coefficients[0] (i.e.
polynomial order).

If a_Coefficients[0] is not specified or is less than 1 it will be made 1 (i.e. straight line). The amount of
data points in the a_XYdata array has to be appropriate for the desired order of the polynomial
required. If you need a quadratic you will need at least 3 data points. For a cubic 4 data points and so
on. That is you need m+1 data points to be able to find a polynomial of order m that fits the m points.

Note: Remember that before invoking the command a_Coefficients[0] must be set to the desired
polynomial order. After the command is invoked a_Coefficients[0] will be overwritten and set to
the value of A0.

Example:
//---y data
data y;.486,.866,.944,1.144,1.103,1.202,1.166,1.191,1.124,1.095,1.122
data y;1.102,1.099,1.017,1.111,1.117,1.152,1.265,1.380,1.575,1.857
n = maxdim(y,1) \ dim Points[2,n]
for i=0 to n-1
 Points[0,i] = i*.05 \ Points[1,i] = y[i]
next
m = 5 \ data Coefficients;m //change m to 2 and 3 and 4 to see the
effects
mPolyFit Points,Coefficients
data GPSpec;-1 \ mGraphPaper GPSpec
data GSpec;-1,,,,0,5 \ mPlotXY GSpec,Points
for i=0 to n-1
 Points[1,i]=0
 for j=0 to m
 Points[1,i] = Points[1,i]+Coefficients[j]*Points[0,i]^j
 next
next
GSpec[4] = blue \ mPlotXY GSpec,Points
xystring 140,100,Max(y) \ xystring 140,490,Min(y)
xystring 600,520,(n-1)*0.05 \ xystring 190,520,0
xystring 370,520,"X-Axis" \ xystring 130,300,"Y-Axis"

RobotBASIC V4.2.0

Page 164 of 276

mSortR a_Name{,ne_OnRowNumber{,ne_Descending}}
Sorts the array which can be 1 or 2-dimensional. If it is 2-dimensional sorting will be carried out on the
data in the row specified by ne_OnRowNumber. If the row number is not specified it will be performed
on the first Row (row 0) (row and column numbering start with 0). The data in the other rows will be
moved around to maintain the same association between the rows. That is the columns are moved to fit
in the correct sort order depending on the value in the specified row (or first row if it is not given). If
ne_Descending is not given or is false then the sort is in ascending order, if it is true then the sort order
will be in descending order. The elements in a row must be of the same data type, but the elements in a
column can be of different data types. This can be helpful in creating databases, where the elements in
a column are the different fields of the database and each column is a record.
Note: You can still use mSort a_Name{,ne_OnRowNumber} which was in versions prior to V4.1.0.
Example:

data a;"John","Ted","Pam","Sue" //names
data a;45 ,55 ,20 ,10 //ages
data a;30045,30067,30045,20022 //zip codes
Dim b[3,4] //make a 2-d array to hold data
mCopy a,b //copy the data into it
mSortR b //sort data by name
gosub print_data //a subroutine to display the data in a good format
mSortR b,2 //sort data by zipcode
gosub print_data
mSortR b,1 //sort data by age
gosub print_data
mSortR b,,1 //sort data by name again but in descending order
gosub print_data

mSortC a_Name{,ne_OnColumnNumber{,ne_Descending}}
Sorts the array which can be 1 or 2-dimensional. If it is 2-dimensional sorting will be carried out on the
data in the column specified by ne_OnColumnNumber. If the column number is not specified it will be
performed on the first Column (column 0) (row and column numbering start with 0). The data in the
other columns will be moved around to maintain the same association between the columns. That is the
rows are moved to fit in the correct sort order depending on the value in the specified column (or first
column if it is not given). If ne_Descending is not given or is false then the sort is in ascending order,
if it is true then the sort order will be in descending order. The elements in a column must be of the
same data type, but the elements in a row can be of different data types. This can be helpful in creating
databases, where the elements in a row are the different fields of the database and each row is a record.
Example:

data a;"John",45,30045 //name,age,zipcode
data a;"Ted" ,55,30067 //name,age,zipcode
data a;"Pam" ,20,30045 //name,age,zipcode
data a;"Sue" ,10,20022 //name,age,zipcode

Dim b[4,3] //make a 2-d array to hold data
mCopy a,b //copy the data into it
mSortC b //sort data by name i.e. column 0 by default
gosub print_data //a subroutine to display the data in a good format
mSortC b,2 //sort data by zipcode
gosub print_data
mSortC b,1 //sort data by age
gosub print_data
mSortC b,,1 //sort data by name again but descending order
gosub print_data

RobotBASIC V4.2.0

Page 165 of 276

mDFT a_Samples{,ne_WindowFunction}
mFFT a_Samples{,ne_WindowFunction}

These two commands will perform a Complex Discrete and Fast Fourier Transform frequency spectral
analysis on a set of sample data. The array a_Samples has to be a 2-dimensional array with at least 8
rows and 16 elements in each row so a_Samples has to be [>=8, >=16]. The first and second rows
(rows 0 and 1) should hold the sample data. The row 0 hold the REAL part and row 1 the
IMAGINARY part of the samples. If the samples are Just REAL values (i.e. not Complex) then just
leave row 1 empty and do not assign any elements any values. Any elements in the rows that are not
valid numbers (integer or float) will be taken to be 0.

ne_WindowFunction specifies a value for one of 5 different Window Functions (or none) to apply to
the sample data. If ne_WindowFunction is not given or is sw_NoWindow then no window is applied.
See RobotBASIC Constants section for valid window function codes (e.g. sw_Hamming).

For the following discussion N is the number of elements in row 0 (i.e. the number of samples). That is
the elements go from 0 to N-1.

If N > 4096 then only 4096 will be taken into account. If N < 16 then an error will be given. If the
array is not dimensioned to be 8 rows or more then an error will be given but if it has more rows than 8
then the other rows will be ignored.

For mDFT N can be any number >=16 and <= 4096. However, for mFFT N has to be a power of 2 (e.g.
16, 32, 64 etc.) an if it is not then the remaining elements up to the next power of two will be assumed
to be 0. For example if there are 20 elements only, then the remaining 12 (32-20 = 12) will be assumed
to be 0.

Rows 2 to 7 (i.e. third to eighth rows) will be filled with N/2+1 values (i.e. from 0 to N/2) in each row
as follows:

- Row 2 will be assigned the amplitude of the harmonic frequencies (see note below). Element 0 is
the DC magnitude. Element 1 will be the magnitude of the first harmonic (fo) the second will be
the magnitude of the second harmonic (2fo) an so on until N/2.

- Row 3 will be assigned the power of the harmonic frequencies (see note below).
- Row 4 will be assigned the real part of the Complex DFT/FFT result.
- Row 5 will be assigned the imaginary part of the Complex DFT/FFT result.
- Row 6 will be assigned the magnitude of the Complex DFT/FFT result.
- Row 7 will be assigned the phase of the Complex DFT/FFT result.

Note: For mFFT if Actual_N is less than the Assumed_N (i.e. higher number that is a power of two)
and Assumed_N/2+1 is > Actual_N then there will only be as many elements in each row as
Actual_N. That is the rows will not be expanded. FFT results are not valid if the number of samples is
not a power of two. Always make sure that the number of samples is a power of two for mFFT. For
mDFT that is not necessary but is advisable.

Note: The fundamental frequency's value (fo) is dependant on the sampling rate and the number of
samples. The Nyquist criterion dictates that the maximum possible frequency content is 0.5/sampling
rate. The Nyquist criterion dictates that if you have N samples then the DFT/FFT will return N/2+1
results with the 0th value being the DC component. Then value 1 is for the fundamental frequency (fo)
and then value 2 is for 2fo and so on.

RobotBASIC V4.2.0

Page 166 of 276

Here is an example to calculate the DFT and FFT values for a square wave (+1 to -1 but change it and
see how it affects the harmonic contents and verify against a normal Continuous FT):

NDFT = 20 \ NFFT = 32 //change the 32 to none power of 2 and
dim a[8,NDFT], b[8,NFFT] //see how the results become invalid
for i=0 to NDFT-1
 a[0,i] = 1
 if i >= NDFT/2 then a[0,i] = -1 //change this to 0 and see what happens
next
for i=0 to NFFT-1
 b[0,i] = 1
 if i >= NFFT/2 then b[0,i] = -1 //change this to 0 and see what happens
next
mDFT a,sw_NoWindow \ mFFT b,sw_NoWindow //change the window types
fmt = "##0.0000 "
data x;center("DFT data"," ",50)
data x;"Amplitude Power Real(X) Imag(X) Mag(X) Phs(X)"
data x;sRepeat("=",58)
for i=0 to NDFT/2
 s = ""
 for j=2 to 7
 s += format(a[j,i],fmt)
 next
 data x;s
next
data x;x[2],center("FFT data"," ",50),x[2]
for i=0 to NFFT/2
 s = ""
 for j=2 to 7
 s += format(b[j,i],fmt)
 next
 data x;s
next
msgbox(x,"DFT and FFT calculations:")
for i=0 to NFFT/2
 if i <= NDFT/2 then data dx;i-.05,i,i+.05 \ data dy;0,a[2,i],0
 data fx;i-.05,i,i+.05 \ data fy;0,b[2,i],0
next
data g1;10,10,300,300 \ mGraphPaper g1 \ mPlotXY g1,dx,dy
data g2;400,10,300,300\ mGraphPaper g2 \ mPlotXY g2,fx,fy
xyText 200,50,"DFT",,20,fs_Bold \ xyText 600,50,"FFT",,20,fs_Bold

Arrays Statistical Functions

Sum(a_Data)
Returns the sum of all the elements of the array which must be one or two-dimensional and contain
only numerical data. If it is two-dimensional then the second row must contain the frequencies for the
data in the first row. If there is no corresponding frequency for any data value in the first row then it
will be considered 1.

mSum(a_Data)
Returns the sum of all the numeric elements of the array which can be any dimensions and can contain
any data. Any string elements will be disregarded and will not contribute to the sum.

RobotBASIC V4.2.0

Page 167 of 276

Average(a_Data)
Returns the average of the elements of the array which must be one or two-dimensional and contain
only numerical data. If it is two-dimensional then the second row must contain the frequencies for the
data in the first row. If there is no corresponding frequency for any data value in the first row then it
will be considered 1.

mAverage(a_Data)
Returns the average of all the numeric elements of the array which can be any dimensions and can
contain any data. Any string elements will be disregarded and will not contribute to the sum or the
count.

Median(a_Data)
Returns the Median value of the elements of the array which must be one-dimensional and contain only
numerical data.

Max(a_Data)
Returns the largest element of the array which must be one or two-dimensional and contain only
numerical data. If it is two-dimensional then the second row will be ignored, as it has no bearing on the
determination of the maximum value.

mMax(a_Data)
Returns the value of the maximum numeric element of the array which can be any dimensions and can
contain any data. Any string elements will be disregarded.

Min(a_Data)
Returns the smallest element of the array which must be one or two-dimensional and contain only
numerical data. If it is two-dimensional then the second row will be ignored, as it has no bearing on the
determination of the minimum value.

mMin(a_Data)
Returns the value of the minimum numeric element of the array which can be any dimensions and can
contain any data. Any string elements will be disregarded.

Range(a_Data)
Returns the difference between the largest and smallest elements of the array which must be one or
two-dimensional and contain only numerical data. If it is two-dimensional then the second row will be
ignored, as it has no bearing on the determination of the range value.

mRange(a_Data)
Returns the difference between the values of the maximum and minimum numeric elements of the
array which can be any dimensions and can contain any data. Any string elements will be disregarded.

Count(a_Data)
Returns the number of elements in the array which must be one or two-dimensional and contain only
numerical data. If it is two-dimensional then the first row will be ignored, as it has no bearing on the
determination of the count. The count will be the sum of all the frequencies in the second row. If there
are data in the first row without a corresponding frequency then the frequency will be considered to be
1.

RobotBASIC V4.2.0

Page 168 of 276

mCount(a_Data)
Returns the number of numeric elements in the array which can be any dimensions and can contain any
data. Any string elements will be disregarded.

Variance(a_Data)
Returns the Variance of the elements of the array which must be one or two-dimensional and contain
only numerical data. If it is two-dimensional then the second row must contain the frequencies for the
data in the first row. If there is no corresponding frequency for any data value in the first row then it
will be considered 1.

mVariance(a_Data)
Returns the Variance of the numeric elements of the array which can be any dimensions and can
contain any data. Any string elements will be disregarded.

StdDev(a_Data)
Returns the Standard Deviation of the elements of the array which must be one or two-dimensional and
contain only numerical data. If it is two-dimensional then the second row must contain the frequencies
for the data in the first row. If there is no corresponding frequency for any data value in the first row
then it will be considered 1.

mStdDev(a_Data)
Returns the Standard Deviation of the numeric elements of the array which can be any dimensions and
can contain any data. Any string elements will be disregarded.

CorrCoef(a_Data)
Returns the value of the Correlation Coefficient for the data in array which must be two-dimensional.
The first row contains the X values, and the second row contains the Y values. There has to be a
corresponding Y value for each X value and all data has to be numerical.

Mathematical Functions
Note: See the notes at the top of the Standard User Interfacing section.

Trigonometric Functions

Pi({ne_Multiplier})
Returns the value PI i.e. (3.141592654) multiplied by the result of ne_Multiplier which if not given is
assumed to be 1.

RtoD(ne_Radians)
Converts an angle in radians to degrees. This is the same as using the conversion
ne_Radians*180/Pi().

DtoR(ne_Degrees)
Converts an angle in degrees to radians. This is the same as using the conversion ne_Degrees*Pi()/180.

Sin(ne_Radians)
Returns the Sine of an angle in Radians. If you want to specify degrees then use the conversion DtoR().

RobotBASIC V4.2.0

Page 169 of 276

Cos(ne_Radians)
Returns the Cosine of an angle in Radians. If you want to specify degrees then use the conversion
DtoR().

Tan(ne_Radians)
Returns the Tangent of an angle in Radians. If you want to specify degrees then use the conversion
DtoR(). This function can cause an error if the angle is +/-Pi()/2 (i.e. +/-90 degrees) since the result is
infinity. If the angle is slightly more or less than 90° the result is valid but is an extremely large
number.

ASin(ExprN)
Returns the angle in radians whose Sine is ExprN. If you want to get degrees then use the conversion
RtoD(). This is the inverse of Sin().

ACos(ExprN)
Returns the angle in radians whose Cosine is ExprN. If you want to get degrees then use the conversion
RtoD(). This is the inverse of Cos().

ATan(ExprN)
Returns the angle in radians whose Tan is ExprN. If you want to get degrees then use the conversion
RtoD(). This is the inverse of Tan().

ATan2(ne_X,ne_Y)
Returns an angle in radians, given the X and Y lengths. This gives the angle 0 to PI and 0 to -PI.
Negative angles are clockwise from the X-Axis, and positive angles are counter clockwise from the X-
axis. So atan2(1,1) will give 0.785398 which is 45°, while atan2(1,-1) gives -0.78539816 which is -45°.
If x=0 and y=0 the result will be 0.0

Cartesian To Polar Functions

PolarR(ne_X,ne_Y)
Returns the Polar Radius from the x,y coordinates both must result in numbers (float or integer),
otherwise an error will occur.

PolarA(ne_X,ne_Y)
Returns the Polar Angle from the x,y coordinates. This is effectively the same as Atan2() above. The
angle returned is in radians. Both ne_X and ne_Y must be numeric (integer, or float) or an error will
occur.

Polar To Cartesian Functions

CartX(ne_Radius,ne_ThetaRadians)
This returns the Cartesian X Coordinate given the polar R, Theta (in radians). Both must be numeric
(integer, or float) or an error will occur. This is effectively the inverse of the PolarR() and PolarA()
above.

CartY(ne_Radius,ne_ThetaRadians)
This returns the Cartesian Y Coordinate given the polar R, Theta (in radians). Both must be numeric
(integer, or float) or an error will occur. This is effectively the inverse of the PolarR() and PolarA()
above.

RobotBASIC V4.2.0

Page 170 of 276

Logarithmic & Exponential Functions

NLog(ExprN)
Returns the Log to base e (e=2.178281828) of ExprN. ExprN has to be greater than zero. (ExprN > 0).

Log(ExprN)
Return the Log to base 10 of ExprN. ExprN has to be greater than zero. (ExprN > 0).

Log2(ExprN)
Return the Log to base 2 of ExprN. ExprN has to be greater than zero. (ExprN > 0).

LogB(ne_Base,ExprN)
Return the Log to base ne_Base of ExprN. Both parameters have to be greater than zero. (ne_Base > 0
also ExprN > 0).

Exp(ExprN)
Returns e raised to the power ExprN (e=2.178281828).

Exp10(ExprN)
Returns 10 raised to the power ExprN.

SqRt(ExprN)
Returns the Square-Root of ExprN. If ExprN is negative an error will occur. (ExprN >= 0).

CbRt(ExprN)
Returns the Cube-Root of ExprN.

Hyperbolic Functions

SinH(ExprN)
Returns the Hyperbolic Sine.

CosH(ExprN)
Returns the Hyperbolic Cosine.

TanH(ExprN)
Returns the Hyperbolic Tangent.

ASinH(ExprN)
Returns the inverse of Hyperbolic Sine.

ACosH(ExprN)
Returns the inverse of Hyperbolic Cosine. ExprN has to be greater than or equal to 1. (ExprN >= 1).

ATanH(ExprN)
Returns the inverse of Hyperbolic Tan. ExprN has to be greater than -1 and less than 1. (-1 < ExprN <
1).

RobotBASIC V4.2.0

Page 171 of 276

Probability Functions

Random(ExprN)
Returns a value between 0 and ExprN-1 randomly. If ExprN is not an integer it will be rounded down.
If ExprN is negative it will be made positive. If ExprN is zero or one then the result will be a random
floating point value between 0 and 0.99999999999. See SeedRandom. Do not use SeedRandom if you
want purely random numbers. The use of SeedRandom will make the random number generator
always generate the same sequence of random numbers and thus not purely random.

RandomG(ne_Mean,ne_StdDev)
Returns a random number with Gaussian distribution about the Mean with a Standard Deviation. This
is useful for simulating data with sampling errors and expected deviations from the Mean.

Factorial(ExprN)
Returns the factorial of ExprN. ExprN must be a number. If it is a float it will be made into an integer.
ExprN cannot be negative. Mathematically Factorial(n) = n!

nPr(ne_NumElementsAvailable,ne_NumElementsToSelect)
Returns the number of Permutations ne_NumElementsToSelect can be selected from
ne_NumElementsAvailable. Both must be numeric and if not integer will be converted to integer.
Neither can be negative. Also ne_NumElementsToSelect must be less than or equal to
ne_NumElementsAvailable. The formula is nPr(n,r) = n! / (n-r)!

nCr(ne_NumElementsAvailable,ne_NumElementsToSelect)
Returns the number of Combination an ne_NumElementsToSelect set can be selected from a set with
ne_NumElementsAvailable elements. Both must be numeric and if not integer will be converted to
integer. Neither can be negative. Also ne_NumeElementsToSelect must be less than or equal to
ne_NumElementsAvailable. The formula is nCr(n,r) = n! /(r! *(n-r)!)

ProbG(ne_Element,ne_Mean,ne_StdDev)
Returns the Gaussian probability for an element in a bell-shaped (normal) probability distribution.
ne_StdDev is the standard deviation (sigma) of the distribution. If ne_Mean (mean=mu=average) is
less than 0 an error will be issued. If ne_StdDev is less than or equal to zero then an error will be
issued. The returned value will be a float usually between 0 and 1, but if you provide an inappropriate
standard deviation value then the returned probability may be greater than 1.

This function uses the formula P = Exp(-(((ne_Element-
ne_Mean)/ne_StdDev)^2)/2)/sqrt(2*pi()*ne_StdDev^2)

ProbGI(ne_Probability,ne_Mean,ne_StdDev)
Returns the element in a bell-shaped (normal) probability distribution whose Gaussian probability and
mean is as given. ne_StdDev is the standard deviation (sigma) of the distribution. If ne_Mean
(mean=mu=average) is less than 0 an error will be issued. If se_StdDev is less than or equal to zero
then an error will be issued. ne_Probability must be a floating point value between 0 and 1, if it is less
than 0 it will be made 0. If it is greater than 1 then it will made 1.

Since the bell-curve is symmetrical around the mean, an element with a value above the mean (right
side) will have the same probability as a value equally spaced below the mean (left side). This function
will always return the element value below the mean (left side). Also, this function uses a numerical
solution (approximation) to the Gaussian probability function, so the result may not be the exact
inverse of ProbG() above.

RobotBASIC V4.2.0

Page 172 of 276

SeedRandom {ne_Seed}
Random() returns a totally random number and no matter how many times you use it the number
returned is always random. However, in certain situations you may require to generate a repeatable
sequence of random numbers. That is, even though the numbers in the sequence are random, you want
to have the same sequence to be repeated if you run the program again or repeat the code in a loop.
This can be achieved if you always seed the random number generator with the same seed just before
generating the sequence using Random().

If you want totally random numbers then do not use this command. If you invoke this command then
any numbers generated by Random() from that point onwards will be random but repeatable, in that if
you issue SeedRandom again with the same seed value and generate more random numbers they will
be the same as the previous sequence of generated numbers.

So random numbers generated with Random() after SeedRandom will be the same every time you run
the program or even in a loop. In the example below you will get 5 lines of 10 numbers in each line.
The 10 numbers in each line are random but the 5 lines are the same sequence. If you comment the
SeedRandom 10 line, you will get 50 totally random numbers instead of 5 lines of just 10 random
numbers.

The seed value allows you to generate different sets of numbers, but each seed value will always be
associated with the very same sequence. If ne_Seed is not specified then it will be set to 0.

Do not use this command if you want purely random numbers. The use of SeedRandom will make
the random number generator always generate the same sequence of random numbers and thus not
purely random.

Example:
for i=1 to 5
 SeedRandom 2 //comment this line and see what happens
 for j=1 to 10
 print random(100);
 next
 print
next

Financial Functions
All financial calculations involve a periodic payment (PMT) at an interest rate per period (INTR) for a
certain number of periods (TERM). There are three possible scenarios:

-You are making payments into a savings fund. At the end of a certain number of periods (TERM)
the account will have a certain amount of money called the future value (FV).

-You are paying off a loan. Some loans may have a balloon payment (BAL) at the end of the final
period (TERM). Also the amount of money borrowed is called present value of money (PV).

-You have a sum of money (PV) in an interest bearing account that will become a certain value in
the future (FV).

The PMT may be made at the end of every period as in paying off a mortgage (TYPE <>1), or at the
beginning of every period as in lease payments (TYPE =1).

The period of the INTR, PMT and TERM has to be consistent. So if the interest rate is annual then the
period is one year and payments have to be made every year. However, this is not how you usually make

RobotBASIC V4.2.0

Page 173 of 276

payments. Usually the INTR is quoted as yearly, while the PMT has to be made monthly. So in order to
make the periods consistent you must make the INTR into a monthly rate and your period becomes a
month. Also the TERM will be in months. Additionally, the INTR has to be an actual number not a
percentage; so 6% will be 0.06 (6/100.0).

All the amounts (INTR, PMT, TERM, BAL, FV and PV) have to be positive numbers (float or integer),
any negative or zero values will cause a "Function parameter is not allowed e.g. Log(-1)" error to be issued
(BAL and TYPE are allowed to be zero). Non-numeric entries will cause an error.

As an example:
You have a loan of $10,000.00 at a 5% annual interest rate for 6 years with a balloon payment of
$1,000.00. You want to find out the monthly payments.

PV = 10000 //borrowed amount
INTR = 5/100.0/12 //notice we have to use 100.0 to
 //force floating point division
BAL = 1000 //amount to be paid at end of loan
TERM = 6 * 12 //6 years is 6*12 months
TYPE = 0 //Payments at end of every month
PMT = ff_PVP(PV,INTR,TERM,BAL,TYPE)
print PMT //prints 149.11
print "Total paid=",PMT*TERM+BAL
print ff_fv(PMT,INTR,TERM,0) //prints 12490.18
print ff_pv(PMT,INTR,TERM,BAL,0) //10000
print ff_cifv(PV,INTR,TERM) //prints 13490.18

ff_FV(PMT,INTR,TERM,TYPE)
Returns the future value of a periodic payment (PMT) into a savings account at a periodic interest rate
(INTR) for a number of periods (TERM). If the payments are made at the beginning of the period then
TYPE has to be 1. If at the end of every period then TYPE = 0.

ff_FVT(PMT,INTR,FV,TYPE)
Returns the number of periods required to accumulate a future value (FV) at a periodic payment (PMT)
into a savings account at a periodic interest rate (INTR). If the payments are made at the beginning of
the period then TYPE has to be 1. If at the end of every period then TYPE = 0.

ff_FVP(FV,INTR,TERM,TYPE)
Returns the periodic payments required to be made into a savings account at a periodic interest rate
(INTR) for a number of periods (TERM) so as to accumulate a future value (FV). If the payments are
made at the beginning of the period then TYPE has to be 1. If at the end of every period then TYPE =
0.

ff_PV(PMT,INTR,TERM,BAL,TYPE)
Returns the present value of a loan you would get if you can make periodic payments (PMT) against
the loan at a periodic interest rate (INTR) for a number of periods (TERM) with a final balloon
payment (BAL). If the payments are made at the beginning of the period then TYPE has to be 1
(Lease). If at the end of every period then TYPE = 0 (mortgage).

ff_PVT(PMT,INTR,PV,BAL,TYPE)
Returns the number of periods required to pay off a loan (PV) if you make periodic payments (PMT)
against the loan at a periodic interest rate (INTR) with a final balloon payment (BAL). If the payments
are made at the beginning of the period then TYPE has to be 1 (Lease). If at the end of every period
then TYPE = 0 (mortgage).

RobotBASIC V4.2.0

Page 174 of 276

ff_PVP(PV,INTR,TERM,BAL,TYPE)
Returns the value of payments to be made periodically against a loan (PV) for a number of periods
(TERM) at a periodic interest rate (INTR) with a final balloon payment (BAL). If the payments are
made at the beginning of the period then TYPE has to be 1 (Lease). If at the end of every period then
TYPE = 0 (mortgage).

ff_CIFV(PV,INTR,TERM)
Returns the future value of a compound interest savings account with an initial amount (PV) at a
periodic interest rate (INTR) for a certain number of periods (TERM).

ff_CIT(PV,INTR,FV)
Returns the number of periods after which a compound interest savings account with an initial amount
(PV) at a periodic interest rate (INTR) will attain a future value (FV).

ff_CII(PV,FV,TERM)
Returns the periodic interest rate required for a compound interest savings account with an initial
amount (PV) to attain a future value (FV) after a number of periods (TERM).

ff_SLN(COST,SALVAGE,LIFE)
Returns the Straight Line Depreciation of an asset (COST) with a final value (SALVAGE) at the end of
its useful life (LIFE). All parameters must be > zero.

ff_SYD(COST,SALVAGE,LIFE,PERIOD)
Returns the Sum-Of-Years’-Digit depreciation of an asset (COST) with a final value (SALVAGE) at
the end of its useful life (LIFE) for a particular period (PERIOD). PERIOD and LIFE have to be of the
same period (e.g. years or months). All parameters must be > zero.

Great Circle Navigation
Note: See the notes at the top of the Standard User Interfacing section.

Great Circle and Rhumb Line Navigation

Notes:
This suite of commands will perform Great Circle (nGC_) and Rhumb Line (nRL_) navigational
calculations. All distance are in Nautical Miles. All headings are in degrees and are True headings. All
Latitudes (Parallels) and Longitudes are also in degrees.

North Latitudes and West Longitudes are Positive. South Latitudes and East Longitudes are Negative.
You specify the values as negative degrees if you need to specify S/E values. Also the returned values
will be negative to indicate S/E values.

If any value cannot be calculated it will be set to be -9999 to indicate the failure of the command to
calculate the value. The situations that can give rise to errors will be explained in the description for the
specific commands below.

Use Degrees() to convert degrees, minutes and seconds to degrees. Also use Convert() to convert other
distance scales to nautical miles. Remember that a nautical mile is 1 minute of Longitude. It is not 1
minute of Latitude except on the equator.

RobotBASIC V4.2.0

Page 175 of 276

Remember that the Prime Meridian is the Greenwich Meridian and is considered to be 0°. West of that
are Positive Longitudes up to 180° W (=180.000) and East of that are Negative Longitudes up to 180°
E (=-180.000).

The Equator is Latitude 0°. North of that are Positive Latitudes up to 90° N (North Pole = 90.000)) and
South of the Equator are Negative Latitudes up to 90° S (South Pole = -90.000)

The shortest distance between two points on the Globe is a GC course. However the GC headings have
to change continuously along the course. An easier way to navigate is to use the Rhumb Line course.
This gives a True heading that you can maintain all along the course. However this will result in a
slightly longer course. Also RL courses will not work close to the Poles since they will become tight
spirals.

ngc_DistanceHeading ne_LatA,ne_LonA,ne_LatB,ne_LonB,vn_Distance,vn_Heading
nrl_DistanceHeading ne_LatA,ne_LonA,ne_LatB,ne_LonB,vn_Distance,vn_Heading

Given the Latitudes and Longitudes of two points this command will assign the variables vn_Distance
and vn_Heading the distance and heading from the first point to the second.

nGC_ gives the Great Circle values. nRL_ gives the Rhumb Line values.

ngc_RadialPoint ne_LatA,ne_LonA,ne_Distance,ne_Heading,vn_Lat,vn_Lon
nrl_RadialPoint ne_LatA,ne_LonA,ne_Distance,ne_Heading,vn_Lat,vn_Lon

Given the Latitude and Longitude of a starting point and a distance away along a heading the command
calculates the Lat and Lon of the end point.

nGC_ gives the Great Circle values. nRL_ gives the Rhumb Line values.

The Rhumb Line version will return -9999 for both vn_Distance and vn_Heading if the Lat of the
starting point is the North or South poles (90 or -90).

ngc_LatFromLonCrossing ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_Lon,vn_Lat
Given the Latitudes and Longitudes of both ends of a course and a Lon, this command will calculate
the Lat where the course will cross the specified Lon.

If the end points of the course are on the same meridian vn_Lat will be set to -9999. Points are on the
same meridian if their Longitudes are the same or 180 apart.

ngc_LonFromLatCrossing ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_Lat,vn_Lon1,vn_Lon2
Given the Latitudes and Longitudes of both ends of a course and a Lat, this command will calculate the
Lon where the course will cross the specified Lat. There may be two Longitudes or one (two equal
values) or none. If there are none then the returned values vn_Lon1 and vn_Lon2 will be -9999. If there
is only one value then both variables will be set to that value.

ngc_FractionDistancePoint ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_FractionalDistance,vn_Lat,vn_Lon
Given the Latitudes and Longitudes of two points and a percentage of the total distance between the
points the command will calculate the Lat and Lon of the point at that fractional distance between the
two points along the track.

RobotBASIC V4.2.0

Page 176 of 276

The percentage is a fraction. So 40% should be given as 0.4.

ngc_RadialIntersection
ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_HeadingFromA,ne_HeadingFromB,vn_Lat,vn_Lon

Given the Latitudes and Longitudes of two points and a heading from the first point and another
heading from the second point the command will calculate the Lat and Lon of the point of the
intersection of the two tracks.

If there are many intersection points (e.g. tracks are the same or almost the same) then both the vn_Lat
and vn_Lon will be assigned the values -8888. If there is no intersection point then they will be
assigned -9999.

ngc_XTrackError
ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_LatD,ne_LonD,vn_XTrackDistance,vn_AlongTrackDistance

Given the Latitudes and Longitudes of two end points of a track as well as of a point off from the track,
this command will calculate the Cross Track Distance and Along Track Distance. the XTD is the
shortest distance from the off the track point to the track. The ATD is the distance from the starting
point to the point abeam the off the track point.

ngc_TrackPointsFromPoint
ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_LatD,ne_LonD,ne_DistanceFromPoint,vn_Lat1, vn_Lon1, vn_Lat2,
vn_Lon2

Given the Latitudes and Longitudes of two end points of a track as well as of a point off from the track
and a certain distance, this command will calculate the Latitudes and Longitudes of the two points on
the track that are that distance away from the off the track point.

If the distance given is the XTD then the two points will be the same point. If there are no possible
points the given distance away from the off the track point then vn_Lat1 and 2 and vn_Lon1 and 2 will
be set -9999.

Wind or Current Triangle Navigation

Notes:
This suite of commands will solve the Wind/Current Triangle. In the wind triangle there are 6 elements

Wind/Current Direction and Speed. Remember the Wind and Current directions are the True headings
where the Wind/Current is coming from.

The Airplane/Ship Heading and Speed. The Plane speed is the True Air speed. The Ship speed is the
speed through the water.

The course Heading and Ground Speed. Ground speed is the speed of the plane/ship along the ground
not through the air/water.

In the wind triangle we always know 4 values and want to calculate the other 2. Most commonly we
know the wind/current speed and direction as well as True speed and desired course and want to
calculate the heading to steer to maintain the desired course, this will also result in a Ground speed
along the course.

All speeds can be in any units (usually Knots i.e. nautical miles per hour) as long as they are consistent

RobotBASIC V4.2.0

Page 177 of 276

for both the wind/current and plane/ship. All headings are TRUE and are in degrees.

Note: Wind direction is where the wind is coming from. So when you say the wind direction is 270° then
that means that the wind is blowing from the west to the east. The commands below will assume that this is
the way you will be specifying the wind direction AS WELL AS THE CURRENT direction when using
the commands. However, sometimes with current the reported direction is the direction where the current
is heading. If that is the case then when using these formulas you need to add180° to make it a direction
rather than a heading (it does not matter if the addition results in a value > 360° RB will adjust it
automatically).

nwt_XWind ne_WindSpeed,ne_WindDirection,ne_RunwayHeading,vn_XWind,vn_HeadWind
Will calculate the Cross Wind and Head Wind components of the wind along a Runway.

nwt_GSpeedHeading
ne_WindSpeed,ne_WindDirection,ne_TrueSpeed,ne_CourseHeading,vn_GrndSpeed,vn_Heading

Given the Wind/Current speed and direction as well as the desired course heading and the plane/ship
speed will calculate the Heading to fly/sail and the resulting ground speed along the course.

The values will be set to -9999 if the course cannot be achieved due to the Wind/Current Speed being
to fast.

nwt_WSpeedDirection
ne_GrndSpeed,ne_CourseHeading,ne_TrueSpeed,ne_Heading,vn_WindSpeed,vn_WindDirection

Given the actual ground speed and the course heading as well as the speed of the plane/ship and
heading steered will calculate the wind's speed and direction.

nwt_GSpeedCourse
ne_WindSpeed,ne_WindDirection,ne_TrueSpeed,ne_Heading,vn_GroundSpeed,vn_CourseHeading

Given the Wind/Current speed and direction as well as heading steered and plane/ship speed will
calculate the resulting course and ground speed.

nwt_TSpeedHeading
ne_WindSpeed,ne_WindDirection,ne_GroundSpeed,ne_CourseHeading,vn_TrueSpeed,vn_Heading

Given the Wind/Current speed and direction as well as the desired ground speed and course heading
course heading will calculate the heading to steer and speed to maintain.

nwt_TSpeedWSpeed ne_V1,ne_V2,ne_V3,vn_TrueAirSpeed,vn_WindSpeed
This command helps in calibrating the Speed indicator. If you Fly/sail along three headings that are
120° apart and record the Ground speed maintained along the courses the command will calculate the
True speed of the plane/ship as well as the wind/current speed at the time. You can then compare this
value against the indicated value to observe the accuracy of the instrument.

Navigation Conversion Functions

Degrees({ne_Degrees{,ne_Minutes{,ne_Seconds}}})
Degrees(se_FormattedDegrees)

Converts Degrees, Minutes and Seconds to Degrees. Any of the parameters can be Integer or Float. The
function always returns a float = ne_Degrees+ne_Minutes/60.0+ne_Seconds/3600.0. You can omit any
or all of the degrees, minutes or the seconds. Any one not given will be made 0.

In the alternative format se_FormattedDegrees is a string that can contain 1, 2 or three numbers

RobotBASIC V4.2.0

Page 178 of 276

separated with anything you want. The numbers are considered to be (from left to right) the degrees,
minutes and seconds. The string could be for instance the result of Lat_DMS() etc.

se_FormattedDegrees may be for instance "45° 34.34" or "45° 34' 45.3" N" or "-45.2 56.33" or any
combination. The numbers have to be separated by any non-numeric character. Only the first three
numbers will be considered and they will be treated as in the formula above. Any number that contains
digits but is not of a valid number format will be made to be 0 in the formula above.

If the string does not contain numbers that can be converted -9999 will be returned. The FIRST VALID
number will be taken as degrees, the second as minutes and the third as seconds. Only the sign of the
FIRST number will matter and determines the sign of the result. If the second and/or the third numbers
are negative they will be considered as positive. In the formula above all the numbers will be made
positive before applying the formula. The final result will have the sign of the first number.

If the LAST letter in the string is E or S the resulting degrees value will be negative, according to the
convention used in the navigation suite, where South Latitudes and East longitudes are negative. If you
have an E or S as the last letter the number will be negative regardless of the sign used with the first
number. If you have N or W as the last letter but the negative sign is used with the first number
(degrees) then the number will be negative regardless. Examples:

print degrees() //prints 0
print degrees(,,10) //prints 0.00277777777777778
print degrees(1,,87) //prints 1.02416666666667
print degrees(23,87) //prints 24.45
print degrees(23,87,2) //prints 24.4505555555556
print degrees(34,-4.54,3.4) //prints 34.0766111111111
print degrees(54,45.33) //prints 54.7555
print degrees(-54,45.33) //prints -54.7555
print degrees("54 -45.33") //prints 54.7555
print degrees("-54° 45.33'") //prints -54.7555
print degrees("54° 45.33' N") //prints 54.7555
print degrees("54° 45.33' S") //prints -54.7555
print degrees("54° 45.33' 34.3"" N")//prints 54.7650277777778
print degrees("54:45.33:34.3") //prints 54.7650277777778
print degrees("54:45.33:34.3 N") //prints 54.7650277777778
print degrees("54:45.33:34.3 S") //prints -54.7650277777778
print degrees("54, 45.33Sabc34.3") //prints 54.7650277777778
print degrees(", 45.33Sabc34.3") //prints 45.9016666666667
print degrees("0, 45.33Sabc34.3") //prints 0.7650277777778
print degrees("sdfsd") //prints -9999

Lat_DMS(ne_Degrees)
Lon_DMS(ne_Degrees)

Will return a string that looks like this:
 dd° mm' ss.s" N for the Lat_ version (S if ne_Degrees is negative)
 ddd° mm' ss.s" W for the Lon_ version (E if ne_Degrees is negative)

The ne_Degrees value is converted to Degrees, Minutes and Seconds and then put into the string as
shown above. The seconds field will always have one decimal place. You can convert a formatted
string back to a number using Degrees().

RobotBASIC V4.2.0

Page 179 of 276

Lat_DM(ne_Degrees)
Lon_DM(ne_Degrees)

Will return a string that looks like this:
 dd° mm.mmm' N for the Lat_ version (S if ne_Degrees is negative)
 ddd° mm.mmm' W for the Lon_ version (E if ne_Degrees is negative)

The ne_Degrees value is converted to Degrees and Minutes and then put into the string as shown
above. The minutes field will always have 3 decimal places. You can convert a formatted string back to
a number using Degrees().

String Functions
Note: See the notes at the top of the Standard User Interfacing section.

String Manipulation Functions

CrLf()
Returns a string that is the two characters sequence Carriage Return and Line Feed =
char(13)+char(10). This is useful in some commands and functions where a list of strings is
incorporated into one string with Cr/Lf pair of characters as a separator between them. Instead of
having to remember the sequence and what characters code numbers they are, you can use this function
to get the sequence.

Length(se_Text)
Returns the length of the resulting string from se_Text.

Trim(se_Text)
Returns se_Text without leading or trailing spaces.

LeftTrim(se_Text)
Returns se_Text without leading space.

RightTrim(se_Text)
Returns se_Text without trailing spaces

NoSpaces(se_Text)
Returns se_Text without any spaces, even within the string not just left and right.

Substring(se_Text{,ne_StartChar{,ne_NumCharacters}})
Returns a string consisting of ne_NumCharacters from se_String starting at character ne_StartChar. If
ne_StartChar is not given or is <1 then first character is assumed. If ne_StartChar is longer than the
string then the function will return a null string (""). If ne_NumCharacters is more than there are
characters available starting at the given position or is not given or is < 1 then function will return all
the remaining characters starting at the ne_StartChar.

Left(se_Text,ne_NumChars)
Returns a string containing ne_NumChars from the string starting from first character. This is
equivalent to Substring(se_Text,1,ne_NumChars).

RobotBASIC V4.2.0

Page 180 of 276

Right(se_Text,ne_NumChars)
Returns a string containing ne_NumChars from the string ending with the last character. This
equivalent to Substring(se_Text, Length(se_Text)+1-ne_NumChars,ne_NumChars). If
ne_NumChars < 1 then 1 is assumed. If it is > the length of the string then the length of the string is
assumed.

InString(se_Main,se_Sub{,ne_StartFrom})
Returns the position of the first occurrence of se_Sub within se_Main. if the sub does not occur inside
the main then 0 is returned. If ne_StartFrom is specified then the search will start from the character
number ne_StartFrom. Character counting starts with 1. So first character is character 1. If
ne_StartFrom is not specified or is less than 1 it will be made 1. If it is greater than the length of the
se_Main string then the function will obviously return 0.
Example:

S = "This is a test"
s = "is"
print Instring(S,s) //prints 3
print Instring(S,s,99) //prints 0
print Instring(S,s,3) //prints 3
print Instring(S,s,4) //prints 6
print Instring(S,s,9) //prints 0

Contains(se_Text,se_CharList)
Returns a string that contains the characters in se_charList which occur in the se_Text. The function
searches inside se_Text for each character in se_CharList to see if it occurs at least once and if it does it
will be part of the returned string. For example:

print Contains("this is a test","abcdefghi") //prints aehi

Note: Note the contrast to InString().

NotContains(se_Text,se_CharList)
Returns a string that contains the characters in se_charList which do not occur in the se_Text. The
function searches inside se_Text for each character in se_CharList to see if it does not occur at all and
if it does not it will be part of the returned string. For example:

print NotContains("this is a test","abcdefghi") //prints bcdfg

Note: Note the contrast to Contains().

Upper(se_Text)
Returns se_Text with all characters converted to upper case.

Lower(se_Text)
Returns se_Text with all characters converted to lower case.

Proper(se_Text)
Returns se_Text with the first character of each word in capital and the rest of the characters in the
word as lower case. Words are separated with spaces. e.g. print Proper("this is a test") would print This
Is A Test.

Spaces(ne_NumOfSpaces)
Returns a string of ne_NumOfSpaces spaces.

RobotBASIC V4.2.0

Page 181 of 276

sRepeat(se_RepeatChars,ne_NumTimes)
Returns a string with se_RepeatChars repeated ne_NumTimes times.

Center(se_Text,se_PadChar,ne_NumChars)
Returns the string se_Text centered within the length ne_NumChars. The character on the left and right
of the string will be the first character in se_PadChar. If se_PadChar is empty then the space character
will be used. se_Text will be left and right trimmed before the operation is done. That is all space
characters from the left and right will be removed. If the length of se_Text (after trimming) is greater
than ne_NumChars then se_Text will be returned unchanged.
Example:

print "-",JustifyR(" test ","",10),"-" // prints - test-
print "-",JustifyL(" test ","",10),"-" // prints -test -
print "-",Center(" test ","",10),"-" // prints - test -

JustifyL(se_Text,se_PadChar,ne_Len)
Returns the string se_Text padded (on the right) up to the length ne_Len with the first character in
se_Pad. If se_Pad is empty then the space character will be used. se_Text will be trimmed on the left
before padding. If the length of se_Text (after trimming) is greater than ne_Len then se_Text will be
returned unchanged. This is useful for left justifying the string within a certain width. See example in
Center() above.

JustifyR(se_Text,se_PadChar,ne_Len)
Returns the string se_Text padded (on the left) up to the length ne_Len with the first character in
se_Pad. If se_Pad is empty then the space character will be used. se_Text will be right trimmed before
padding. If the length of se_Text (after trimming) is greater than ne_Len then se_Text will be returned
unchanged. This is useful for right justifying the string within a certain width. See example in Center()
above.

Insert(se_Text,se_Insert,ne_CharNum)
Returns a string that is se_Text with se_Insert inserted inside it just before the ne_CharNum chararcter.
If char number is less than 1 then 1 will be assumed and if it is longer than the length of se_Text then
se_Insert will be inserted at the end of se_Text (i.e. concatenated). For example:

s = "-test-"
print Insert(s,"hh",-1) //prints hh-test-
print Insert(s,"hh",1) //prints hh-test-
print Insert(s,"hh",3) //prints -thhest-
print Insert(s,"hh",length(s)) //prints -testhh-
print Insert(s,"hh",50) //prints -test-hh

Replace(se_OriginalString,se_NewSubString,ne_StartingAt)
Returns se_OriginalString with the characters starting at and including the ne_StartingAt character
replaced by se_NewSubString. As many characters as there are in replacement string will be replaced.
If ne_StartingAt is less than 1 then 1 will be assumed and if it is longer than the length of the original
string then the replacement will be inserted at the end of the original (i.e. concatenated). If the
remaining length of se_OriginalString after the neStartingAt character is less than the length of
se_NewSubString then the characters starting at the ne_StartingAt character from the original will be
dropped and the new substring will be concatenated to the remaining initial part of se_Original. For
example:

s = "-test-"
print Replace(s,"hh",-1) //prints hhtest-
print Replace(s,"hhhhhhhh",-1) //prints hhhhhhhh
print Replace(s,"hh",1) //prints hhtest-
print Replace(s,"hhhhhhhh",1) //prints hhhhhhhh
print Replace(s,"hh",3) //prints -thht-
print Replace(s,"hhhhhhhh",3) //prints -thhhhhhhh

RobotBASIC V4.2.0

Page 182 of 276

print Replace(s,"hh",length(s)) //prints -testhh
print Replace(s,"hhhhhhhh",length(s)) //prints -testhhhhhhhh
print Replace(s,"hh",50) //prints -test-hh
print Replace(s,"hhhhhhhh",50) //prints -test-hhhhhhhh

Substitute(se_Text,se_TextToReplace,se_ReplaceWith)
Returns se_Text with all the occurrences of the string se_TextToReplace within it replaced with
se_ReplaceWith. se_TextToReplace and se_ReplaceWith do not have to be the same length. For
example:

s = "a;testing;b"
print substitute(s,";",", ") //prints a, testing, b

ToCommaText(se_Text)
Given seText which is a string with substrings in it that are all separated with Cr/Lf will returns a
string that has all the substrings separated with commas. Any substrings that contain a comma or
a space will be surrounded with quotations (""). If the string contains a quotation already then it
will be doubled just like when you want to specify a quotations in an RB normal string (see
examples).

Extract(se_Text,se_SeparatorChars,ne_Part)
Returns the ne_Part part of se_Text separated by the separator se_Separator. se_Text is a string with
data separated by characters specified in se_Separator. Extract() will return the data part number
ne_Part. If ne_Part is greater than the number of parts Extract() will return the last part. If se_Text does
not contain the separator characters specified in se_Separator then se_Text will be returned. If ne_Part
is not a number an error will be given. If it is not an integer it will be made into an integer. If it is less
than 1 then it is made into 1.
 a = "test,5,2.4"
 b = ","
 print Extract(a,b,2) //will print 5
 print Extract(a,b,3) //will print 2.4
 print Extract(a,b,6) //will print 2.4
 b = ";"
 print Extract(a,b,1) //will print test,5,2.4

NumParts(se_Text,se_Separator)
Returns the number of parts a string se_Text has that are separated by characters specified in
se_Separator. This function is used to determine the count of parts to help with Extract(). If se_Text
does not contain the separator characters specified then 0 is returned.
Example:

s = "test,67,345,abs" \ d = ","
For i=1 to NumParts(s,d)
 print Extract(s,d,i)
next
//will print test then 67 then 345 then abs

Encrypt(se_Text,se_Key)
Returns a string that is the exact same length as se_Text but with all the characters from se_Text
encrypted according to the password key se_Key. If se_Key is less than 2 characters then no encrypting
occurs and the original text is returned. The text and key can be any lengths and can contain any
characters. The key can even be longer than the text. You can encrypt an entire text file by reading it
into a string and then encrypting it then saving it back to the file. See the example.

Note: - To decrypt an encrypted text you need to encrypt it with the original key.
- The encrypted text will contain all sorts of un-displayable characters and may even contain the

character with ASCII code zero. These characters will not be displayable. The encrypted string
is just that, a string and can be manipulated as a normal string. But it contains characters that

RobotBASIC V4.2.0

Page 183 of 276

may not display properly when the string is printed on the screen using Print, xyText, xyString,
or in an Edit box or a Memo box etc.

Example:
Addedit "Key",10,30,200
xyText 30,5,"Key",,15,fs_Bold
xyText 90,60,"Text",,15,fs_Bold
AddMemo "Text",10,90,350,300
AddMemo "Text2",370,90,350,300
SetMemoScrollBars "Text",1 \ SetMemoScrollBars "Text2",1
wrapmemo "Text",0 \ ReadOnlyMemo "Text2"
AddButton "Encrypt",220,30
data txt;"This text will be encrypted using the key you specify"
data txt;"in the edit box above.",""
data txt;"The result will be displayed in the memo to the right.",""
data txt;"Then the encrypted text will decrypted and placed back"
data txt;"in this memo.",""
data txt;"If there is any loss in the encryption/decryption action"
data txt;"the result below will be (0 i.e. false). Also you will"
data txt;"see that this text has changed.",""
data txt;"You may notice that the encrypted text's length does not"
data txt;"match the length of this text. This is due to the encrypted"
data txt;"text containing un-displayable characters."
setMemoText "Text",mToString(txt)
while true
 if LastButton() != ""
 s = GetMemoText("Text") \ k = GetEdit("Key")
 t = Encrypt(s,k)
 SetMemoText "Text2",t
 t = Encrypt(t,k)
 SetMemoText "Text",t
 xystring 10,550,"Original = Restored? ",t=s
 endif
wend

Soundex(se_Text{,ne_Length})
Returns a code representing the sound of the string resulting from se_Text. The length of the code will
depend on the value ne_Length which if is less than 4 or is not given will default to 4. The Soundex
code can be used to search for words that sound the same e.g. Smith and Smyth will give the same
code. The first letter of the code is always the first letter of the original string.
Example:

print Soundex("Smith") //prints S530
print Soundex("Smyth") //prints S530
print Soundex("Smythe") //prints S530
print Soundex("Smith",6) //prints S53000
print Soundex("Smyth",7) //prints S530000
print Soundex("Smythe",8) //prints S5300000
print Soundex("Lincoln") //prints L524
print Soundex("lincoln") //prints L524
print Soundex("lincoln",6) //prints L52400

RobotBASIC V4.2.0

Page 184 of 276

Regular Expression String Functions

Regular Expression (RegExp) function allow for an advanced string searching (and replacing)
functionality. RegExp is a very involved subject which has entire books dedicated to explaining and
teaching how to use RegExps to accomplish tasks as searching strings for numbers, email addresses,
HTML tags and much more. A good place to go to start learning about RegExps is the web site listed
below. It has a very good tutorial as well as links to books and other resources. You can use RobotBASIC's
RegExp functions while studying the tutorial sessions on the site. Also see the example code below:
 http://www.regular-expressions.info

RobotBASIC's RegExp engine functions in a similar (not exact) manner to Perl's extended RegExp
standards and almost all (almost) of the examples and topics on the above web site can work using RB's
functions.

re_SetUp() allows you to specify a template search pattern which will then be used to search through a
string of text. re_Match() enables you to see if the ENTIRE string is a match to the pattern. re_Search()
allows you to see if the pattern matches a PART of the string. If re_Search() is successful you can use the
re_Start() and re_End() to get the character position of the start of the match and the character position just
after the end of the match. You can use the re_Search() repeatedly to search for the next occurrence of the
pattern.

You can also use re_Replace() to replace any or all matches to the pattern from the string to a different
text.

The search template pattern can have groups (see the web site tutorial). The re_GrpNumber() allows you to
retrieve the numerical order of a named group. The re_NumOfGrps() gives the number of groups in the
pattern.

When a pattern matches within the search string using re_Search() you can obtain the position of the start
and end of a match to any of the groups within the template pattern with re_Start() and re_End() with the
group number option.

Note: It is important that you follow the following order of actions to obtain successful results from
RB's RegExp functions:
1- You must specify the search template pattern using re_Setup() before you use any other functions.
2- You must then either use re_Match() to match the Entire string to the pattern, OR, you must use

re_Search() to initiate an initial search. Both functions return true if there is a match and false
otherwise.

3- If se_Search() is successful you can obtain the character number within the string where the
match occurred and the character number just after the end of the match (Length = End-Start)
using re_Start() and re_End().

4- To get the next match reissue re_Search() but this time specify the ne_StartCharacter parameter to
start the matching from a different position other than the start of the string (usually you would
use the re_End() returned value). Again if it is successful you can repeat step 3 above.

5- To perform a replace operation you need to issue re_Replace() after step 1 above.
6- You can get the number of a named group in the pattern using re_GrpNumber() after step 1

above.
7- You can obtain the number of groups in the pattern using the re_NumOfGrps() after step 2 above

results in a successful match.
8- You can get the character position number of a sub-match to any group using the

re_Start(ne_grpnumber) and the end using re_End(ne_grpnumber) after step 2 above.

RobotBASIC V4.2.0

Page 185 of 276

Note: In RobotBASIC character position numbers start with 1 for the first character 2 for the second and so
on. In other languages RegExp functionality may use Zero indexing where 0 is the first character. So
you may want to check the numbering if you copy examples from other languages (e.g. Perl).

Note: Group numbering starts with 1 for the first group and so on. However, group number 0 is the
ENTIRE RegExp. The order proceeds from Left to Right.

Note: Named Group numbering starts after all unnamed groups have been assigned numbers. So if there
are 3 unnamed groups and 2 named groups. Then the first unnamed group will be group 1 the second
is group two and the third group 3, REGARDLESS of where the named groups might occur before
or between or after these unnamed groups. Also remember that group 0 is the entire RegExp. So the
first named group will be group number 4 and the second will be number 5. Also notice that in this
example re_NumOfGrps() will return 5 since there are 5 actual groups (remember there is an
implicit 6th group which is the entire RegExp and is group 0 always). The numbering is from left to
right. But remember that the named groups will start after the unnamed ones even if a named group
occurs to the left of an unnamed one (see examples later).

Note: re_Start() and re_End() have a meaningful value ONLY after an re_Search() or re_Match() has
been issued. If they are not successful in a match then both functions will return 0.

Note: re_NumOfGrps() only returns the correct number of groups after an re_Search() or re_Match()
has resulted in a successful match.

Example:
//-----example to demo all RegExp functions and how to use them
x = re_Setup("\d[+-]\d")
data s;"3+5","4-7","45+A5"," 4+5 "
data a;"Not Match","Match"
for i=0 to 3
 print "'",s[i],"' does ",a[re_Match(s[i])]
next
print srepeat("=",30)
for i=0 to 3
 print "'",s[i],"' does ",a[re_Search(s[i])]," starting at ",re_Start()," ending at
",re_End(),
 if re_Start()
 print " the portion = """,substring(s[i],re_Start(),re_End()-re_Start()),""""
 else
 print
 endif
next
print srepeat("=",30)
s = "In this text we are going to replace all occurences of 'we' and 'is' to XXXX"
x = re_Setup("(we)|(is)")
ss = re_replace(s,"XXXX")
print s,crlf(),ss
print srepeat("=",30)
x = re_Search(s) //we need to match before we count groups
print "There are ",re_NumOfGrps()," groups in the template"
for i= 1 to re_NumOfGrps()
 n=0 \ print " Group ",i," matches at :"
 while re_Search(s,n)
 x=re_start(i) \ y = re_End(i)
 if y
 print "";x;y;" = """,substring(s,x,y-x),""""
 n=y
 else
 n = n+1
 endif
 wend
 print

RobotBASIC V4.2.0

Page 186 of 276

next
print srepeat("=",30)
tmp = "(?<Test>we)|(is)"
x = re_Setup(tmp)
print "In this template ",tmp," there is a named group"
print "The group named 'Test' is group number ",re_GrpNumber("test")
print "notice it is number 2 even though it comes first"
print "notice when we specify the name in re_GrpNumber() the case does not matter"

re_Setup(se_Template{,ne_Mode})
Always returns true. You must invoke this function before you do other actions with other RegExp
functions. se_Template is the search pattern required and can be any expression that results in a string.
ne_Mode is a numeric expression that modifies how the RegExp functions will behave.

You can use the constants listed below in any combination by ORing them together. Also see the
RobotBASIC Constants section. If ne_Mode is not specified or is less than 0 it will be made 0 which
makes the RegExp function work in the default mode.

RE_DOTMATCHNEWLINE normally the . (dot) in a template pattern will match any
character in the string except for the new line character
(char(13)). By setting this flag in the ne_Mode parameter the
dot will be able to match any character including char(13).

RE_MULTILINE normally the ^ and $ operators in the template
pattern will match the beginning and ending of the entire search
string regardless if there are cr/lf line breaks or not. By setting
this flag in the ne_Mode the ^ and $ will match the beginning
and ending of each line in the string when there are multiple
lines separated by CR or CR/LF.

RE_IGNORECASE normally the searching and matching will be case
sensitive. By setting this flag in the ne_Mode you will make the
matching case insensitive. However characters in a character set
(i.e. inside []) will be still case sensitive.

RE_RIGHTTOLEFT normally the searching will take place from the left to
the right if no starting position is specified in re_Search() then
the start is the left. If this flag is set the matching will take place
from right to left and if no starting position is specified in
re_Search() then the start will be the end of the string. ^ will
still match the beginning of string and look ahead still goes left
to right and group numbering also will still be from left to right.

RE_IGNOREWHITESPACE normally within the template string a space or CR will be taken
as a character to match to the within the string. If this flag is set
in the ne_Mode then spaces and other white space characters
will be ignore and will no attempt will be made to match them
within the string. In this case you have to specifically specify a
space to be matched using \x20. Also the # will be taken to
indicate a comment from the # until a CR. If you need to use a #
as a match character then use \#. However, (?#xxxx) will still be
considered as a comment regardless. This is similar to the
EXTENDED mode in Perl.

You can use these in combination by ORing them together so RE_IGNORECASE |
RE_RIGHTTOLEFT will cause RB to do the matching from right to left and also to ignore the case.

RobotBASIC V4.2.0

Page 187 of 276

Note: Many of these modes can be specified explicitly in the template itself using meta-characters as
described in the RegExp specifications. See the tutorials on the web site given above.

re_Match(se_Text)
Returns true if the entire text string can be matched by the template specified in re_Setup(). Otherwise
it will return false.

re_Search(se_Text{,ne_SartFromPositionNumber})
This searches within se_Text for a match to the template and returns true if there is a match or false
other wise. If the function is successful you can use re_Start() and re_End() to obtain the character
positions of the start and end of the match or the start and end of a match to group within the template.

ne_StartFromPositionNumber if not given or is less than 1 will imply that the search will start from the
beginning of the string by default. However if the mode specified in re_Setup() has been specified to be
RE_RIGHTTOLEFT then the search will be from the right (i.e. last character) of the string. If the
parameter is specified then the search will take place from the specified position.

This is useful for repeated searching of the string. By specifying a start position as the re_End() result
from the previous search will cause the search to start right after the previously found match and thus
will search for the next match.

re_Start({ne_GroupNumber})
Returns the character number where a successful search has matched the template. If there is no
successful previous search the value returned will be 0. Character 1 is the first character etc. If
ne_Group number is specified then the value returned is the character number of a successful match to
a GROUP as specified by the number from the search template. If ne_GroupNumber is less than 1 then
it will be made 0 which is the entire pattern and thus is the same as not having specified a group
number.

re_End({ne_GroupNumber})
Returns the character number just after the substring that successfully matched the template. If there is
no successful previous search the value returned will be 0. You can obtain the length of the matched
text by using re_Start() - re_End(). If you want the character position of the last character in
the matched sub-string then subtract one from the value returned by this function.

If ne_Group number is specified then the value returned is the character number of the character just
after a successful match to a GROUP as specified by the number from the search template. If
ne_GroupNumber is less than 1 then it will be made 0 which is the entire pattern and thus is the same
as not having specified a group number.

re_GrpNumber(se_GroupName)
Returns the group number within the template of a named group as specified by the se_GroupName
expression. Remember named groups numbering starts after all the unnamed groups have been
numbered.

re_NumOfGrps()
Returns the number of groups in the template pattern. This will be the total of named and unnamed
groups.

RobotBASIC V4.2.0

Page 188 of 276

re_Replace(se_Text{,se_ReplaceWith{,ne_SartFromPositionNumber{,ne_NumberOfMatchesToReplace}}})
Returns a string with ALL or ne_NumberOfMatchesToReplace occurences of matches to the template
pattern from within the se_Text replaced with the se_ReplaceWith text.

If se_ReplaceWith is not specified it will be made into an empty string ("") which means the matched
subtext will be deleted. If ne_NumberOfMatches to replace is not given or is less than 1 it will result in
ALL matches being replaced. If ne_StarFromPositionNumber is not given or is less than 1 it will cause
the matching to the template to start from the beginning of the text (or end if the mode is set to
RE_RIGHTTOLEFT).

Conversion Functions
Note: See the notes at the top of the Standard User Interfacing section.

Scaling And Weight & Measure Conversion

Convert(ne_ValueToConvert, ne_ConversionTypeCode)
Will return a value that is the conversion of the ne_ValueToConvert multiplied by a factor depending
on the ne_ConversionTypeCode given.

See the RobotBASIC Constants section for the conversion codes. The returned result will always be a
float.

For example :
 print Convert(30, cc_DCtoDF) //prints 86 since 30 celsius is 86
fahrenhite
 print Convert(86, cc_DFtoDC) //prints 30
 print Convert(1, cc_NMtoKM) //prints 1.852 1nm = 1.852 Km

Map(ne_FromValue, ne_FromMin, ne_FromMax, ne_ToMin, ne_ToMax)
This function returns a value calculated as a mapping from a certain scale to another. ne_FromValue is
a value that is according to the scale defined by the range ne_FromMax-ne_FromMin. The value will
be scaled to the new scale defined by the range ne_ToMax-ne_ToMin.

The formula is
 Returned Value = ne_ToMin + (ne_FromValue-ne_FromMin)*(ne_ToMax-
ne_ToMin)/(ne_FromMax-ne_FromMin).

If ne_FromMin = ne_FromMax or ne_ToMin = ne_ToMax an error will be issued.

It is up to you to ensure that the Min and Max values are in that order. However it also be useful to
specify them in the reverse order as when converting the Y-coordinate to Screen Y since the Screen has
the 0 at the top and the Max at the bottom. Specifying Min as the high value and Max as the low value
will reverse the mapping so as to make the graph appear the right way up. See mPlotXY for how this is
done.

It is OK for ne_FromValue to be outside the From_Range, the returned value will also be outside the

RobotBASIC V4.2.0

Page 189 of 276

To_Range but correctly according to scale.

This function can be of use in mapping a value in a certain scale to a value within another scale. For
example when plotting a graph of data on the screen this function can be useful in converting a data x-
point or y-point to a screen x-point or y-point.

Also see mPlotXY

Sign Conversion

Abs(ExprN)
Returns the Absolute value of ExprN. Returns ExprN as a positive number.

Sign(ExprN)
Returns -1 if ExprN is negative, 1 if positive and 0 if zero.

Float & Integer Conversion

Round(ExprN)
Will return the Integer value closest to the Float value ExprN.
 Round(3.4) => 3 Round(3.5) => 4 Round(3.6)=> 4

 Round(-3.4) => -3 Round(-3.5) => -4 Round(-3.6)=> -4

RoundUP(ExprN{,ne_Type})
If ne_Type is not specified or is 0 (false) the function will round UP the float ExprN regardless of the
sign of the float.
 RoundUp(3.4) => 4 RoundUp(3.5) => 4 RoundUp(3.6) => 4

 RoundUp(-3.4) => -4 RoundUp(-3.5) => -4 RoundUp(-3.6) => -4
If ne_Type is not 0 (true) the function will round UP the float ExprN if it is positive and Down if it is
negative (i.e. higher number).
 RoundUp(3.4,1) => 4 RoundUp(3.5,1) => 4 RoundUp(3.6,1) => 4

 RoundUp(-3.4,1) => -3 RoundUp(-3.5,1) => -3 RoundUp(-3.6,1) => -3

RoundDn(ExprN{,ne_Type})
If ne_Type is not specified or is 0 (false) the function will round DOWN the float ExprN regardless of
the sign of the float.
 RoundUp(3.4) => 3 RoundUp(3.5) => 3 RoundUp(3.6) => 3

 RoundUp(-3.4) => -3 RoundUp(-3.5) => -3 RoundUp(-3.6) => -3
If ne_Type is not 0 (true) the function will round DOWN the float ExprN if it is positive and UP if it is
negative (i.e. lower number).
 RoundUp(3.4,1) => 3 RoundUp(3.5,1) => 3 RoundUp(3.6,1) => 3

 RoundUp(-3.4,1) => -4 RoundUp(-3.5,1) => -4 RoundUp(-3.6,1) => -4

SignExtend8(ExprN)
SignExtend16(ExprN)

Since RB deals only with 32 bit integers you would have a problem with 8 bit (byte) and 16 bit (word)
numbers when stored in RB. The number will be stored in the lower 8/16 bits of the 32 bit integer.
However this will obscure the SIGN of the 8/16 bit number. Normally a number is indicated as a
negative or positive depending on the HIGHEST Bit of the number. So normally 90 (0x5A) and 23439
(0x5B8F) are positive 8/16 bit numbers while 0x9A and 0x9B8F can be considered as positive (154
and 39823) or negative (-102 and -25713) depending what you need. If you need to consider them to be
negative you would have a problem in RB since these numbers are stored in a 32 bit integer and RB
only considers a 32 bit number to be negative if the 32nd bit (bit 31) is 1.

RobotBASIC V4.2.0

Page 190 of 276

So these two functions will Sign EXTEND the 8th (bit 7) and 16th (bit 15) to ALL bits from that bit
upwards. So if bit 7/15 is 0 then all bits upwards will be made 0 and if it is 1 then all bits upwards will
be set to 1. This will effectively sign extend the number and it will become a negative number in the 32
bit format.
Example:

a1 = 0x5A \ b1 = 0x5b8f
a2 = 0x9A \ b2 = 0x9b8f
print a1;a2 //prints 90 154
print signextend8(a1);signextend8(a2) //prints 90 -102
print b1;b2 //prints 23439 39823
print signextend16(b1);signextend16(b2) //prints 23439 -25713

Frac(ExprN)
Returns the decimal fraction of a number. Frac(12.3456) => 0.3456

Mod(ne_Numerator,ne_Denominator)
Returns the remainder of dividing ne_Numerator over ne_Denominator. If either parameter is not an
integer it will be made into one (RoundDn()). Mod(9,4) => 1

MaxInteger()
Returns the maximum integer value.

MinInteger()
Returns the minimum integer value. This is not quite the negative of the maximum integer value.

MaxFloat()
Returns the maximum floating point number value.

MinFloat()
Returns the smallest floating point value. This not the negative of the maximum. It is rather the
smallest value that can be used (negative or positive) that will still result in accurate calculations.

MaxV(ExprN1,ExprN2)
Returns the maximum of the two values ExprN1 and ExprN2. The values have to be numeric but either
can be an integer or a float. The value returned will be a float regardless of either value's type.

MinV(ExprN1,ExprN2)
Returns the minimum of the two values ExprN1 and ExprN2. The values have to be numeric but either
can be and integer or a float. The value returned will be a float regardless of either value's type.

Within(ne_Value,ne_LowerLimit,ne_UpperLimit)
Checks to see if ne_Value is within the range (inclusive). All the numbers can be floats or integers. If
ne_Lower is greater than ne_Upper they will be swapped to do the checking. The function returns True
if ne_Value >= ne_LowerLimit AND ne_Value <= ne_UpperLimit otherwise it returns False. The
swapping is internal and does not affect the parameters.

Limit(ne_Value,ne_LowerLimit,ne_UpperLimit)
Checks to see if ne_Value is within the range (inclusive) and returns the value if it is within the limit or
the limit value closest to the value if it outside the range. All the numbers can be floats or integers. If
ne_Lower is greater than ne_Upper they will swapped to do the checking. If ne_Value is less than the
lower limit the returned value is the lower limit. If it is greater than the upper limit the returned value is

RobotBASIC V4.2.0

Page 191 of 276

the upper limit otherwise the returned value is ne_Value. Swapping (if needed) is internal and does not
affect the parameters. The returned value will have the type of the original value regardless of the type
of the given lower and upper limits. So if the function is going to return one of the limits and its type is
float but ne_Value is integer then the returned value will be made into integer, and vice versa.
Example:

print Limit(10.2,4,5)/2 //prints 2.5 since returned value is float 5.0
print Limit(10,4,5.5)/2 //prints 2 since the returned value is integer
5
print Limit(10,4,25.5)/2 //prints 5 since the returned value is integer
10
print Limit(10.2,4,25)/2 //prints 5.1 since the returned value is float
10.2

BitSwap(ne_Number{,ne_NumberOfBits})
If ne_NumberOfBits is less than 2 or is greater than 4*8 i.e. 32 or is not given then it will be made 8.
This function will return ne_Number with ne_NumberOfBits bits swapped. If ne_NumberOfBits is 8
then bit at position 7 (bit position numbering starts with 0) will be swapped with the bit at position 0
and 6 with 1 and 5 with 2 and 4 with 3.

This is useful in outputting to devices that require shifting the bits of a number a bit at a time with the
MSbit first order.

You can swap any number of bits starting from bit 0 to the last bit. An integer has 4 bytes and so 32
bits. If you want to swap the bits of only the first byte then ne_NumberOfBits is 8, the first two bytes
then 16 and so on.

MakeBit(ne_Number,ne_BitPosition,on|off)
Will return the number ne_Number with the bit at position ne_BitPosition set to 1 if true is specified or
0 if false is specified. All parameters have to be numeric and if they are not integers they will be
truncated.

The bit count starts at 0 from right to left (LSBit = 0, next one =1 and so on).
b = MakeBit(n,x,1) is equivalent to: b = MakeBit(n,x,0) is equivalent to:

b = (1 << x) | n b = ((1<<x) @ (~0)) & n

MakeByte(ne_Number,ne_BytePosition,ne_ByteValue)
Will return the number ne_Number with the byte at position ne_BytePosition set to ne_ByteValue. All
parameteres have to be numeric and if they are not integers they will be truncated. Only the LSByte of
ne_ByteValue will be considered.

The byte count starts at 0 from right to left (LSByte = 0, next one =1 and so on).
b = MakeByte(n,x,v) is equivalent to:

 b = (n & ~(0xff << x*8)) | ((v & 0xFF) << x*8)

SetBit(ne_Number,ne_BitPosition)
ClrBit(ne_Number,ne_BitPosition)

Will set/clear the bit at position ne_BitPosition in the numeric ne_number to 1/0 and returns the
resulting new value. Both parameters have to be numeric and if not integers will be truncated.

The bit count starts at 0 from right to left (LSBit = 0, next one =1 and so on). See example in GetBit().
b = SetBit(n,5) is equivalent to: b = ClrBit(n,5) is equivalent to:

b = (1 << 5) | n b = ((1<<5) @ (~0)) & n

RobotBASIC V4.2.0

Page 192 of 276

SetByte(ne_Number,ne_BytePosition)
ClrByte(ne_Number,ne_BytePosition)

Will set/clear the byte at position ne_BytePosition in the numeric ne_Number to 255/0 and returns the
resulting new value. Both parameters have to be numeric and if not integers will be truncated.

The byte count starts at 0 from right to left (LSByte = 0, next one =1 and so on). See example in
GetBit().

b = SetByte(n,2) is equivalent to: b = ClrByte(n,2) is equivalent to:
b = (255 << 2*8) | n b = ((255<<2*8) @ (~0)) & n

GetBit(ne_Number,ne_BitPosition)
GetByte(ne_Number,ne_BytePosition)

Will return the value of the bit/byte at position se_Bit/BytePosition in the number ne_Number. Both
parameters have to be numeric and if not integers will be truncated.

The bit/byte count starts at 0 from right to left (LSBit/Byte = 0, next one =1 and so on).
b = GetBit(n,2) is equivalent to: b = GetByte(n,2) is equivalent to:

b = (n >> 2) & 1 b = (n >> 2*8) & 255

Example:
n = (125<<8)+122
print GetByte(n,2) //prints 0
print GetByte(n,1) //prints 125
print GetByte(n,0) //prints 122
print GetBit(n,12) //prints 1
n = ClrBit(n,12)
print GetBit(n,12) //prints 0
n = clrByte(n,0)
print GetByte(n,0) //print 0
n = SetBit(n,12)
print GetBit(n,12) //prints 1
n = SetByte(n,0)
print GetByte(n,0) //print 255

Number & String Conversion

Hex(ExprN{,ne_NumBytes})
Returns a string that contains the Hexadecimal representation of the integer resulting from ExprN. If
either parameter is not numeric an error is issued and if it not integer it will be converted to integer.
The string returned does not include the "0x" indicator. To convert the string back to a number use
HexToInt() but append the "0x" indicator to it. Optional ne_NumBytes specifies the minimum number
of bytes and if it is negative it will be made positive, and if it is greater than 7 it will be set to 7. If it is
not given or is less than the number of bytes in the number then the result will be as many digits
(nibbles) as needed to render the number, but up to a minimum of 2 nibbles unless you specify 0 then a
minimum of 1 nibble will be returned.

Example: print Hex(655) //prints 28F notice only 3 nibbles
print Hex(655,3) //prints 00028F
print Hex(655,2) //prints 028F notice leading zero (2
bytes)
print Hex(655,1) //prints 28F
print Hex(3) //prints 03 notice minimum of 2 nibbles
print Hex(3,0) //prints 3 notice forced to 1 nibble
minimum

RobotBASIC V4.2.0

Page 193 of 276

print HexToInt("0x"+Hex(655)) //prints 655
print HexToInt("0x"+Hex(655,5))//prints 655

HexToInt(e_HexValue)
Note: This function is left for backward compatibility. It is better if you use ToNumber().

Returns the resulting integer number that is the equivalent to the hexadecimal value given as a string or
numeric in Expr. If Expr is not a valid hexadecimal string or integer number then 0 will be returned.
The string must have the "0x" indicator to indicate that the string is a hexadecimal representation.

Examples:
print hextoint(10) //prints 10
print hextoint("10") //prints 10
print hextoint("0x10") //prints 16
print hextoint("0x1E") //prints 30
print hextoint("1E") //prints 0 not a valid hex
print hextoint("0x1N") //prints 0 not a valid hex

Bin(ExprN{,ne_NumBits})
Returns a string that contains the Binary representation of the integer resulting from ExprN. Ig either
parameter is not numeric an error is issued and if not integer it will be converted to integer. The
Number of bits will depend on ne_NumBits. If it is not given then the number of bits will be up to most
significant bit that is not 0 and if is less than the number of significant bits it will be ignored. Use string
manipulation functions to eliminate bits if desired. The string returned does not include the "0%"
indicator. To convert the string back to a number use BinToInt() but append the "0%" indicator to it.
Example:
 print bin(10) //prints 1010
 print bin(10,8) //prints 00001010
 print bin(10,3) //prints 1010 notice 3 is ignored
 print bin(2,4) //prints 0010
 print bin(2) //prints 10

BinToInt(e_BinaryValue)
Note: This function is left for backward compatibility. It is better if you use ToNumber().

Returns the resulting integer number that is the equivalent to the binary value given as a string in Expr.
If Expr is not a valid binary string or integer number then 0 will be returned. The string must have the
"0%" indicator to indicate that the string is a binary representation.
Examples:

print BinToInt(10) //prints 10
print BinToInt("10") //prints 10
print BinToInt("0%10") //prints 2
print BinToInt("0%123") //prints 0 not a valid binary

SFtoDF(ExprN)
ExprN results in a 32 bit hex value in the little-endian order of a IEEE fixed floating point number. The
function will convert the 32 bit fixed floating point format to a 64 bit floating point format which is the
RB native floating point number. This can be useful when receiving data from a microcontroller such
as the Propeller Chip which stores floating point numbers as 32bit fixed floats (Long integer with 4
bytes). This functions helps to convert this format to RB's native 64 bit floats. Also see DFtoSF(). If
ExprN is not a valid 32 bit fixed float the result is not a valid result but you will still get a float.

RobotBASIC V4.2.0

Page 194 of 276

DFtoSF(ExprN)
ExprN results normal RB native floating point number (IEEE 64 bit float). The function will convert
the RB float to the floating point value to the IEEE 32 bit fixed float number. This can be useful when
sending data to a microcontroller such as the Propeller Chip which stores floating point numbers as
32bit fixed floats (Long integer with 4 bytes). This function helps to convert RB's floats to a format that
can be sent to such microcontrollers as 4 bytes (32 bits) in the little-endian order. Also see SFtoDF(). If
ExprN is larger than the limitations of a 32bit fixed float then the result is a meaningless result but is
still a 32 bit float.

ToByte(Expr)
If Expr results in a number the function will convert the number to an integer (if it is not already an
integer) then it will bitwise AND it with 0xFF to remove all bytes but the LSByte and then will return a
string of one character whose ASCII code is the value of the resulting number i.e.
char(rounddn(ExprN) & 0xFF).

If Expr results in a string then the function returns a string with one character which is the first
character of the resulting expression. If Expr results in an empty string ("") then the function returns a
string with one character whose ASCII code is zero.

Spell(ExprN)
Returns a string that contains words that say the number ExprN in English. ExprN can be float or
integer, but the decimal fraction will be removed. It is up to you to extract the decimal value and use
Spell() again to spell it out if you desire (see example). If the number is negative it will be made
positive. It is up to you to test if the number is negative and treat the result by adding an additional
word if you need to (e.g. "Negative", "Minus", "Outlay", see example). ExprN cannot be larger than
999,999,999,999,999. If it is the function will return the word "Overflow".
Example:

n = -678.56
sn = ""
if n < 0 then sn = "Negative "
nf = Round(Frac(Abs(n))*100)
print sn+Spell(n)+" Dollars and "+Spell(nf)+" Cents"
//prints Negative Six Hundred Seventy Eight Dollars and Fifty Six Cents

IsNumber(Expr)
Returns 1 if Expr is a string that can be converted to a numeric or is a numeric, otherwise returns 0.

IsString(Expr)
Returns 1 if Expr is a string (regardless if it can be converted to a number or not), otherwise returns 0.

ToNumber(Expr{,ne_Default})
If Expr results in a numeric then that value is returned. If Expr results in a string that can be converted
to a numeric then it will be converted and the result is returned. If Expr results in a string that is not a
legal number then if no default value is given then the string will be returned as is. If ne_Default is
specified and the string cannot be converted to a number then ne_Default is returned. ne_Default can
be integer or float.

If the string is a valid Hexadecimal or Binary string then it will be converted to an integer. A valid
Hexadecimal string is one that starts with 0x and contains only digits and A,B,C,D,E, or F and no other
character. A valid binary string is one that starts with 0% and contains only the digits 1 or 0. See
Numbers section in the Overview Of The Language section.

Note: This function should be used in preference to the older (but still available) HexToInt() and

RobotBASIC V4.2.0

Page 195 of 276

BinToInt().

ToString(Expr)
If Expr results in a number it converts the number to a string and returns the value as a string. If Expr
results in a string then the string is returned.

Char(ne_AsciiCode)
Returns a string of one character that is the character whose ASCII code is ne_AsciiCode.

Ascii(se_Text)
Returns the ASCII code of the first character in se_Text.

GetStrByte(se_String,ne_ByteNumber)
This function will treat the string as an array of bytes. ne_ByteNumber is the index into the string (1 =
1st character and so on). The function will return the ASCII code for the character at the specified
position. If the specified position is less than 1 it will be made 1 and if it is greater than the length of
the string an error will be issued.

This command is useful with I/O commands and functions that return byte data as a string. With this
function you can access the byte data as numbers.

See PutStrByte() below. GetStrByte(S,N) is equivalent to:
Ascii(Substring(S,N,1))

Also see the Buffer manipulation functions BuffWrite() and BuffRead() etc. that treat a string as a one-
dimensional array (0 indexed) and allow you to write integers and floats to the string as binary values
rather than just one byte. This function is more compatible with other string manipulation functions in
that indexing into the string is 1 based.

PutStrByte(se_String,ne_ByteNum,ne_Val)
This function will treat the string as an array of bytes. ne_ByteNumber is the index into the string (1 =
1st character and so on). The function will return the string back with the character at the specified
position set to ne_Value. If the specified position is less than 1 it will be made 1 and if it is greater than
the length of the string the string will be lengthened to that lenght with all the new bytes being set to 0
and then the desired byte will be placed in its correct position. ne_Value can be an integer or a float. If
it is a float it will be truncated to an integer. The resulting integer is then ANDed with 0xFF to zero all
bytes other than the LSByte.

This command is useful with I/O commands and functions that are passed data as a string of bytes.
With this function you can create the string by using the byte value as a number.

See GetStrByte() above. PutStrByte(S,n,V) is equivalent to (almost, the formula below does not work
for n=1):

S = S+sRepeat(Char(0),n-Length(S))
S = Substring(S,1,n-1)+Char(V&0xFF)+Substring(S,n+1,0)

Also see the Buffer manipulation functions BuffWrite() and BuffRead() etc. that treat a string as a one-
dimensional array (0 indexed) and allow you to write integers and floats to the string as binary values
rather than just one byte. This function is more compatible with other string manipulation functions in
that indexing into the string is 1 based.

RobotBASIC V4.2.0

Page 196 of 276

StrOfBytes(Expr{,Expr{,....}})
This function has to have at least one parameter, but it can have as many after that as you wish. Each
parameter can be a string or an integer or a float.

The function will return a string (buffer) formed from the byte values according to the parameters. If a
parameter is a string then all the bytes in the string will be included as they are. If the parameter is an
integer value then its Least Significant Byte (LSB) will be taken. If the parameter is a float, it will be
converted to an integer (rounded down) and then the LSByte will be taken. For example:

S = StrOfBytes(20,300,"ABC",45,200.76)
For i=1 to length(S)
 print GetStrByte(S,i);

next
//will print 20 44 65 66 67 45 200
//which are the values of the individual bytes. Notice the 2nd value is 44
//not 300 that is because the value 300 is 2 bytes 0x012C and 0x2C = 44
//Also notice the last value is 200 which is the result after truncating
200.76

Format(ExprN,se_FormatSpecifier)
Returns a string containing ExprN formatted according to the se_FormatSpecifier. The parameters and
specifiers are:

Specifier Represents
 0 Digit place holder. If the value being formatted has a digit in the position where the 0 appears in the

format string, then that digit is copied to the output string. Otherwise, a 0 is stored in that position in
the output string.

 # Digit placeholder. If the value being formatted has a digit in the position where the # appears in the
format string, then that digit is copied to the output string. Otherwise, nothing is stored in that position
in the output string.

 . Decimal point. The first . character in the format string determines the location of the decimal separator

in the formatted value; any additional . characters are ignored. The actual character used as the decimal
separator in the output string is determined by the Decimal Separator global variable. The default value
of DecimalSeparator is specified in the Number Format of the International section in the Windows
Control Panel.

 , Thousand separator. If the format string contains one or more , characters, the output will have
thousand separators inserted between each group of three digits to the left of the decimal point. The
placement and number of ',' characters in the format string does not affect the output, except to indicate
that thousand separators are wanted. The actual character used as a the thousand separator in the output
is determined by the ThousandSeparator global variable. The default value of ThousandSeparator is
specified in the Number Format of the International section in the Windows Control Panel.

E+ Scientific notation. If any of the strings E+, E-, e+, or e- are contained in the format string, the

number is formatted using scientific notation. A group of up to four 0 characters can immediately

follow the E+, E-, e+, or e- to determine the minimum number of digits in the exponent. The E+
and e+ formats cause a plus sign to be output for positive exponents and a minus sign to be output for

negative exponents. The E- and e- formats output a sign character only for negative exponents.

'xx' Characters enclosed in single or double quotes are output as-is, and do not affect formatting.

 ; Separates sections for positive, negative and zero numbers in the format string.

Notes:
The locations of the leftmost '0' before the decimal point in the format string and the rightmost '0' after the decimal
point in the format string determine the range of digits that are always present in the output string.

RobotBASIC V4.2.0

Page 197 of 276

The number being formatted is always rounded to as many decimal places as there are digit placeholders ('0' or '#')
to the right of the decimal point. If the format string contains no decimal point, the value being formatted is
rounded to the nearest whole number.

If the number, being formatted has more digits to the left of the decimal separator than there are digit placeholders
to the left of the '.' character in the format string, the extra digits are output before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can contain between one and
three sections separated by semicolons.

One section: The format string applies to all values.
Two sections: The first section applies to positive values and zeros, and the second section applies to negative
values.
Three sections: The first section applies to positive values, the second applies to negative values, and the third
applies to zeros.

If the section for negative values or the section for zero values is empty, that is if there is nothing between the
semicolons that delimit the section, the section for positive values is used instead.

File & Directory Functions
Note: See the notes at the top of the Standard User Interfacing section.

Directory Functions

DiskSize(ne_DiskNumber)
Returns the size in bytes of the disk specified. If ne_DiskNumber is 0 then the current disk is the one
reported upon. Use 1 for A:, 2 for B: etc. If the disk number specified is not a valid disk then the
function will return -1 as a result. Remember a Kilobyte is 1024 bytes and a Megabyte is 1024x1024
bytes etc.

DiskFree(ne_DiskNumber)
Returns the size in bytes of the free space on the disk specified. If ne_DiskNumber is 0 then the current
disk is the one reported upon. Use 1 for A:, 2 for B: etc. If the disk number specified is not a valid disk
then the function will return -1 as a result. Remember a Kilobyte is 1024 bytes and a Megabyte is
1024x1024 bytes etc.

DirCurrent()
Returns a string that contains the current directory including the drive name.

DirSet(se_DirPath)
Set the current default directory to the directory specified. Returns true (1) if successful or false (0) if
not.

DirExists(se_DirPath)
Checks to see if the directory specified is a valid directory. Returns true (1) if successful or false (0) if
not.

DirCreate(se_DirPath)
Creates the directory specified and all parent directories on the path if they do not exist. Always returns
true.

RobotBASIC V4.2.0

Page 198 of 276

DirRemove(se_DirPath)
Removes the directory specified. It only removes the last directory on the path not any parent
directories. Returns true (1) if successful or false (0) if not. The directory can only be removed if it
does not contain files or sub-directories.

DirCount()
Returns then number of the sub-directories in the current directory. The count includes the drive name
and directories on the path of the current directory name. See the example given in DirList() below.

DirList()
Returns a string containing the names of the directories in the current directory. The list of directories is
separated by the | character (the same one used for the or operator). You can use Extract() along with
DirCount() to obtain a particular directory name from the list. For Example:

n=DirCount()
s= DirList()
for i=1 to n
 ss = Extract(s,"|",i)
 print ss
 if !(i#35) then waitkey k \ clearscr
next

DirPrompt()
Opens a directory selection dialog box and allows the user to select a directory. If the user types a
directory that does not exist a prompt for creating the directory will be given and if the user selects to
do so the directory will be created and selected. The selected directory will be returned with the full
path name.

Note: The dialog allows the user to select a directory by double-clicking the mouse over it and will
show the files contained in the directory. Pushing the Ok button will return the selected directory
name. Pushing the Cancel button will return a blank string "". The directory selected does not
become the current directory, use DirSet() if you wish to do so.

File Functions

FileExists(se_FileName)
Checks to see if the file exists and returns true (1) if it does. If the file does not exist or there is a
problem with the operation the function returns false (0).

FileSearch(se_FileName,se_DirList)
Searches for the file in the list of directories given. If the file is found in any of the directories in the list
the function returns the fully qualified name of the file including the directory path in which it resides.
If the file name is not found a null string ("") is returned. se_DirList is a list of directory paths
separated with a semicolon (;).

FileRename(se_OldName,se_NewName)
Renames the file to the new name and returns true (1) if successful. If the file does not exist or there is
a problem with the operation the function returns false (0).

FileSize(se_Name)
Returns the size in bytes of the specified file. The name has to be the full path of the file. If the file is
not found or there was a problem in accessing it then -1 will be returned. Remember a Kilobyte is 1024
bytes and a Megabyte is 1024x1024 bytes etc.

RobotBASIC V4.2.0

Page 199 of 276

If you wish to find the size of a file that has been opened/created using FileOpen() or FileCreate() then
use FileSize(ne_FileHandle). Since the use of the name version may fail due to the file being currently
in use by your process.

FileDate(se_FileName)
Returns the date and time of the file as a floating point number just as described in Now(). Use the date
and time functions [e.g. DateTime()] to convert this number to Date and/or Time strings for display.

FileCopy(se_SourceFile,se_DestinationFile{,ne_Mode})
Makes a copy of the source file to the destination file. If ne_Mode is not given or is false then if the file
destination file already exists the function will not overwrite it and will return an error code as
described below. If true is given then if the destination file exists it will be overwritten unless it is a
read only file, in which case an error code will be returned.

The function will return the size of the file copied if it successfully completed the operation. If the
source file could not be opened then -1 will be returned. If the destination file could not be created then
-2 will be returned. This can occur if the file already exists and ne_Mode is not specified or is false, or
if the system could not create the file for any other reason. If the copying operation could not finish
copying (e.g. disk full) then -3 will be returned.

Note: Depending on the size of the file, this function may take a perceptible time to execute. You
may want to display a message to the user of your program before you execute this function.

FileDelete(se_Name)
Deletes the file and returns true if successful. If the file does not exist or there is a problem with the
operation the function returns false.

FileName(se_Name)
Returns a string containing only the name of the full file specification given (i.e. with no directory or
path data).

FileExt(se_Name)
Returns a string containing only the extension of the file given.

FileDrive(se_Name)
Returns a string containing only the drive name of the file given.

FileDir(se_Name)
Returns a string containing only the directory name of the file given.

FilePath(se_Name)
Returns a string containing only the path name of the file given.

FileChangeExt(se_FileName,se_NewExtension)
If the file name has no extension or has an extension different from se_NewExtension, it will be
modified to have the new extension and the new name is returned. This function does not actually
change the name of the file on the drive. It only changes the string. To rename the file use the
new name in FilRename().

RobotBASIC V4.2.0

Page 200 of 276

FilePrompt({Expr})
Opens a file selection dialog box and allows the user to select a file. Expr is optional. If Expr numerical
and is not within the range 1-5, or is not given or is an empty string ("") then 1 will be assumed.

If Expr is given and is numerical (integer) and is within the range 1-5 then Expr specifies a filter from a
list of file filters as follows:

1 = All Files (*.*)
2 = Bitmap Files (*.Bmp)
3 = WAV Sound Files (*.Wav)
4 = RobotBASIC Array files (*.Rba)
5 = Text Files (*.Txt)

The RBA extension is not a standard extension but may be used by you (the programmer) as an
extension for files created by mWrite used to save the data of arrays.

If Expr is given and is a string that does not contain the | character then the string will be considered as
a Filename to be filled as a default before the File Open dialog box is shown. Also the first filter (*.*)
will be assumed.

If Expr is given and contains the | character then it has to follow the following specs:
 The text before the first | character will be a default file name.
 Subsequent text must be in pairs of strings separated with |. The first string is a description of a

filter type, the second is the filter specs (see example below).
 You can repeat as many string pairs to specify as many filters as you need.
 The first of these filter specs will be used as default.

An example for a string specification:
 "MyFile.RBA|RobotBASIC Arrays (*.RBA)|*.RBA|TextFiles (*.Txt)|*.Txt|Bitmap Files
(*.Bmp)|*.Bmp"

It is advisable to have the actual filter as part of the description. You must not have a space before or
after the |. If you do not want to specify a default file then just don't but the first | must still be there e.g.
 "|RobotBASIC Arrays (*.RBA)|*.RBA|TextFiles (*.Txt)|*.Txt|Bitmap Files (*.Bmp)|*.Bmp"

If the user selects a file the full file's name including the directory and drive will be returned. If the user
closes the dialog without selecting a file or cancels then the returned value will be a blank string (i.e.
""). The file name specified must be an existing file.

Note: This dialog does not actually open any files it just returns the name of a selected file. The button
on the dialog will say "Open", if you need a dialog to allow the user to select a file name for
saving see FileSave() below.

FileSave({Expr})
Opens a file selection dialog box and allows the user to select or specify a file name. Expr is optional.
If Expr numerical and is not within the range 1-5, or is not given or is an empty string ("") then 1 will
be assumed.

If Expr is given it must follow the specifications given above in FilePrompt().

If the user selects a file the full file's name including the directory and drive will be returned. If the user
closes the dialog without selecting a file or cancels then the returned value will be a blank string (i.e.

RobotBASIC V4.2.0

Page 201 of 276

""). The file name specified does not have to exist. If it does exist the user will be given a warning
and is given the opportunity to cancel or proceed.

Note: This dialog does not actually save any files it just returns a name of a selected or specified file.
The button on the dialog will say "Save", if you need a dialog to allow the user to select a file
name for opening see FilePrompt() below.

FilesCount({se_Filter})
Returns the number of files in the current directory that satisfy the filter. The filter is optional and if not
given will be equivalent to "*.*". The specification can be a particular file or can use the characters ?
and * as place holders to specify a file names template. See the example given in FilesList() below.

FilesList({se_Filter})
Returns a string containing the names of files in the current directory that satisfy the filter. The list of
files is separated by the | character (the same one used for the or operator). The filter is optional and if
not given will be equivalent to "*.*". The specification can be a particular file or can use the characters
? and * as place holders to specify a file names template. You can use Extract() along with FilesCount()
to obtain a particular file name from the list. For Example:

n=FilesCount("*.bas")
s= FilesList("*.bas")
for i=1 to n
 ss = extract(s,"|",i)
 print ss
 if !(i#35) then waitkey k \ clearscr
next

Byte Buffer Manipulation
RobotBASIC provides a suite of functions that allow you to manipulate a buffer area. You can read and
write data to the buffer area. This can be useful in many situations, such as File I/O, Serial I/O, TCP I/O,
USBmicro functions and many other situations.

The buffer is considered as a string with special properties. You can use it for all intents and purposes as a
string if you wish. But the Buffer Read/Write functions below provide extra abilities that you will find
useful.

Note: Position indexing in the buffer manipulation functions starts at 0 for the first byte 1 for the second
etc. Just like Arrays. As a matter of fact the buffer is really a one dimensional array of BYTES, but it
can also be treated as a string too (a string is also really a one dimensional array of bytes too).
However, when you use the buffer with string commands, you will consider the first byte as 1 and so
on, just like with other string functions.

Note: When you use the buffer with string functions, you will consider the first byte as 1 and so on, just
like with other string functions. Also see GetStrByte(), PutStrByte() and ToByte().

Note: A string representation of a number is just that. So if you have the number 24659 then you will have
5 bytes with the first byte having a value of 50, which is the ASCII representation of the character 2.
The next byte will be 52 and so on. This format is good when outputting to text files or to systems
that will be able to read numbers as strings. Nevertheless, this format can be wasteful since a number
like 147483647 will need 9 bytes. If the number is a float it can be even worse since a number like
pi will need 16 bytes. You can convert numbers to strings using ToString(). Also see mToString()
and mFromString.

RobotBASIC V4.2.0

Page 202 of 276

A more efficient way to store integers and floats in a buffer or in a file is to use their BINARY
representation. An integer needs 4 bytes and a float needs 8 bytes. See the BytesCount_I and
BytesCount_F constants in the Constants section. If you store in integers or floats in the
RobotBASIC buffer using the Buffer functions below they will be stored in the buffer as binaries. If
you treat the buffer as a string you would not get the numbers correctly if you read the 4 bytes, say,
of the integer.

There are functions to convert entire arrays into a string and vice versa, see mToString() and
mFromString.

To illustrate the difference do the following:
Buffer = BuffWrite("",-1,3456)
print "--",Buffer,"--" //prints --€ --
print BuffReadI(Buffer,0)*2 //prints 6912 also notice indexing is 0
print hex(Ascii(Substring(Buffer,1,1))); //notice indexing is 1
print hex(Ascii(Substring(Buffer,2,1)));
print hex(Ascii(Substring(Buffer,3,1)));
print hex(Ascii(Substring(Buffer,4,1))) //prints 80 0D 00 00 ...
notice Little-Endian format
print ToNumber(Buffer,0)*2 //prints 0
print ToNumber(Buffer)*2 //gives an error

Notice how the 3456 is not even there but there are garbage 4 characters that have the values 0x80,
0x0D, 0x00, 0x00. These are the backwards representation of the number 0x00000D80 which is the
number 3456 in hex. Windows (and Intel) use the Little-Endian order representation; that is why the
bytes are in reverse.

What really matters here is that if you BuffWrite() integers or floats to the buffer then you will not
be able to use those bytes to get the number back by using the bytes directly, you have to use
BuffReadI() and BuffReadF() to do so. But if you do:

Buffer = ""+3456
print "--",Buffer,"--" //prints --3456--
print hex(Ascii(Substring(Buffer,1,1))); //notice indexing is 1
print hex(Ascii(Substring(Buffer,2,1)));
print hex(Ascii(Substring(Buffer,3,1)));
print hex(Ascii(Substring(Buffer,4,1))) //prints 33 34 35 36
print ToNumber(Buffer)*2 //prints 6912

BuffPrintT vs_BuffString{,Expr,Expr;Expr...}{;|,}
This command will put data into a Buffer as specified by the string variable vs_BuffString. It can be
either an existing buffer variable (string) that already contains data or it can be empty. If it does not
exist or does not contain a string, it will be recreated and initialized as an empty string. If it exists and
already has a string in it, the new data will be appended to the end of the existing string.

The data is specified by the values of expr.... Numerical data will be converted to text. A , between the
expressions causes them to be appended with no space between them a ; appends them with a tab space
between them. If there are no expressions then a Cr/Lf pair will be appended to the buffer.

If the list of expressions does not end with a , or ; there will be a Cr/Lf at the end of the appended data.
A , makes the next use of BuffPrintT append data immediately after the previous data, while ; causes
the next data to be appended in a tabbed position.

If you wish to populate the buffer with numbers without converting them to text first then use

RobotBASIC V4.2.0

Page 203 of 276

BuffPrintB below. Also see BuffWrite/B().

Note: vs_BuffString has to be a variable name and the data will be appended to the end of the
existing data in it if it contains a previous buffer data or a string. If it does not exist or it
does and contains a number then it will be erased and recreated as an empty buffer

(string). If there are no expressions then it must not be followed by a , or ; . If you do list

expressions as data to be appended then you follow vn_BuffString either with a ; or , it
does not matter.

Note: Normally the ; creates a tab between the printed elements of BuffPrint while , is used as a
no spaces separator. You can tell RobotBASIC to make , the tab indicator and ; the no
spaces one by using CommaTab (see Standard User Interfacing section).

BuffPrintB vs_BuffString{,Expr,Expr,Expr...}
This command will put data into a Buffer as specified by the string variable vs_BuffString.
vs_BuffString can be either an existing buffer variable (string) that already contains data or it can be
empty. If it does not exist or does not contain a string, it will be recreated and initialized as an empty
string. If it exists and already has a string in it then the new data will be appended to the END of the
existing string.

The data is specified by the values of expr.... Numerical data will be appended as Binary bytes. You
can separate the expressions with a , or a ; it does not matter which. Unlike in BuffPrintT above there
is no tabbing or converting numbers to strings. Each expression will either result in a numeric which is
appended as its binary representation, or a string which is then appended as is.

Integers will be 4 bytes and floats will be 8 (See the Constants section). If there are no expressions then
nothing will be appended to the buffer (no Cr/Lf). If you want to append an integer as a byte value
then use ToByte(). If you wish to insert a float as a 32bit format (4 bytes) then use DFtoSF().

The list of expressions must not end with a , nor ;. If it does you will get an error.

If you wish to populate the buffer with numbers as strings use BuffPrintT above or use ToString(). Also
see BuffWrite/B(). Also see SFtoDF() and DFtoSF().

Note: vs_BuffString has to be a variable name and the data will be appended to the end of the
existing data in it if it contains a previous buffer data or a string. If it does not exist or it
does and contains a number then it will be erased and recreated as an empty buffer

(string). If there are no expressions then vs_BuffString must not be followed by a , or ; . If

you do list expressions as data to be appended then you follow it either with a ; or , it does
not matter.

BuffWrite(se_Buffer,ne_Position,e_Value)
Will return the new buffer which is the result of e_Value written to se_Buffer starting at the
ne_Position. If e_Value is a string then each individual character in the string will be written in the
buffer. If e_Value is an integer value then it will be written to the buffer as 4 bytes which is the binary
representation of the integer. If e_Value results in a float then 8 bytes (i.e. 64 bits) will be written (see
BuffWriteF32 to write a float as 4 bytes i.e. 32 bits).

If the position specified is so that when the value is written it will be longer than the current length of

RobotBASIC V4.2.0

Page 204 of 276

the buffer then the buffer will be lengthened to accommodate the result. Any bytes in the buffer starting
at the specified position will be overwritten.

Bytes that are a result of lengthening the buffer will have a value of 0x00 until they are overwritten.

If ne_Position is less than 0 then the position will be just beyond the end of the buffer, that is the
written bytes will be concatenated to the end of the original buffer.

BuffWriteB(se_Buffer,ne_Position,ne_Value)
Will return the new buffer which is the result of ne_Value written to se_Buffer starting at the
ne_Position. If ne_Value is a float it will be truncated to an integer. The result whether is a truncated
float or the original integer will be made into a one byte value i.e. only the LSByte will be used. For
example if ne_value is 2345 (= 0x0929) then what is written to the buffer at the ne_Position is a one
byte value of 0x29 (=41 decimal). If ne_Value results in 293.56 then what will be written is 0x25 (=37
decimal) which is the LSByte of 293.56 after it is truncated to 293 which is 0x0125.

If the position specified is so that when the value is written it will be longer than the current length of
the buffer then the buffer will be lengthened to accommodate the result. Any bytes in the buffer starting
at the specified position will be overwritten.

Bytes that are a result of lengthening the buffer will have a value of 0x00 until they are overwritten.

If ne_Position is less than 0 then the position will be just beyond the end of the buffer, that is the
written bytes will be concatenated to the end of the original buffer.

BuffWriteF32(se_Buffer,ne_Position,ne_Value)
Will return the new buffer which is the result of ne_Value written to se_Buffer starting at the
ne_Position. What is written in the buffer is 4 bytes that represent the IEEE 32 bit float representation
of the ne_Value (Little-Endian). If ne_Value is an integer it will be made into a 32bit float. If ne_Value
is float (64 bit in RB) it will be made into a 32 bit float and if it exceeds the limitations of 32 bit float
values then it will be meaningless. This can be useful if the buffer is to be sent to microcontrollers (e.g.
Propeller) that use 32 bit floats. Since RB uses a 64 bit float (8 bytes) you can use this to insert a float
from RB that does not exceed limits of the 32 bit format into the buffer and it will be recognized by the
receiving microcontroller as a 32 bit float (Little-Endian).

If the position specified is so that when the value is written it will be longer than the current length of
the buffer then the buffer will be lengthened to accommodate the result. Any bytes in the buffer starting
at the specified position will be overwritten.

Bytes that are a result of lengthening the buffer will have a value of 0x00 until they are overwritten.

If ne_Position is less than 0 then the position will be just beyond the end of the buffer, that is the
written bytes will be concatenated to the end of the original buffer. Also see SFtoDF() and DFtoSF().

BuffRead(se_Buffer,ne_Position,ne_NumBytes)
Will return a string (buffer) that consists of the bytes from the se_Buffer starting at ne_Position and is
ne_NumBytes long unless the buffer is shorter than ne_Position+ne_NumBytes then the returned string
will be as long as there are characters remaining in the buffer from the specified position.

If ne_Position is less than 0 it will be made 0. If ne_NumByets is less than 1 then the remaining

RobotBASIC V4.2.0

Page 205 of 276

number of bytes from the ne_Position will be read (i.e. all the way to the end). If ne_Position is longer
than the buffer then "" will be returned.

BuffReadB(se_Buffer,ne_Position)
BuffReadI(se_Buffer,ne_Position)
BuffReadF(se_Buffer,ne_Position)
BuffReadF32(se_Buffer,ne_Position)

Will return an RB float (64 bits) or and integer formed from reading the right number of bytes from the
buffer.

In the byte version BuffReadB(), the returned value is an integer value with all but the LSByte set to 0.
The LSByte will have the value of the one byte read from the buffer.
In the Integer version BuffReadI(), the returned value is an integer value formed from reading 4 bytes
from the buffer. The 4 bytes are the bytes that represent a 32 bit integer values in Little-Endian order.
In the Float version BuffReadF(), the returned value is an RB float (64 bits) value formed from reading
8 bytes from the buffer. These 8 bytes are the IEEE 64 bit format for a floating point number
representation (Little-Endian)
In the Float32 version BuffReadF32(), the returned value is an RB float (64 bits) value formed from
reading 4 bytes from the buffer. These 4 bytes from the IEEE 32 bit float format (Little-Endian). This
can be useful if the buffer has been received from a microcontroller (e.g. Propeller) that uses 32 bit
floats. The value returned by the function is the 32bit float converted to 64 bit float which is the native
RB float format.

If the buffer is too short to read the right number of bytes from the specified position then an error will
be issued. If ne_Position is less than 0 it will be made 0.

Also see SFtoDF() and DFtoSF().

Low Level File I/O
Low level file I/O allows reading and writing data from a disk file with a little more control over the
process than is provided by the other commands and functions (e.g. mTextFR, mTextFW, mWrite, mRead
and others) which provide much easier and safer file input and output. Nevertheless, there are situations
where more control over the process of reading and writing a file is needed. This is when the following
function should be utilized to access data from a file a byte at a time or in chunks of bytes or as binary
integers or floats or as text. However, more care is needed and error checking should be carried out often.

These functions can cause trouble if not used correctly. There is a sequence of actions that has to be
followed precisely for the functions to execute without trouble.

The sequence is as follows (see the examples to see how it should be done):
1- Open the file if it exists, or, create it if it does not exist or if overwriting it is required. A file can be

opened for reading, writing or reading and writing. The file being manipulated can be opened with
exclusive access and thus denying access to other processes, or only read access can be denied or
write access or neither.

2- Insure the file is actually opened by checking the returned file handle.
3- If the file is to be accessed sequentially sequential then start reading or writing, if it is a random

access file then position the pointer to where you want to start the read/write operation before you
do the read/write.

4- Repeat reading and/or writing as desired, always checking the fact that the read/write has
succeeded.

RobotBASIC V4.2.0

Page 206 of 276

5- When done with the file, ALWAYS FileClose() the file to release its handle and flush any buffered
writes to the disk.

6- After each operation you must check for errors if you do not want to run into trouble.

Note: In regards to numbers you have the choice, you can either treat them as string representations when
you write them to the file by converting them to strings using ToString() or you can write them to
the file using FileWrite/B() as binary representations. When it is time to read the numbers back, if
they have been written as strings then you read them back as strings then you can convert them to
numbers using ToNumber() and IsNumber(). If they have been written as binary then you need to
read them using FileRead/I/B/F().

There are functions to convert entire arrays into a string and vice versa, see mToString() and
mFromString. Also see the buffer functions BufferWrite/B() and BufferRead/I/B/F(). Additionally,
see GetStrByte(), PutStrByte() and ToByte() and of course all the string mainpulation functions as
well as number conversion functions. Also see CrLf(), Substitute(), Extract() and NumParts().

FilePrintT vn_FileHandle{,Expr,Expr;Expr...}{;|,}
This command will output data to a file as specified by the numeric variable vn_FileHandle.
vn_FileHandle has to be an existing variable and has to contain an integer which is a File Handle as
returned by FileCreate() or FileOpen().

The data is specified by the values of expr.... Numerical data will be converted to text. A , between the
expressions causes them to be outputted with no space between them a ; outputs them with a tab space
between them. If there are no expressions then a Cr/Lf pair will be outputted to the file.

If the list of expressions does not end with a , or ; there will be a Cr/Lf at the end of the outputed data.
A , makes the next use of FilePrintT output data immediately after the previous data, while ; causes the
next data to be outputted in a tabbed position.

If you wish to output numbers without converting them to text first then use FilePrintB below. Also see
FileWrite/B().

Note: vn_FileHandle has to be the name of an already existing variable with a File Handle
integer number as returned by a FileOpen() or FileCreate().

Note: Normally the ; creates a tab between the outputted elements of FilePrint while , is used as
a no spaces separator. You can tell RobotBASIC to make , the tab indicator and ; the no
spaces one by using CommaTab (see Standard User Interfacing section).

FilePrintB vn_FileHandle{,Expr,Expr,Expr...}
This command will output data to a file as specified by the numeric variable vn_FileHandle.
vn_FileHandle has to be an existing variable and has to contain an integer which is a File Handle as
returned by FileCreate() or FileOpen().

The data is specified by the values of expr.... Numerical data will be appended as Binary bytes. You
can separate the expressions with a , or a ; it does not matter which. Unlike in FilePrintT above there is
no tabbing or converting numbers to strings. Each expression will either result in a numeric which is
outputted as its binary representation, or a string which is then outputted as is.

Integers will be 4 bytes and floats will be 8 (See the Constants section). If there are no expressions then

RobotBASIC V4.2.0

Page 207 of 276

nothing will be outputted to the file (no Cr/Lf). If you want to output an integer as a byte value then
use ToByte().

The list of expressions must not end with a , nor ;. If it does you will get an error.

If you wish to output numbers as strings use FilePrintT above. Also see FileWrite/B().

Note: vn_FileHandle has to be the name of an already existing variable with a File Handle
integer number as returned by a FileOpen() or FileCreate().

FileOpen(se_FileName,ne_Mode)
This function opens se_FileName in the mode specified as ne_Mode. If the function succeeds in
opening the file then a number is returned which is the FileHandle that has to be used with other File
I/O commands. If there is an error then the returned value is -1.

The ne_Mode value can be created by ORing the various fo_ constants in the RobotBASIC Constants
section. For example to read the file and still allow others access to it, you use fo_Read |
fo_DenyNone. To open the file for reading and writing while denying write access to others then use
fo_ReadWrite | fo_DenyWrite.

Note: If you open a file in one of the denying modes then even your program cannot Open() or
Create() the file again until you FileClose() the file first.

The returned value should always be checked for errors. Trying to manipulate a file through a bad
handle will result in errors. RobotBASIC will not attempt to do any file operation if the handle given is
a -1.

If the file being opened does not exist or is being used by another process (or even the same program
elsewhere) then the returned handle will be -1.

Example: This example shows how TEXT files can be created. See the example at the end of
FileClose() for an example of BINARY files. After running this program, use NotePad to
view the file dBase.txt. Notice how the numbers are readable text as opposed to when you
look at the file created whith the other example.
But also view the contents of dBaseEncrypted.txt. Notice how Encrypt() can help make a text
file unreadable.

data a;"Pam" ,35,"here and there",60963
data a;"Tammy",45,"over somewhere",80443
s = mToString(a) //uses CR/LF by default
fn = "dBase.txt" \ fn2 = "dBaseEncrypted.txt" \ PassWrd = "Pass word"
h = Filecreate(fn) \ FileWrite(h,s) \ FileClose(h)
h = FileCreate(fn2) \ FileWrite(h,encrypt(s,PassWrd)) \ FileClose(h)
h = FileOpen(fn,fo_Read) \ s = FileRead(h,FileSize(h)) \ FileClose(h)
h = FileOpen(fn2,fo_Read) \ t =
encrypt(FileRead(h,FileSize(h)),PassWrd)
FileClose(h) \ mFromString b,s //default cr/lf
for i=0 to maxdim(b,1)-1 step 4
 For n=0 to 3
 print b[i+n];
 next
 print
next
AddMemo "m",400,10,300,400 \ SetMemoText "m",s
AddMemoLine "m",crlf()+"------Decrypted-----"
Addmemoline "m",crlf()+t

RobotBASIC V4.2.0

Page 208 of 276

FileCreate(se_FileName)
Creates the file and opens it for reading and writing in exclusive mode. If successful then it will return
the FileHandle to be used later. If it does not succeed the returned value is -1.

Note: If the file exists and is not locked due to being used by another process (or yours elsewhere)
then it will be erased and recreated. So be careful with this command since you can erase
files without warning. You can use FilExists() to verify if a file already exists and take
appropriate action.

FileReadField(ne_FileHandle{,se_Separator})
Will read from the file from the current position until it encounters the se_Separator string. All
characters read until then will be returned as a string. If it does not encounter the se_Separator string it
will return all the bytes from the current position until the end of the file.

If se_Separator is not specified it will be considered as CR/LF [(char(13)+char(10)]. You can specify
any character or combination of characters as the separator string.

The returned string will not contain the se_Separator string. Also the file pointer will be positioned
right after the se_Separator string within the file, thus is ready for another read.

This function can be useful in reading FIELDS of data from the file. For instance if the file contains
Comma separated data you can use se_Separator of "," to read each field. But also remember that each
record is also separated by a CR/LF or maybe CR only. So you need to handle that. One way is to read
a whole record at once using CR/LF (default) as the se_Separator string, then handle the various fields
using Extract().

FileRead(ne_FileHandle{,ne_ByteCount})
Returns a string whose individual characters have been read from the file with the handle value
ne_FileHandle, as returned by FileOpen() of FileCreate(). The number of bytes read into the string will
be according ne_BytesCount, which, if not given or is less than 1, will be made 1.

The reading operation will take place from the current position pointer in the file. If you open the file
and do successive reads then the file is accessed sequentially. If you open the file and position the
position pointer to a particular place along the length of the file using FileSeek() then the file becomes
a random access file.

The read will either fail and return a blank string "", or it will partially succeed and return a string that
is shorter than the specified number of characters to read, or it will succeed and return a string with
exactly the number of characters specified. You must check the length of the returned string to
determine the situation and act accordingly.

Partial success is usually due to reaching the end of the file before the specified number of character
could be read.

FileReadB(ne_FileHandle)
FileReadI(ne_FileHandle)
FileReadF(ne_FileHandle)

Returns an integer value (integer or byte version) or a float from the file with the handle ne_FileHandle
as returned by FileOpen() of FileCreate(). If the operation fails then the function will return "" (string
with zero length). You must check for this situation before attempting to use the number (see

RobotBASIC V4.2.0

Page 209 of 276

IsNumber()).

The reading operation will take place from the current position in the file. If you open the file and do
successive reads then the file is accessed sequentially. If you open the file and position the position
pointer to a particular place along the length of the file using FileSeek() then the file becomes a
random access file.

The read will either fail and return a blank string "", or it will succeed and return an integer/float value.
You must check to see if the returned value is a number.

Note: The byte version will read 1 byte but will convert the byte to an integer, since RB does not have
a byte type. The integer will have the LSByte set to the value of the read byte the other bytes will
be zero.

Note: The byte version will read 1 byte, the integer version will read 4 bytes and the float version will
read 8 bytes from the current position in the file and convert these bytes to an integer/float. If the
1/4/8 bytes read were not written to the file as a byte/integer/float then the value returned is still
an integer/float, but it is a meaningless value. Also if you lose synchronization by positioning the
file pointer to the wrong place in the file before reading the value, you will get a meaningless
value.

Note: Make sure you read numeric values from precisely the same position in the file as they
were written. You can also read a chunk of bytes from the file into a buffer and then use
Buffer functions (e.g. BuffRead()) to read individual data from the buffer.

FileWrite(ne_FileHandle,e_Value)
If e_Value results into a string then the entire content of the string will be written to the file starting at
the current position. The file is defined by the ne_FileHandle.

If e_Value results in a float then 8 bytes will be written to the file starting at the current position. If
e_Value results into an integer then 4 bytes will be written. The function returns the number of bytes
written to the file. So you must check to see if the returned number is according to the specified
number, if it is not then an error has occurred.

FileWriteB(ne_FileHandle,e_Value)
If e_Value results in a float it will be truncated to an integer. The resulting integer (or if e_Value is
already an integer) is ANDed with 0xFF to zero all but the LSByte and then that byte is written to the
file. If e_Value results in a string then the first character in the string will be considered as a byte value
and written to the file. The file is defined by the ne_FileHandle. The function returns 0 if an error
occurs during the writing operation, otherwise it returns 1.

FileSeek(ne_FileHandle,ne_FromWhere,ne_OffsetCount)
Positions the file position pointer to a desired position where the next read or write will start reading or
writing. You indicate the desired position as a number of bytes offset from either the beginning
(fo_Begin) or the end (fo_End) or the current position (fo_CurrPos) in the file (see the Constants
section)

The offset count can be positive to go forwards, or negative to go backwards. If you go beyond the start
of the file then the position pointer will be placed at the start of the file. However, you can position the
pointer to a position that is beyond the length of the file. If you do so, the file will be lengthened to that
length and all the added bytes will be set to 0.

RobotBASIC V4.2.0

Page 210 of 276

The function returns the position of the pointer relative to the start of the file if it is successful or -1 if
there was an error. So if the returned value is 230 then the pointer is placed on 231st character, any
read/write operation will start there. A value of 0 means the start of the file (the first character). You
can use this function to find the current position pointer by doing:

curr_pos = FileSeek(fHandle,fo_CurrPos,0)

This function is used to manipulate a file as a random access file. For example, you may have 20
records in a file with each record being 50 bytes long. Let’s say you want to read record number 10
(records' count starts with zero). So you would do FileSeek(fHandle,fo_BEGIN,50*9). Then you
would do s = FileRead(fHandle,50) or if you know that the record was written as 2 integers 1 float
and a 34 character string then you would do a=FileReadI(fHandle) then a=FileReadI(fHandle)
then c=FileReadF(fHandle) then s = FileRead(fHandle,34). See example after FileClose().

Note: Any file reading or writing operation will always start at the current position pointer and
will update the pointer to just after the number of bytes read or written. So you can either
use the file as a sequential file by doing successive reads/writes without manipulating the
pointer, or you can treat the file as a random access file by positioning the pointer to the
beginning of the record before each read/write.

FileSize(ne_FileHandle)
Returns the size in bytes of the file specified by the handle. The handle has to be a valid one returned
by a FileCreate() or FileOpen(). If the file handle is not for a valid opened/created file then -1 will be
returned. Remember a Kilobyte is 1024 bytes and a Megabyte is 1024x1024 bytes etc.

If you wish to find the size of a file that has not been opened/created then use FileSize(se_FileName).
However, if you have opened the file then you must use the handle version since the use of the name
version will fail due to the file being currently in use by your process.

FileEnd(ne_FileHandle)
Returns true (none-zero) if the file position pointer is positioned at the end of the file, and false (0) if it
is not. This can be useful while iterating through the file to see if the position pointer is at the end of the
file indicating no more bytes to read.

FileClose(ne_FileHandle)
Returns true if the file was closed or false if the file handle was an invalid one. This function must
always be called to close and release an opened/created file. If you open/create a file and never close it,
it will not be possible to open it again until the program is terminated. Also other processes cannot
access the file too until your program terminates.

Example: Also see the example under AddMemo.
MainProgram:
 RecordLength = 25
 n = filecreate("t.tt")
 for i=5 to 0
 fileseek(n,fo_begin,i*RecordLength)
 print filewriteb(n,i);filewrite(n,random(50000));
 print filewrite(n,random(0));filewrite(n,"record no. "+i)
 next
 print fileclose(n)
 gosub SequentialRead
 print
 gosub RandomRead
End

RobotBASIC V4.2.0

Page 211 of 276

SequentialRead:
 print FileSize("t.tt");
 n = FileOpen("t.tt",fo_Read|fo_DenyNone)
 print FileSize(n)
 for i= 0 to 5
 print FileReadb(n);FileReadi(n);filereadf(n);fileread(n,12)
 next
 print FileClose(n)
Return
RandomRead:
 data order;3,1,4,2,5,0
 print FileSize("t.tt");
 n = FileOpen("t.tt",fo_Read|fo_DenyNone)
 print FileSize(n)
 for i= 0 to 5
 FileSeek(n,fo_Begin,order[i]*RecordLength)
 print FileReadb(n);FileReadi(n);filereadf(n);fileread(n,12)
 next
 print FileClose(n)
Return

Time, Date, System & Other
Functions

Time & Date Functions

Timer()
Returns a floating point number that represents the time in milliseconds. You can save this value and
then after the elapse of some time subtract the stored value from the new value to get the amount of
time elapsed in millisecond (i.e. 1000 = 1 second). For Example:

StartTime = Timer()
while Timer() - StartTime < 5000
 // do stuff here that can be accomplished within 5 seconds
wend
print "done"

Now()
Returns a floating point number. The integer value of the number is the number of days between the
current date as reported by the OS and December 30th 1899. The fractional value of the returned
number is the fraction of 24 hours that has passed since midnight. So the number 5.23 would mean 5
days from Dec 30, 1899 so that would be Jan 4th, 1900. Also 0.24 is 5 hours 48 minutes and 28.800
seconds since midnight so it would be 5:48:28 AM.

The number returned represents the current date and time and can be used in the functions below to
obtain various values and calculations. See this example for details:

TD = Now() \ TM = TD+1 \ TY = TD+365
print "Today =",DateStr(TD)," ",DateTime(TD,"dddd mmmm d,yyyy")
print \ GetXY x,y
print "Tomorrow =",DateStr(TM)," ",DateTime(TM,"dddd mmmm d,yyyy")," "
print "Today Year =",DateStr(TY)," ",DateTime(TY,"dddd mmmm d,yyyy")," "
print "Current Month=",Month(TD),DateTime(TD," (mmmm,mmm.)")

RobotBASIC V4.2.0

Page 212 of 276

print "Day =",Day(TD),", Day ",DayOfWeek(TD)," of the
week",DateTime(TD," (dddd,ddd.)")
print "Year =",Year(TD)
print
n = DateVal(2021,5,25)
print "Difference between Today and May 25,2021 = ",n-rounddn(TD),"
Days"
print "It is a ",DateTime(n,"dddd")
print
n1 = TimeVal(10,32,45,0) \ n2=TimeVal(23,11,34,0)
n3 = n2-n1
print DateTime(n2," hh:mm:ss")
print DateTime(n1,"- hh:mm:ss")
print sRepeat("-",13)
print "= ",hour(n3),":",minute(n3),":",
print second(n3)," = ",n3*24*3600," seconds = ",
print format(n3*24*60,"#0.0000")," minutes = ",
print format(n3*24,"#0.0000")," hours"
while true
 TD = Now()
 m = DateTime(TD,"hh:mm:ss")+"."+millisecond(TD)
 xystring x,y, "Time=",TimeStr(TD);m
 m = DateTime(TD,"hh AM/PM mm 'minutes' ss")+"."
 xystring 300,-1," ",m,Format(millisecond(TD),"000")," seconds"
wend

Hour(ne_DateTimeValue)
Minute(ne_DateTimeValue)
Second(ne_DateTimeValue)
Millisecond(ne_DateTimeValue)
Year(ne_DateTimeValue)
Month(ne_DateTimeValue)
Day(ne_DateTimeValue)
DayOfWeek(ne_DateTimeValue)

Returns an integer value that represents the value of the
Hour/Minute/Second/Milliseconds/Year/Month/Day of the date and time as indicated by the floating
point number given which is as described in the Now() function. It can be a number returned by Now()
or a calculated number.

The day of the week value is a number 1 to 7 where 1 represents Sunday.

DateStr(ne_DateTimeValue)
TimeStr(ne_DateTimeValue)
DateTimeStr(ne_DateTimeValue)

Returns a string that is the date/time or date and time formatted according to the specifications of the
operating system. The date is the Short Date format and the Time is the Long Time format as specified
in the operating system.

See DateTime() for more powerful formatting. Also see the example above for an example.

DateTimeVal(se_DateTimeString)
Returns a floating point datetime value (as described in Now()) that represents the date and time given
in the string. The formatting in the string has to be according to the formatting specified in the
operating system for the short date. For the time you can use 24 hour format or AM/PM format as
specified in the long date format of the OS.

RobotBASIC V4.2.0

Page 213 of 276

If the string results in an invalid date or time then the value returned will be zero.

DateVal(ne_Year,ne_Month,ne_Day)
Returns a floating point datetime value (as described in Now()) that represents the date given. Notice
the fractional part will be zero since no specific time is given and therefore it is assumed to be
midnight.

The year can be 1 to 9999, the month 1 to 12 and the day 1 to 28/29/30/31 depending on the month. If
the parameters result in an invalid date then zero is returned.

To form a specific date and time, add the result of this function and TimeVal() to get a value that
represents a specific date and time.
Example:

n = DateVal(2009,1,23)+TimeVal(13,45,36,0)
print DateTime(n,"ddd. mmmm dd,yyyy hh:nn:ss AM/PM")
//prints Fri. January 23,2009 01:45:36 PM
print DateTime(n+5.2,"dddd mmm. dd,yyyy hh:nn:ss")
//prints Wednesday Jan. 28,2009 18:33:36

TimeVal(ne_Hour,ne_Minute,ne_Second,ne_Milliseconds)
Returns a floating point datetime value (as described in Now()) that represents the time given. Notice
that the whole number part would be zero (since no specific date is given).

The hours have to be 0 to 23. The minutes and seconds 0 to 59. The milliseconds 0 to 999. If the
parameters result in an invalid time then -1 is returned.

To form a specific date and time, add the result of this function and DateVal() to get a value that
represents a specific date and time. See example above.

DateTime(ne_DateTimeValue{,se_Format})
Returns a string that is the date/time or date and time or day name or month name and so forth
formatted according to the specifications of the formatting string. ne_DateTimeValue is a floating
point datetime value as specified in Now() that can be the result of a calculation and/or any of the
above functions.

If the formatting string is invalid then an empty string will be returned. The formatting string is
according to the following: (see above for specific examples) (Note: OS means Operating System)

Specifier Result
c Displays the date using the OS ShortDate format, followed by the time using

the OS LongTime format. The time is not displayed if the fractional part of the
DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the OS ShortDay names.
dddd Displays the day's full name (Sunday-Saturday) using the OS LongDay names.
ddddd Displays the date using the OS ShortDate format.
dddddd Displays the date using the OS LongDate format.
m Displays the month as a number without a leading zero (1-12). If the m

specifier immediately follows an h or hh specifier, the minute rather than the

RobotBASIC V4.2.0

Page 214 of 276

month is displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm

specifier immediately follows an h or hh specifier, the minute rather than the
month is displayed.

mmm Displays the month as an abbreviation (Jan-Dec) using the OS ShortMonth
names.

mmmm Displays the month as a full name (January-December) using the OS
LongMonth names.

yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the OS ShortTime format.
tt Displays the time the OS LongTime format.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am'

for any hour before noon, and 'pm' for any hour after noon. The am/pm
specifier can use lower, upper, or mixed case, and the result is displayed
accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for
any hour before noon, and 'p' for any hour after noon. The a/p specifier can use
lower, upper, or mixed case, and the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the
contents of the OS TimeAM string for any hour before noon, and the contents
of the OS TimePM string for any hour after noon.

/ Displays the date separator character given by the OS DateSeparator string.

: Displays the time separator character given by the OS TimeSeparator string.
'xx' Characters enclosed in single or double quotes are displayed as is, and do not

affect formatting.

Note: If se_Format is not given or is a "", the DateTime value is formatted as if a c format specifier
had been given.

Time({ne_Type})
Returns a string that has the time in the format "HH:mm:ss" (24 hour format) if ne_Type is not given or
is true (1). If it is false (0) then it will return "AM hh:mm:ss" or "PM hh:mm:ss". This function is
equivalent to:
 DateTime(Now(),"hh:mm:ss") if ne_Type = 1 or is not given
and
 DateTime(Now(),"AM/PM hh:mm:ss") if ne_Type = 0.

Date({ne_Type})
Will return a string yyyy/mm/dd if ne_Type is not given or is true (1). If it is false (0) then it will return
"yyyy/mm/dd Day:Month" where Day is the Day Name and Month is month name. This function is
equivalent to:
 DateTime(Now(),"yyyy/mm/dd") if ne_Type = 1 or not given
and
 DateTime(Now(),"yyyy/mm/dd dddd:mmmm") if ne_Type = 0.

RobotBASIC V4.2.0

Page 215 of 276

ToTime(ne_Seconds)
Converts the number of seconds given (ne_Seconds) to a string of the form HH:MM:SS (i.e.
hours:minutes:seconds). The hours field will be as many digits as needed to report the number of hours.
It may have more than 24 hours if ne_Seconds results in more than 24 hours. The seconds and minutes
fields will always be two digits (e.g. 02 or 45). If you want to format the field further into days, years
and so on, you can use further string manipulation and conversion functions to treat the hours field.

It is better to use DatTime() above to do the same work. For example ToTime(5000) gives the same
result as DateTime(5000/24.0/60/60,"hh:mm:ss"). But if ne_Seconds exceeds 24 hours (> 86400) then
this function will return a number in the hours filed that is > 24 while with DateTime() you can treat
the number as days and hours etc.

Variables Manipulation & Indirection (Pointers)

vType(v_VarName)
This function is used to find the type of variable. You specify the variable name. The returned values
are:

102 = Ascii("f") floating point number
105 = Ascii("i") integer number
115 = Ascii("s") string
0 No Value i.e. has not been assigned a value

The values above are also defined in the RobotBASIC Constants section
Float = Floating point number
Integer = Integer number
String = String
NoValue = Not a defined Variable

This function can be useful to determine the type of a variable or if it is an un-assigned variable. You
can check if a variable is a valid one before you use it. If you try to use an unassigned variable an error
will occur. This function can be used to prevent this. Also see varType(), IsString(), IsNumber(),
ToString(), ToNumber() and others.

varType(se_VarName)
This function is used to find the type of a variable by defining the variable name as a string expression
which contains the variable's name. Unlike vType() where you give the actual variable as a parameter,
this function is passed a string that contains the variable name. The string can be a result of a
calculation which eventually results in a variable name. This way the string can be used as a pointer to
the actual variable name and thus providing a level of Indirection.

The returned values are as specified in the definition of vType(). Also see varsList(), varValue() and
VarSet.

varValue(se_VarName)
This function is used to find the value of a variable by defining the variable name as a string expression
which contains the variable's name. The string can be a result of a calculation which eventually results
in a variable name. This way the string can be used as a pointer to the actual variable name and thus
providing a level of Indirection.

Normally you can say b = 2 \ a = b+3 but using this function you can say b = 2 \ a =
varValue("b")+3 to get the same result. You may ask but why? Well, the answer is POINTERS.

RobotBASIC V4.2.0

Page 216 of 276

This function helps in implementing a pointer in RobotBASIC. se_VarName would be a string that
calculates the name of the variable whose value you want to get. This way se_VarName becomes a
pointer to the variable.

If se_VarName results in a variable that has not been defined you will get an error just like using a
variable that has not been defined. Also see varsList(), varType() and VarSet

Example:
a = 2 \ b = "test" \ c = 23.456
for i=0 to 2
 s=char(ascii("a")+i)
 print varType(s);varValue(s)
next
print varValue("tt") //gives an error since the variable tt has not been
defined

VarSet se_VarName, e_Value
se_VarName is a string expression that results in a string that represents a Variable's name. The
command will then set that variable to the value as results from the expression e_Value. This is like
using a pointer to the variable. e_Value can result in a value of any type and the variable by that name
as indicated from se_VarName will be set to that value (but see below). If the variable's name is
prepended with a _ then it will be a global variable.

If RB has been put in the Strict Variable Typing mode (by use of Declare) then the variable will have
to have been declared and e_Value has to result in a value of an appropriate type for the variable's
type.

This command and varsList(), varType() and varValue() can help in creating Indirection (Pointer Like)
operations to access variables and set their values using an Expression that results in the name of the
variable not by directly giving the variable's name in the program code. Thus the variable's name to be
accessed can be determined at at RunTime rather than at design time.

varsList({ne_Global})
This function will return a list of variable names that have been created (or Declared) up to that point in
the programs execution. The list will have the variables names separated with Cr/Lf. If ne_Global is not
given or is false then the local variables (if in a Sub subroutine) will be listed. If ne_Global is true then
the global variables list will be listed (the names will have a _ prepended to them). This function
combined with varType() and varValue() and varSet can help create a dynamic system and provide
access to variables in a dynamic way. Also see mFromString.

Swap v_Left | a_Left[...] , v_Right | a_Right[...]
Swaps the values of the simple variable v_Left or array element a_Left[...] and another simple variable
v_Right or the array element a_Right[...]. The array elements can be two elements of the same array or
different arrays. The arrays have to exist and the elements have to be valid with assigned values,
however, the values can be of different types. The indexing into the arrays has to be within the
allowable array dimension and dimensional constraints. Also the simple variables have to have been
previously assigned values.

RobotBASIC V4.2.0

Page 217 of 276

System Information

ProgName()
Returns the File name (including Path) of the currently running program. If the program is an EXE then
only the File name is returned (no Path), if you wish to get the path as well then use DirCurrent().

CommandsList()
FunctionsList()
StatementsList()
ConstantsList()

Returns a string with all the Syntax Verbs of RobotBASIC. The string will have the verbs separated
with Cr/LF.

Miscellaneous Functions

Delay {ne_Milliseconds}
Causes a delay in milliseconds i.e. 1000 = 1 sec. If the value is not given then 1000 will be assumed i.e.
1 second.

MicroDelay {ne_Amount}
Causes a delay in steps of 15 microseconds. So for example to get a delay of 1 second you would issue
the statement MicroDelay (1.0e6)/15. Notice that you can use a floating-point numbers also since the
ticks are in intervals of 15 microseconds a value of 2 will make a delay of 30 microseconds.
ne_Amount is optional and if it is not given or is less than 1 then it is assumed to be 1. This means that
the minimum delay is 15 microseconds.

Note: This command does not work on machines without a parallel port or a speaker.

Evaluate(se_Expression)
se_Expression is a string that contains a valid expression (see the Overview Of The Language section
on expressions). Depending on the context you can use variables. BUT these must be existing variables
for the evaluator to be able to evaluate the expression correctly. This can be useful to have expressions
defined at runtime instead of design time.

For example say you are writing a function plotter. Further you want the user to define the function to
be plotted at run time. The user would enter a string in response to an Input. For example sin(x). The
programmer can then define a loop through all values in the desired range of x and evaluate the
expression given by the user as y = Evaluate(se_Expression) where se_Expression was given by the
user as f(x).

 Input "Enter f(x)",fx
 x = 0.1
 if ToString(evaluate(fx))=fx then goto error_handler //handle error
 for x = 0 to 10
 y = Evaluate(fx)
 print y
 next
 End
 error_handler: //handle errors here
 print "Invalid function"

If an error is encountered while evaluating the function given by the user an error message would be
given indicating the error, and Evaluate will return the se_Expression as it was, i.e. if se_Expression is

RobotBASIC V4.2.0

Page 218 of 276

not a valid expression Evaluate(se_Expression) will display an error message and return the original
input without evaluation. Another error message will also be displayed indicating an error in
Evaluate(). However this second error will not halt the program as in other error. This way you can
check if the return result is still the same as the input then do any error handling within the program.
The error message given by the interpreter is meaningful in that it indicates the type of error, but the
line number will always be one because se_Expression is just one line any way. The second error
message will not occur if the OnError statement has been issued to cause error trapping. If OnError
trapping is in effect the second error will cause the interpreter to jump to the error handler specified by
the OnError statement.

Spawn(se_ProgramName,se_Parameters,ne_Mode)
Will execute the executable program se_ProgramName with the parameters defined in se_Parameters
passed to it. This function will run a program (exe, com or bat) and pass it the parameters. The program
name including its path is se_ProgramName. The parameters are defined in se_Parameter. ne_Mode
defines the mode of execution.

If ne_Mode = P_WAIT (0) then the RobotBASIC program will wait for the termination of the spawned
process. If ne_Mode = P_NOWAIT (<>0) then the RobotBASIC program will not wait and will
continue to run after the process is spawned.

If se_Parameters is blank then no parameters are passed to the process. If se_Parameters is not blank
then the string must contain the parameters separated by spaces. If any of the parameters has spaces in
it, you must surround it with two double quotes on either side (see example below).

se_ProgramName defines the name and path of the program to be spawned. If there is no path then the
system will search the current directory then the paths on the PATH parameter of the environment.

The function will return a number. If the number is -1 then an error was encountered in spawning the
requested program. If the number is <> -1 then the program was run successfully and the value reflects
the following:

-If the P_WAIT mode was used, then the number returned is whatever the spawned process has
returned to the operating system when it terminated.
-If the P_NOWAIT mode was used then the number is meaningless but has to be <> -1 to indicate
that the process was successfully spawned.

For example:
n = spawn("NotePad.exe","myfile.txt",P_NOWAIT)

// will run notepad and pass it the parameter and
// will not wait

n = spawn("D:\tests\Tester.exe","1 2 ""a b c"" X",P_WAIT)
//will run the program and pass it 4 parameters:
//1, 2, a b c, and X (notice ""a b c"" causes
//a b c to be passed as one parameter not three
// separate ones due to the spaces

RobotBASIC V4.2.0

Page 219 of 276

Robot Simulator
General Information
The Robot Simulator is a set of commands and functions that allow for easy programming of a robot to
move around a simulated environment. The environment is drawn on the screen using the drawing
commands and functions. The Robot is then Located in the environment and is made to programmatically
move, turn and sense around the screen.

The Robot is equipped with sensors to feel around and to look for objects and to sense for lines on the
ground. The view on the screen is as if you are looking at the robot and the environment from vertically
above. Objects drawn with LineTo, Rectangle, Circle and other commands will have colors and can be
considered as furniture or other objects and obstacles. Additionally, you can draw lines on the floor and
have the robot sense for them and follow them with the right combination of commands.

To use the Robot you must first rLocate it on the screen. Make sure the environment drawing commands
are done first. Once the robot is located you can issue commands to rForward and rTurn the robot. Also
you can rSense, rLook and/or rFeel around the environment to avoid objects.

Since the entire environment is two dimensional, you must specify any colors to be considered as invisible
to the robot and therefore non-obstacles. Any color on the screen that is not in the list of invisible colors
will be considered an obstacle when encountered by the robot while it is moving around (except for the
floor color). If you change the color of the floor, you must do so before locating the robot and then locate
the robot on the new floor (see rFloorColor below). You specify invisible colors with rInvisible

The first color in the list you specify is special in that it will be used as a default color for rPen and
rSense() if you do not specify a color when you issue the command or call the function (see below). The
second color in the list is also special in that it will be the default color if you do not specify a color for
rDFeel() and rDBumper().

Note: In older versions of the software (before 1.3.0) there was two commands (now obsolete)
rLineColor and rBeaconColor. You can still use these commands for backward compatibility.
rLineColor will set the color as if you included it as the first color in the rInvisible command.
rBeaconColor will set the second color.

Note: The Robot cannot be located or moved off the screen. The screen boundaries are the walls of a
room. The robot will not move forward into an object. Any attempt to do so will cause an error.
No sensor commands can sense beyond the walls.

The Robot has a Battery that discharges upon using the commands to move and sense. Moving depletes
more charge than sensing. The battery level can be checked and it can also be recharged. The Robot will
refuse to move and will return nonsense values from the sensors if the battery is depleted. The default state
is to ignore the battery charge level but you can use a command to make the robot heed the charge level.

The Robot Simulator Commands and Functions are not case sensitive, so rLocate, RLOCATE, and rlocate
are all the same.

RobotBASIC V4.2.0

Page 220 of 276

Simulator Commands

Note: See the notes at the top of the Standard User Interfacing section. The following lists the commands
in a functionality order rather than alphabetical order. See Simulator Command/Functions Listed
Alphabetically section for an alphabetized listing..

Note: Commands with a * have additional functionality as explained in Ports & Serial I/O section.

*rLocate ne_X,ne_Y{,ne_Heading{,ne_Size{,ne_BorderColor{,ne_InsideColor{,ne_ObeyFlip}}}}
Creates Robot of specified size and color at a specified position and heading.

If you need to specify ne_Size, you must also specify ne_Heading and so on. The Heading defaults to 0
(North), Size defaults to 20, BorderColor defaults to Blue and InsideColor defaults to White. The size
is limited to between 5 and 50 pixels. The size value is the radius of the robot. A size of 20 means a
radius of 20 and a diameter of 40.

This command must be executed before any other robot functions or command. It is the command that
creates the robot, places it on the ground and switches it on. If you issue any commands/functions
before this command an error will be issued and the program will halt.

The size of the Robot should be considered in relation to the screen size. The screen is 800x600 pixels.
So if you consider a room of 20 feet then each pixel is 1/3 inch. So a robot of 20 pixels radius is 12
inches in diameter. Which is a reasonable robot size. But you can specify smaller or larger size.

If you locate the robot over a color other than the floor color, or if you change the floor color from the
default screen color you must issue an rFloorColor (see below) before you do any movement of the
robot.

Normally the simulated robot will draw on the screen and will not be affected by Flip On. However, if
specify ne_ObeyFlip as true (and Flip has bee turned on with Flip On) then the robot will do its actions
on the Back Buffer screen and will not show its actions unless Flip is issued. This can be useful in
speeding up the robot animation but it may also slow the robot animation if you need to keep watching
the robot's action after each move and having to issue a Flip all the time. Therefore you need to
exercise prudence in when to use this ability.

Also you need to rLocate the robot after you have already issued Flip On for the ne_ObeyFlip property
to take place. Also remember that the robot actions will take place in the invisible back buffer screen
and will not be visible until Flip has been issued. Thus if you issue an rTurn 30 or rForward 40 for
instance then issue a Flip then the robot will appear to be jerking around since it has already
forwarded/turned a substantial distance/angle before it became visible. Therefore be careful about how
you use the rForward and rTurn commands in your simulations if you are also going to use the Flip
facility.

The primary use of the flip facility is to really make the simulation go faster since no drawing of the
robot will take place until the next time you issue Flip. But since this will make the robot appear to be
jerky then it is mostly useful while testing. If you have to keep issuing Flip to keep the animation
smooth then the process may go slower than if no flip is being used. Thus, use this feature carefully and
only if you need to speed up the robot even more than normal during testing.

RobotBASIC V4.2.0

Page 221 of 276

rRelocate {ne_X{,ne_Y{,ne_Heading}}}
This function allows you to simulate picking up and replacing the robot somewhere else. All the
properties of the robot will remain the same. This will only relocate the robot on the screen to the new
position and heading specified. Other previously set things line the pen. invisible colors, slip, charge
and so forth will not be changed.

If any of the parameters is not given then it will remain as it is and will not be changed. You can also
use this command to redisplay the simulated robot after a ClearScr which will also clear the image of
the simulated robot off the screen. This command without any parameters will redraw the robot exactly
where it was and thus helping in allowing for clearing the screen without having to move the robot to
redisplay it. This can be useful in certain situations especially during animations.

rInvisible ne_Color1 {,ne_Color2...}
This command sets the list of colors that will not be considered as objects when encountered by the
robot while moving and also by many of the sensors as specified. You must pass at least one color and
a maximum of 15. The colors are according to the colors specified in the RobotBASIC Constants
section. The first and second colors in the list are also special as explained in the General Information
section above.

rFloorColor {ne_Color}
Sets the color that will be considered as the floor and thus will not affect sensors and Forward. This is
only needed if you are going to place the robot on a surface that is not the default screen color upon
creating the robot. If ne_Color is not given then it will be 15 (white).

*rForward {ne_Pixels}
Moves in the direction of the robot heading ne_Pixels forward if the count is positive, or backwards if
it is negative. This command will cause an error if the Robot tries to move into objects of any color not
listed in the list of invisible colors (see rInvisible below). If nePixels is not given then it will be 1 and if
it is a float it will be truncated.

This Command will cause an error if the battery is depleted and the IgnoreCharge False has been
issued.

*rTurn {ne_Degrees}
This will cause the robot to turn ne_Degrees right (Clockwise) if the count is positive and left
(counterclockwise) if it is negative. If ne_Degrees is not given it will be made 1 and if it is a float it
will be truncated.

This Command will cause an error if the battery is depleted and the rIgnoreCharge False has been
issued.

rHeading {ne_Degrees}
Sets the robot heading (0-359). 0 is facing up (North), 90 is facing right (East) etc. If n

*rSpeed {ne_Speed}
Sets the robot speed. The larger the number the slower the robot. ne_Speed has to be >= 0. If
ne_Speed is not given it will be made 0. If it is a float it will be truncated.

*rGps vn_X,vn_Y
Assigns vn_X the Robot's current X position and vn_Y the Y position. Effectively giving the robot's
position on the screen. This Command will NOT cause an error if the battery is depleted and

RobotBASIC V4.2.0

Page 222 of 276

rIgnoreCharge False has been issued, but the values will be zero.

*rPen ne_State {,ne_Color}
The robot has a pen positioned at its centre and can be put Up or Down using this command. When the
pen is down the robot will draw a line using the color specified. If you do not specify a color then the
first color specified in the list of invisible colors (rInvisible) is used. If you have not specified a list of
invisible colors then the pen will draw using the floor color which means that you will not see the trace
if it is over the floor color. Also the width of the line is determined by the current line width as set by
the drawing commands (see LineWidth). If ne_State is 0 (up) then the pen will be put up. If it is not
Zero (Down) then the pen will be set down and drawing will take place. You can use the constants
Down and UP so you can say:
 rPen Down,Cyan //---will set the pen down and use cyan for
 // drawing
 rPen Up //--- will set the pen up

Remember the line width is whatever has been set previously by the last LineWidth issued. Also the
line color will be whatever has been specified or the first color in the invisible colors list. Also note that
the color drawn by the pen will be considered as an obstacle unless it is in the list of invisible colors.

rCharge {ne_Value}
Sets the batteries to percentage charge. ne_Value is a percentage value 1-100%. If ne_Value is not
given it will be 100 and if it is a float it will be truncated. If it is less than 1 it will be made 1.

rIgnoreCharge {true|false}
If true is given or no parameter is given then the Battery charge level will be ignored and the robot will
continue to operate regardless of the battery charge level. This is the default state. If false is given then
the Battery charge level will be heeded and the robot will not operate if the battery is depleted and in
some cases will issue an error as specified in the commands.

rSensor ne_SensorNo,ne_Range,vn_Color,vn_Distance,vn_Found
The robot has a default set of sensors located at 90 and 45 degrees to the left and right of the front and
at the front. These sensors can look and return the color of the first object encountered and the distance
to that object. ne_SensoNo can be one of the following values:

1 = 90 degrees to the right
2 = 45 degrees to the right
3 = Front
4 = 45 degrees to the left
5 = 90 degrees to the left

- ne_Range is used to specify the limit of the sensor range (Pixels).
- vn_Color will be set to the first color found directly in front of the sensor that is not on the list of

invisible colors. If the range of the sensor is reached or the walls of the room (screen extent)
without sensing an object then this color value will be -1, otherwise it will be the color of the
object.

- vn_Distance will be set to the distance to the object found. If no object was found then the distance
will be the range of the sensor, or the distance to the wall if that was within the sensor range.

- vn_Found will be set to true if an object was found or a wall was seen within the sensor range. If the
sensor range was reached without seeing a wall or an object then it will be set to false. Colors on
the invisible colors list will be ignored in the process.

This Command will NOT cause an error if the battery is depleted and rIgnoreCharge False has been
issued, but the values will be nonsense.

RobotBASIC V4.2.0

Page 223 of 276

rSensorA ne_Angle,ne_Range,vn_Color,vn_Distance,vn_Found
This is the same as rSensor, except that instead of a sensor number you use a sensor angle (0-359)
clockwise relative to the robot heading. 90 is 90 degrees to the right, 270 is 90 degrees to the left. So
this command can be used to do the same as above but instead of a limit of 5 sensors you have 360 of
them.

This command will NOT cause an error if the battery is depleted and the rIgnoreCharge False has
been issued, but the values will be nonsense.

rSlip {ne_PercentageLevel}
This command defines a percentage for the Slipping feature of the robot.

Real robot motors tend to slip in a random way where going forward/backward can go less than
expected. If the motors do not turn exactly the same amount while going forward a slight turning
tendency may occur. Also during turning if the motors do not turn as expected less or more turning
than commanded may occur.

Issuing this command will cause the robot to behave in this manner. If you do not specify a value the
slip will occur 2% of the time. If you want to simulate a different percentage then issue the command
with a specified value. A value of zero will turn the slipping off which is the default state. If it is less
than 0 then it will be made zero. If it is greater than 100 it will be made 100.

rSenseType {ne_NumSensors}
This command specifies the mode of operation of rSense() (see below). If ne_NumSensors is not given
or is 3 (or less) then rSense() will use 3 line sensors. If ne_NumSensors is 5 (or greater than 3) then 5
line sensors will be used. The default is 3 sensors when the robot is initialized. See the description of
rSense() for details.

rInstError {ne_PercentageLevel}
This command defines a percentage for the Instrumentation Error feature of the robot.

Real instruments are not usually precise and they can report values that are either less or more than the
actual value being measured. Electronic compasses and range finders as well as GPS devices report
values that are to within a percentage values plus or minus from the actual value. The simulated
instruments in RobotBASIC by default report precise values for the rRange(), rBeacon(), rGPS,
rGpsX(), rGpsY() and rCompass() functions and commands.

Issuing this command will cause the reported values to be in error by a certain percentage (+/-). If you
do not specify a value the error will be up to a maximum of +/-2%. If you want to simulate a different
percentage then issue the command with a specified value. A value of zero will turn the error off which
is the default state. If it is less than 0 then it will be made zero. If it is greater than 100 it will be made
100.

For instance if the actual X position of the robot is 100 then GpsX() will normally report 100. If
rInstError 3 has been invoked then the reported value can be any value from 97 to 103 since 3% of 100
is 3 and thus minimum reported value would be 100-3 and maximum would be 100+3 but since the
error is random and up-to the 3% then the reported value can be anywhere between the minimum and
maximum (97 to 103).

This command can help you simulate more realistic instrumentation and therefore force you to develop

RobotBASIC V4.2.0

Page 224 of 276

algorithms that are more able to cope with this kind of real situations.

Simulator Functions

In the following if () is specified then the function does not require a parameter but the () has to still be
typed. All functions will NOT cause an error if the battery is depleted and the rIgnoreCharge False has
been issued, but the values returned will be nonsense. The functions are listed according to functionality
rather than in an alphabetical order. See below for alphabetical order.

Functions that look or sense for colors will not detect the colors on the invisible colors list (see rInvisible
above) unless otherwise stated.

Note: Functions with a * have additional functionality as explained in Ports & Serial I/O section.

*rChargeLevel()
Returns the Batteries Charge % value.

rPoints()
The Robot keeps a count of the number of times you have used its sensors and have turned its motors
(rTurn, rForward) on. Thus this point value can be used as a measure of the efficiency of an algorithm
to achieve a task in the minimum possible points. This function returns the current count value.

*rRange({ne_Angle})
Returns the distance to the first color seen directly in front of the robot. If the walls are seen before any
object then the distance to the wall is returned. Colors on the invisible colors list are ignored.

ne_Angle is option and if given it defines an angle relative to the robot's heading. It must be between -
90 and +90. Positive is to the right of the robot, negative is to the left of the robot. Pivoting is about the
front of the robot not the center of the robot. The ranger is fitted on the front point of the robot and
pivots 90 degrees left and right centered on this point.

Specifying an angle places the range finder at any angle relative to the robot's heading. With this sensor
you can measure distances relative to the front of the robot from 90 degrees to the right (+90) up to 90
degrees to the left (-90) at intervals of 1 degrees.

*rBeacon(ne_Color)
Returns the distance to the specified color if it is in front of the robot, even if that color is blocked by
other objects between the robot and the color. It returns 0 otherwise.

This is useful for detecting of a "flashing" beacon mounted above obstacles in the room. The command
looks for any color specified. It DOES NOT ignore colors on the invisible colors list. The result can be
treated as true/false (false = 0, true = otherwise) or you can use the number returned if it is not zero as
the distance to the color specified.

*rFeel()
*rDFeel({ne_Color})

Returns a number 0-31 according to the following logic:
There are 5 infrared sensors around the robot. At 90 and 45 degrees to the left and right of the robot
and directly in the front. The sensors are able to feel any object within a robot's radius ahead of the
sensor (ignoring invisible colors).

RobotBASIC V4.2.0

Page 225 of 276

The Number returned is a bit map of the condition of the sensors. If any of the sensors feels
something then its bit position is set to 1, otherwise 0. So there are 5 bits MSB...LSB 00000. The
most significant bit is the sensor 90 degrees to the left, then 45 degrees then 0 degrees then 45
degrees to the right, and the least significant bit is 90 degrees to the right. So if the number is 01110
(14) then the sensors in front and 45 degrees right and left are feeling objects and the rest do not.
Use Bit-wise operators (bAnd/bOr etc) to manipulate the result. Colors on the invisible colors list
are not considered objects.

The difference between rFeel() and rDFeel({ne_Color}) is that rDFeel({ne_Color}) will draw radials
out from the sensors to show the range of feel of the sensors using the color specified. If you do not
specify a color then the second color on the invisible colors list will be used. This is a useful feature for
debugging the rFeel() result.

Do not use rDFeel({ne_Color}) unless you need to debug since it is a lot slower than rFeel(). You
must specify a color or have a valid (not a floor color) in the second item of the invisible colors list.
The radial lines will be drawn using this color or the second color on the invisible colors list otherwise
the beams will not be visible.

*rBumper()
*rDBumper({ne_Color})

Returns a number 0-15 according to the following logic:
There are 4 bumpers around the robot. At the front covering an arc of 130 degrees i.e. from 65
degrees to the left to 65 degrees to the right. There is also a bumper at the back just like the front one,
that is from 115 to 245 degrees. To the left and to the right there are bumpers that cover an arc of 50
degrees i.e. from 65 to 115 degrees on the right and from -65 to -115 degrees on the left. The
bumpers will close (turn on) if there is any object within 2 pixels of the robot's perimeter (ignores
invisible colors).

The Number returned is a bit map of the condition of the bumpers. If any of the bumpers is closed
then its bit position is set to 1, otherwise 0. So there 4 bits MSB...LSB 0000. The Least Significant
Bit is the back bumper, then the right, front and then the left one.

If the number is 1110 (14) then the right, front and left bumpers are closed while the rear one is not.
Use Bitwise operators (bAnd/bOr etc) to manipulate the result. Floor/Line/Beacon colors are ignored.

The difference between rBumper() and rDBumper({ne_Color}) is that rDBumper({ne_Color})
will light up an LED where the bumper is touching objects using the specified color or the second
color on the invisible colors list. If no color is specified then the second color on the invisible colors
list will be used. If that is not specified then the color will be the floor color and the beacon may not
be visible. This is a useful feature for debugging the rBumper() result. Do not use
rDBumper({ne_Color}) unless you are debugging since it is significantly slower than rBumper().

*rSense({ne_Color})
Returns a number 0-7 according to the following logic:

There are 3 sensors around the robot, at 10 degrees to the left and right of the robot and directly in the
front. The sensors see only the color specified or, if you don't specify a color, then the first color on
the invisible colors list. If neither is specified then the floor color will be sensed. The sensors only
look at the ground directly under the sensor situated directly at the perimeter of the robot. The
Number returned is a bit map of the condition of the sensors. If any of the sensors sees the ne_Color
then its bit position is set to 1, otherwise it is 0. There are 3 bits MSB.LSB 000. The most significant
bit is the sensor 10 degrees to the left, then ahead (0 degrees) and then 10 degrees to the right. If the

RobotBASIC V4.2.0

Page 226 of 276

number is 010 (2) then only the sensor in the front is on the line and the other two are outside of the
line. Use Bit-wise operators (bAnd/bOr etc) to manipulate the result.

The default mode of this function is to use the above mode. That is 3 sensors as described above.
However, if rSenseType is issued with a parameter greater than 3 then the above still applies but in
addition there are two more sensors that will be reported in the returned number in Bits 3 and 4 (that is
4th and 5th bit positions in the number). Bit 3 will report the status of a sensor 35 degrees to the right
of the front of the robot and Bit 4 will be for a sensor 35 degrees to the left of the front.

So if rSenseType 5 has been issued then there will be 2 more sensors (one 35 degrees right and one 35
degrees left) in addition to the 3 standard sensors and their status will be reported in bits 3 (right
sensor) and 4 (left sensor) of the value returned by the function.

*rLook({ne_Angle})
Returns the first color seen directly in front of robot. If the walls are seen before any object then -1 is
returned. Colors on the invisible colors list are ignored.

ne_Angle specifies an angle relative to the robot's heading. It has to be between -180 and +180.
Positive is to the right of the robot, negative is to the left of the robot. The pivoting center is the center
of the robot. Specifying an angle allows you to place the camera at any angle relative to the robot's
heading. So with this sensor you can look at objects relative to the robot's heading 180 degrees to the
right (+180) up to 180 degrees to the left (-180) at intervals of 1 degrees.

rGround(ne_SensorNo)
The robot has a default of 3 sensors to look at the ground directly at the perimeter of the robot.
ne_SensorNo can be:

1 = 10 degrees to the right
2 = In front
3 = 10 degrees to the left.

It will return the color seen by the sensor. It will not ignore ANY color (i.e. the colors on the invisible
colors list are not ignored). It is up to you what to make of the value. If you want to ignore any colors
use programming logic to do so.

rGroundA(ne_Angle)
This is the same as rGround, except that instead of a sensor number you specify an angle (0-359)
clockwise relative to the robot heading. 90 is 90 degrees to the right, 270 is 90 degrees to the left. So
this command can be used to do the same as above but instead of a limit of 3 sensors you have 360 of
them.

*rCompass()
Returns the Robot's current heading (0-359) 0= North.

rGpsX()
Returns the Robot's current X-position on the screen.

rGpsY()
Returns the Robot's current Y-position on the screen.

RobotBASIC V4.2.0

Page 227 of 276

Simulator Serial I/O Protocol

This protocol uses serial communication (can be Bluetooth virtual serial port) to communicate between
RobotBASIC and a real robot with the ability to send and receive serial data. You can create your own
protocol using the above serial communications commands. This protocol is provided for convenience.

You can write programs normally using the simulator commands and functions. However if you signal
RobotBASIC to use the serial port protocol the same program will run, but instead of simulating the robot
on the screen it will send and receive data back and forth between a real robot and RobotBASIC. This
allows you to test your simulated algorithms on a real physical robot.

The microcontroller on the real robot receives data representing the commands (like rForward etc.),
responds to the commands and returns data to RobotBASIC to tell it that it received the command and
acted upon it and that the current state of sensors is as per the data sent.

You can write programs using the commands and function in the Robot Simulator, but the commands will
not cause the simulated screen robot to move. Rather, a set of two bytes is sent via the serial port and then
RobotBASIC will wait for a set of 5 bytes to be sent back. These 5 bytes are then stored and interpreted to
provide data to be returned by the command or function.

To tell RobotBASIC to use the serial communications protocol rather than the simulator, use rCommPort
(see below) to make all subsequent commands and function use the protocol in place of the simulator.

The commands and functions will cause RobotBASIC to send two bytes where the first byte is a code for
the command and the next byte is the parameter for the command. The receiving microcontroller on the
physical robot can make use of these bytes and must respond within the timeout limit (see SetTimeOut
above) by sending 5 bytes to be received by RobotBASIC. The first three bytes are the status of the
Bumpers, Infrared sensors, and Line sensors (in this order). The last two bytes are the returned values
relating to the function/command. The order is MSB first. The first byte is the most significant byte of the
number. (rGPS is the exception to the 5 byte rule see below).

The values received in the first three bytes of the 5 bytes are used to update the status of the Bumper,
Infrared and Line sensors. These values will be used by rBumper(), rFeel() and rSense(). This means
that these functions will still work in the same way as in the simulated situation but instead of returning the
values read by the simulated robot off the screen they will return the real physical values received by the
protocol from real sensors on the physical robot. The values can be used in exactly the same manner as
before (as described in the Robot Simulator section).

Note: The byte corresponding to the rSense() (3rd byte) in the 5 returned bytes will be Bit Anded (masked)
with 7 (0%00000111) when received unless an rSenseType 5 has been issued. This is to keep the value
returned in accordance with only 3 sensors being rported in bits 0 to 2 (first three). If you wish to send
values in this byte that want to receive in full (all 8 bits) then issue an rSenseType 5 statement before using
the protocol. This will stop the masking and the whole byte will be kept as it was received. This can be
useful for receiving more than 3 line sensors or even other data from the robot.

rCommPort ne_PortNum {,ne_BaudRate {,ne_NumBits {,ne_Parity {,ne_StopBits {,ne_Protocol}}}}}
This command is exactly the same as SetCommPort above. It sets the com port number and parameters
and opens the com port for communications. However, it also signals a flag that makes the simulator
use the com port specified in place of the screen. To return back to using the screen issue the command
again but with 0 as the com port number.

RobotBASIC V4.2.0

Page 228 of 276

rCommand(ne_Command,ne_Data)
This function will send the two bytes ne_Command and ne_Data over the serial comm. It will then wait
for 5 bytes to be received over the serial comm. If the 5 bytes are received within the TimeOut limit
(see above) then the function will return these 5 bytes in a string (byte buffer).

If the robot has not been initialized with an rLocate, or rCommport has not been issued, or the serial
comms fail for any other reason or the 5 bytes are not received within the TimeOut limit then the
function will return a blank string ("").

This function allows you to send a GENERAL command (with a parameter) to the real robot and to
receive 5 bytes which you can use in any fashion. Use GetStrByte() to obtain the individual bytes from
the string of 5 bytes.

rLocate ne_X,ne_Y (code 3)
You still need to issue this command before using the protocol just as in the simulator. This command
initializes the real robot and starts the command process. No use is made of the second (and the others
if you happen to be using them) parameters but they need to still be there because the command is the
same as in the simulated one but does not use the numbers when the protocol is active. This means that
you do not need to change your simulator program to make it work with the protocol. The protocol
sends two bytes 03 and ne_X. It will expect to receive 5 bytes where the first three are as described
above. The last two are not used.

rForward ne_Amount (code 6 or 7)
This command will send two bytes 6 (or 7) and Abs(ne_Amount). 6 is the code for going forward and 7
is for going backwards. ne_Amount is the distance required if it is positive then code 6 is sent and if it
is negative then it is made positive and the code 7 is sent. The received data contains 5 bytes but only
the first 3 are used. They are in the order described above for the status of the sensors.

rTurn ne_Amount (code 12 or 13)
This command will send two bytes 12 (or 13) and Abs(ne_Amount). 12 is the code for turning right
and 13 is for left. ne_Amount is the required degrees, if positive then code 12 is sent and if negative
then the number is made positive and code 13 is sent. If you specify a number greater than 180 then the
turn is made into ne_Amount-360 and if it is less than -180 (i.e. more negative than -180 e.g. -190) then
it is made into 360+ne_Amount. So if your simulator command says rTurn 190 then the value sent to
the real robot will be 170 with code 13 (i.e. left turn of 170). The received data contains 5 bytes but
only the first 3 are used. They are in the order described above for the status of the sensors.

rCompass () (code 24)
This function will send two bytes 24 and 0. 24 is the code for the compass. The received data contains
5 bytes. The first 3 used are in the order described above for the status of the sensors. The last two
bytes are the value returned by the compass on the real robot representing the heading (MSB first). This
means that this function will return a number formed as a 16 bit number from the 4th byte of the
received 5 bytes as the MSByte of the number and the 5th byte as the LSByte.

rSpeed ne_Speed (code 36)
This command will send two bytes 36 and ne_Speed. 36 is the code for setting a speed on the physical
robot and ne_Speed is the required speed (0 to 255). The received data contains 5 bytes. The first 3
used are in the order described above for the status of the sensors. The last two bytes are not needed
and are set to 0.

RobotBASIC V4.2.0

Page 229 of 276

rLook ({ne_Angle}) (code 48 or 49)
Will send two bytes 48 (or 49) and Abs(ne_Angle). 48 is the code for the camera sensors reading
ne_Angle degrees to the right and 49 is to the left. If ne_Angle is negative it will be made positive and
code 49 will be sent.. The received data contains 5 bytes. The first 3 used are in the order described
above for the status of the sensors. The last two bytes are the value returned representing the color seen
by the sensor. (MSB first). This means that this function will return a number formed as a 16 bit
number from the 4th byte of the received 5 bytes as the MSByte of the number and the 5th byte as the
LSByte

rGPS vn_X,vn_Y (code 66)
This command will send two bytes 66 and 0. 66 is the code for GPS sensors reading and vn_X will be
set to the X pos and vn_Y to the Y position. The received data contains 5 bytes. The first 2 are the X
position and the second two are the Y position. The fifth is not used and is set to zero. (MSB first).

This command is an exception to the 5 bytes received in all the other commands. The 5 bytes received
after issuing this command are not used to update the Bumpers, Infrared, and Line sensors status.
Instead the first 2 bytes are used to calculate the X-position and the second two bytes are for Y-
position. The last byte is not used.

rBeacon (ne_Color) (code 96)
Will send two bytes 96 and ne_Color. 96 is the code for beacon sensors reading and ne_Color is the
required color. The received data contains 5 bytes. The first 3 used are in the order described above for
the status of the sensors. The last two bytes are the value returned by the beacon representing the
distance measured to the found beacon or zero if beacon is not found. (MSB first). This means that this
function will return a number formed as a 16 bit number from the 4th byte of the received 5 bytes as the
MSByte of the number and the 5th byte as the LSByte.

rChargeLevel () (code 108)
This function will send two bytes 108 and 0. 108 is the code for the battery charge level meter. The
received data contains 5 bytes. The first 3 used are in the order described above for the status of the
sensors. The last two bytes are the value returned by the battery charge meter on the real robot
representing the battery charge level in percentage(MSB first). This means that this function will return
a number formed as a 16 bit number from the 4th byte of the received 5 bytes as the MSByte of the
number and the 5th byte as the LSByte. Since the value is a percentage value then it is not likely to
exceed 100. However, you can use the number returned as you need and you may program the robot to
return any number 0 to 0xFFFF if you wish.

rPen ne_State (code 129)
This command will send two bytes 129 and ne_State. 129 is the code for pen control. ne_State is either
Up(0) or Down (not zero can be any number other than zero usually it is 1). The received data contains
5 bytes. The first 3 are in the order described above for the status of the sensors. The last two bytes are
not needed and are set to 0.

rRange ({ne_Angle}) (code 192 or 193)
Will send two bytes 192 (or 193) and Abs(ne_Angle). 192 is the code for range sensors reading at
ne_Angle degrees to the right and 193 is to the left. If ne_Angle is negative it is made positive and code
193 is sent. The received data contains 5 bytes. The first 3 used are in the order described above for the
status of the sensors. The last two bytes are the value returned by the rangers representing the distance
measured. (MSB first). This means that this function will return a number formed as a 16 bit number
from the 4th byte of the received 5 bytes as the MSByte of the number and the 5th byte as the LSByte.

RobotBASIC V4.2.0

Page 230 of 276

Ports & Serial I/O
General Information
The following commands allow for using direct port I/O where you can read/write a byte from/to a
particular port on the PC. There is a set of special commands for I/O to the parallel port as a special case
for ease of use. There is also a set of commands that allow for Serial I/O using either actual com ports on
the PC or virtual com ports created by protocols such as Bluetooth devices or USB devices. These devices
will create a virtual port number that can be used for all intents and purposes as if it were a physical serial
com port.

The Robot Simulator has an extension that allows for the use of serial I/O to communicate to and from a
real robot, effectively enabling programming of a real robot using the RobotBASIC language. The protocol
extension will be explained in its own section below.

To facilitate serial com port setup there are a set of constants that are listed in Appendix B.7.6. The I/O
commands are not case sensitive.

Note: See the notes at the top of the Standard User Interfacing section.

Note: The following functions and commands will help in manipulating the string buffer for sending or
after receiving. ToByte(), PutStrByte(), GetStrByte(), BuffPrintT, BuffPrintB, BuffWrite(),
BuffWriteB(), BuffRead(), BuffReadI(), BuffReadB(), BuffReadF() and of course all the string
mainpulation functions as well as number conversion functions. Also see CrLf(), Substitute(),
Extract(), NumParts(), mFromString and mToString().

Serial I/O Commands

Note: The OnSerial statement will interrupt normal program flow and jump to a subroutine (event
handler) that must handle the event and then return back to program execution. This occurs
every time there are bytes in the serial buffer. Reading the buffer will clear it.

When sending data through the serial port you are sending a string. This string can be considered as one
dimensional array of bytes. You can put data in the string in many ways. SerOut behaves like a print
statement and will create a string that results from the list of expressions given as parameters to the
command. This will also convert numbers to their string format. While SerialOut does not convert the
numbers to their string format, rather it will treat numbers as one byte values and will send only the
LSByte of the numbers given.

Another way you can create the string (byte array) to be sent is by using the String Buffer functions. See
BuffPrint and BuffWrite() and BuffWriteB(). Also see PutStrByte(), toByte() and Char().

All of these would help in creating the byte array (string) to be sent through the serial port.

SetCommPort ne_PortNum {,ne_BaudRate {,ne_NumBits {,ne_Parity {,ne_StopBits {,ne_Protocol}}}}}
This command sets the com port number and parameters and activates the port for communications.

Port Number can be from 1 to 5000 .
Baud Rate can be 0 to 14 (see the RobotBASIC Constants section for details of codes). Defaults

RobotBASIC V4.2.0

Page 231 of 276

to 6 i.e. 9600 baud.
The number of Data Bits in the transmitted byte can be 4,5,6,7 or 8. Defaults to 8.
The Parity check can be from 0 to 4 (see RobotBASIC Constants section). Defaults to 0 (no

parity).
Stop Bits in the transmission (see RobotBASIC Constants section) ranges from 0 to 2. Defaults to

1 i.e. 1 stop bit.
Flow Control protocol (see RobotBASIC Constants section) ranges from 0 to 2. Defaults to 0 i.e.

None.

To deactivate the communications port issue SetCommPort 0

SerPorts vs_PortsList
This command checks the computer to see what Comm ports are available for use. It then creates a list
of all the Comm Port numbers and assigns the vs_PortsList variable the list with CR/LF separating the
numbers. This list can be assigned directly to a ListBox (see AddListBox) since it is a CR/LF separated
list of strings. You also can use Extract() to extract a particular port number from the list and use
ToNumber() to convert it to an actual Integer value to be used in SetCommPort or rCommPort.

SerOut Expr {,Expr {; Expr ...}}
This command is similar to Print. The output of the command is sent to the serial port in place of the
screen.

Outputs the values of expr.... to the serial port. A , between the expressions makes them print with no
space between them a ; prints them with a tab space between them. You must specify at least one
expression. The result of all the expressions is put together as specified by the commas and semicolons
into one string and the string is outputted to the serial port as specified by SetCommPort. The total
length of the resulting string will be truncated to 4095 bytes if it exceeds this amount.

If Expr results in a numeric it will be converted to the string format. DO if you say SerOut Alpha and
Alpha contains the value 435 then the characters 4, 3 and 5 will be put out to the serial port.

SerOut behaves just like a Print statement but the resulting output is put out to the serial port instead of
the screen. See SerialOut for more options in puting out numbers.

SerialOut Expr {,Expr {, Expr ...}}
This command is different from SerOut above. Only commas are allowed to separate the various
expressions. The expressions can result in numerical (float or integer) or string values.

If the expression results in a float value it will be rounded down to become an integer. If the resulting
integer value is greater than 255 (0xFF or 0%11111111) then it will be made into a byte by zeroing all
the other bytes other than the LSByte.

If the expression results in a string then the string will be treated as a one-dimensional array of bytes
whose values are the values of the characters in the string.

The results of all the expressions will be accumulated into one array of bytes in the order they are
specified and sent through the active comm port as specified by SetCommPort. The total length of the
resulting array will be truncated to 4095 bytes if it exceeds this amount.

Also see BuffPrint and PutStrByte(), toByte(), BuffWrite() and BuffWriteB().

RobotBASIC V4.2.0

Page 232 of 276

SerIn vs_Bytes
This command reads the data that is currently in the serial communications buffer all in one go and puts
it as a string in the variable vs_Bytes. You can use string manipulation commands and functions as well
as conversion functions to make use of the data. The command will not cause a time out. If there are no
bytes in the input buffer the string returned will be null. Use CheckSerBuffer to find out how many
bytes (if any) of data are waiting on the buffer.

See GetStrByte(), BuffReadI(), BuffReadB() and BuffRead().

SerBytesIn ne_NumOfBytesToRead,vs_BytesRead,vn_ActualNumberRead
This command attempts to read the required number of bytes from the serial input buffer and puts them
in to the string variable vs_BytesRead. vn_ActualNumberRead is set to the number of bytes actually
read before a time out occurred. The command will wait until the required number of bytes are read. If
a time out occurs before all the characters are retrieved then what ever characters have been read are
returned inside vs_BytesRead and vn_ActualNumberRead is set to the number actually read. See
SetTimeOut and GetTimeOut below. The maximum amount for ne_NumOfBytesRequired is 4095
bytes and the minimum is 1. It will be set to the closest limit if it is outside the range 1 to 4095.

SetTimeOut {ne_MilliSeconds}
This command sets the time out for the serial port reading commands. ne_MilliSeconds is the number
of milliseconds to wait before a time out occurs. It is optional and if it is not given or is less than one
then 5000 will be assumed (i.e. 5 seconds). 5000 is also the default upon program startup.

GetTimeOut vn_TimeOutValue
This command reads the current setting for the time out for the serial port and puts the value in
vn_TimeOutValue. The number returned is in milliseconds.

CheckSerBuffer vn_NumOfBytes
This command set the value of the variable vn_NumOfBytes to the number of character in the serial
input buffer. You can read them with the commands above.

ClearSerBuffer {ne_Which}
This command clears the Input and Output serial buffers. If ne_Which is not given or is zero then both
buffers will be cleared. A value of 1 will clear the Input buffer, a value of 2 will clear the output buffer.
Any other values will be ignored.

ReadSerSignals vn_Flags
This command checks the status of the CTS (clear-to-send), DSR (data-set-ready), Ring (ring
indicator) and RLSD (receive-line-signal-detect) signals and puts them into the vn_Flags variable as a
bit map. Any signal that is on will have a 1 in its corresponding bit and if it is off it will have a 0. The
bits are in the order given above starting from the Least Significant Bit onwards. So CTS is bit 0 and
RLSD is bit 3.

SetSerDTR {on|off}
This command will set the DTR signal line to on or off. If no parameter is given then on is assumed.

SetSerRTS {on|off}
This command will set the RTS signal line to on or off. If no parameter is given then on is assumed.

RobotBASIC V4.2.0

Page 233 of 276

Parallel Ports I/O Commands
These commands read and write byte values to the parallel port specified. These commands assume that
your system has a bi-directional parallel port (ECP standard). If your system does not have this then only
output will be possible and no input can occur. You can check if your system has this capability and set it
using the BIOS setup upon starting your PC. If you have more than one parallel port you can specify which
one to use by specifying its base address using SetPPortNumber.

PPortOut {ne_ByteValue}
Outputs the byte value to the parallel port If ne_ByteValue is greater than 255 only the lower byte will
be outputted. If ne_ByteValue is not given it will be 0 and if it is a float it will be truncated to an
integer then to one byte (LSB).

PPortIn vn_ByteValue
Reads the data byte at the parallel port and assigns it to the variable vn_ByteValue.

SetPPortNumber {ne_PortNumber}
This commands sets the base address of the parallel port to be used by all the parallel port commands
including the virtual ones below. The system defaults to address 888 (hex 0x378) which is usually the
first and only parallel port on most systems. If your system has more than one port and you wish to use
other than the default first port use this command to specify the port number (in decimal). You can find
the addresses of available ports from the BIOS setup upon starting your computer, or you can use the
Windows System to do the same. ne_PortNumber is optional and if it is not given or it is less than one
then the system will use port number 888 (0x378). Beware that if you specify the wrong address the
commands will not function and you may even damage your system.

WARNING! Use these commands with care. Badly designed hardware connected to the parallel
port can damage the port. If you are going to experiment with electronics and these
commands do so at your own risk and know what you are doing. Failure to do the
correct design will damage your port if not your whole computer.

Virtual Parallel Port I/O Protocol
This protocol is included as a convenience for extending the single byte parallel port to 4 input bytes and 4
output bytes. The protocol assumes there is multiplexing hardware connected to the parallel port. You can
write your own protocol using InPort and OutPort but this protocol is provided for convenience and speed.

The protocol makes use of the control port on the parallel port to put the port number on the multiplexer
hardware (3 bits) and then uses a fourth bit to clock the multiplexer and then reads the data or outputs the
data depending on what port number is in use.

The result is that one parallel port with only 8 I/O pins can be expanded to 4x8 Input and 4x8 Output pins.
The hardware will not be discussed here.

On the parallel port connector Pins 2 to 9 are the data pins. Pins 1, 14, and 16 will be used to set the
address on the multiplexer. Where LSB is Pin 1. Pin 17 will be used to clock the Multiplexer (low is HiZ
high is Clocked) assuming a rising edge trigger.
Addresses 0 to 3 will be input ports (to the PC) and 4 to 7 will be output ports (from the PC).

RobotBASIC V4.2.0

Page 234 of 276

VPPortOut ne_VirtualPortNo,ne_ByteValue
Outputs the byte value to the virtual parallel port number specified. If the byte value is greater than
255 only the lower byte will be outputted. The port number is limited to 1 to 4 if it is outside these
limits then the closest limit will be set.

VPPortIn ne_VirtualPortNo,vn_ByteValue
Reads the byte value at the virtual parallel port number and then puts it in the variable vn_ByteValue.
The port number is limited to 1 to 4 if it is outside these limits then the closest limit will be set.

WARNING! Use these commands with care. Badly designed hardware connected to the parallel
port can damage the port. If you are going to experiment with electronics and these
commands do so at your own risk and know what you are doing. Failure to do the
correct design will damage your port if not your whole computer.

General Ports I/O Commands

OutPort ne_PortNumber,ne_ByteValue
Outputs the byte value to the PC port number. If ne_ByteValue is greater than 255 only the lower byte
will be outputted. ne_PortNumber can be any valid port number.

WARNING! Beware of using this command incorrectly. You can damage your system if you
write or read from a wrong port number.

InPort ne_PortNumber,vn_ByteValue
Reads the byte value at the PC port number and then puts it in the variable vn_ByteValue as a number.
ne_PortNumber can be any valid port number.

WARNING! Beware of using this command incorrectly. You can damage your system if you
write or read from a wrong port number.

RobotBASIC V4.2.0

Page 235 of 276

USBmicro U4x1 Functions
The USBmicro L.L.C. U401, U421, USBPIR, and other USBmicro devices are very effective I/O devices
that provide a very convenient conduit for doing Digital I/O from the PC to electronics devices such as
robots.

RobotBASIC provides many ways you can communicate from a PC to a digital electronic circuit. One very
effective, convenient, safe and versatile method is to use the U4x1 USB devices from USBmicro. These
devices have 16 digital I/O lines that can sink about 50 mA, and drive about 5mA. The device is powered
from the USB port so it is very convenient for doing low powered I/O. If you need more current than can
be provided by the U4x1 you can use it with an appropriate power isolation circuit.

The U4x1 is also a lot more than just 16 plain digital I/O lines - you can use these lines in a strait forward
manner as 2x8 bit ports with individual lines being configurable as either Input or Output. But you can also
have the device do SPI and 1-Wire serial communications to devices that support these protocols.
Additionally, the U4x1 can be used to control an LCD and a Stepper motor (control only - not a driver -
you need to provide current driving separately), or you can configure it to provide a parallel strobe signal.

For the SPI system you can configure the U4x1 to act as an SPI slave or SPI master. For the 1-Wire it acts
as a Master. With these protocols you can easily interact with a plethora of devices like ADC, DAC,
thermometers, compasses, GPSs, and much much more.

The functions (below) provide access to all the functionalities supported by the U4x1. All you need to do is
have a U4x1 plugged into one (or more) USB port on your computer. The functions are divided into three
types:

DLL Specific functions provide information about the hardware driver software (DLL)
Device Information Functions provide information about individual devices connected to any USB

port.
Device I/O Functions provide the I/O from and to any particular device.

The U4x1 has 16 I/O lines set out as two 8 bit Ports (A and B). You can set and reset each Output line
individually or as an 8 bit group. You can configure each line as Input or as output. You read the lines as a
group of 8 lines (Ports) but with the use of usbm_SetBit() and usbm_ResetBit() you can set individual bits.

To make proper use of the U4x1 devices and to get deeper understanding of
the operations of the function below and of the device's limitations and
capabilities, you must read the USBmicro documentation and information.
The information below relates to how to use the functions within RobotBASIC
that reflect the LOW LEVEL functions within the device's ROM. To use the
following functions correctly you have to understand how they are invoked by
the U4x1 device. To do this you MUST read the documentation. Go to
www.usbmicro.com and view the information in the section of the web site
called the “ODN” or Online Development Notebook. In it is programming
information that is kept up to date and some examples. For more examples of
how to use the hardware – including examples written in RobotBASIC – read
through the blog at www.circuitgizmos.com.

RobotBASIC V4.2.0

Page 236 of 276

The RobotBASIC downloadable zip (www.RobotBASIC.com) has a folder
called USBmicroDemos. In this folder there are 4 RB programs that
demonstrate the use of the U4x1 with RB.

Note: See the notes at the top of the Standard User Interfacing section. In the following list ne_ means
numerical expression, se_ means string expression.

Note: In all indexing 0 is the first index and so on. So 1st bit in the port is bit 0. The first device is device
0 and so forth.

Note: In all the functions where a byte is required you use an integer but you must not exceed 0xFF
(255). With many commands you pass an array of bytes or you get back an array of bytes. This
array is really just a string. You can put data in it using the PutStrByte() and read data from it
using GetStrByte(), when you use these functions you again use an integer but must not exceed
0xFF. Also see ToByte().

Note: When specifying the device number (which U4x1 you want to control) for all the device specific
function use 0 for the first device, 1 for the second device and so forth. In other words the device
number list is a list that starts with 0. When either a parameter or the returned value is a string then
the string must/will contain byte values of the data. Use GetStrByte() and PutStrByte() to extract the
byte value from the returned string. Also see the Buffer manipulation functions BuffRead(),
BuffWrite() etc. which manipulate a buffer as a one dimensional array of binary bytes.

Note: The following functions and commands will help in manipulating the string buffer for sending or
after receiving. ToByte(), PutStrByte(), GetStrByte(), BuffPrintT, BuffPrintB, BuffWrite(),
BuffWriteB(), BuffRead(), BuffReadI(), BuffReadB(), BuffReadF() and of course all the string
mainpulation functions as well as number conversion functions. Also see CrLf(), Substitute(),
Extract() and NumParts().

DLL Specific Functions

These functions let you find out information about the DLL that RobotBASIC uses to control the
USBmicro hardware as well as some functions that deal with all of the U4x1 devices in general.

usbm_DllSpecs()
Returns a string that contains information about the DLL. There are four sections separated by the |
character. You can use Extract() to extract each section separately if desired. The sections are:

About | Copyright | Version Date | Version Number

If the USBm.Dll is not installed and running the returned string will be a blank string ("").

usbm_ErrorSpecs()
Returns a string that contains information about the “recent error string and debug string” - if any - in
the DLL. There are two sections separated by the | character. You can use Extract() to extract each
section separately if desired. The sections are:

Recent Error | Debug String

usbm_ClearRecentError()
Always returns -1. The function clears any recent error data in the DLL.

RobotBASIC V4.2.0

Page 237 of 276

usbm_FindDevices()
Returns -1 (true) if there are U4x1 devices connected to the PC. Returns 0 (false) otherwise. You must
call this function before you do anything with devices. This function must be the first function called
before addressing any devices. It essentially finds all of the U4x1 devices connected to the computer.

usbm_NumberOfDevices()
Returns the number of U4x1 devices connected to the PC (as found by usbm_FindDevices()). A value
of 0 means there are no devices connected.

usbm_SetReadTimeout(ne_Time)
Returns true if successful, false otherwise. This function sets the timeout for all the read commands.
The value should be in milliseconds. The default is 1000 msecs = 1 sec. Rarely is this ever changed.

Device Information Functions

These functions find out information about any selected device. Once again, usbm_FindDevices() must be
called once at the beginning of a program before you can address any device.

usbm_DeviceSpecs(ne_DeviceNumber)
Returns a string that contains information about a specific device identified by its number. There are 7
sections separated by the | character. You can use Extract() to extract each section separately if desired.
The sections are:

 DID | PID | VID | Mfr | Prod | Serial Number | Firmware Version.

DID = Device ID, PID = Product ID, VID = Vendor ID, Mfr = Manufacturer’s name, and Prod =
Product name. The Serial Number is a unique 12 digit number for every U4x1 device. The Firmware
Version value is the revision of the U4x1 firmware.

If the device referred to by ne_DeviceNumber is not a valid device, the returned string will be
"NOTVALID".

usbm_DeviceValid(ne_DeviceNumber)
Returns true if the device number refers to a connected and active device. False otherwise. This can be
called periodically to detect whether a certain U4x1 has been unplugged.

usbm_CloseDevice(ne_DeviceNumber)
Returns true if the device was successfully closed and false otherwise. It isn’t strictly necessary to close
a device – Windows takes care of that.

RobotBASIC V4.2.0

Page 238 of 276

Device I/O Functions

These functions directly control (or read from) devices. Again, the first U4x1 found is indexed as “0”.
Also, again, usbm_FindDevices() must be called once at the beginning of a program before you can
address any device.

usbm_InitPorts(ne_DeviceNumber)
usbm_InitPortsU401(ne_DeviceNumber)
usbm_InitPortsU421(ne_DeviceNumber)
usbm_InitPortsU451(ne_DeviceNumber)

Returns true if successful, false otherwise. On the U401 and U421 These function resets the A and B
ports as Input Ports, which is the default state upon connecting the device to the PC. On the U451 will
reset port A to input, port B to output and will clear the internal latches.

usbm_DirectionA(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)
usbm_DirectionB(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)

Returns true if successful, false otherwise. This function sets the direction of each specific pin in the
port. A 1 in the bit position in ne_PinsDirection and ne_PinsFormat means output, a 0 is input.

If ne_PinsDirection and ne_PinsFormat are both set to 0%11111111 (the value 255), then the port is all
output. If ne_PinsDirection and ne_PinsFormat are both set to 0%00000000 (the value 0), then the port
is all input.

Pin numbering in the byte is from right to left i.e. LSBit is bit number 0 and MSBit is bit number 7. So
if you want to set Port A on the first device to have pin 0 and pin 4 as inputs and the rest as outputs
then use:

n = usbm_DirectionA(0,0%11101110, 0%11101110)

or n = usbm_DirectionA(0,0xEE, 0xEE)

or n = usbm_DirectionA(0,238, 238)

Generally ne_PinsDirection and ne_PinsFormat are the same value. See USBmicro.com for other
values.

usbm_DirectionAIn(ne_DeviceNumber)
usbm_DirectionAOut(ne_DeviceNumber)
usbm_DirectionAInPullUp(ne_DeviceNumber)
usbm_DirectionBIn(ne_DeviceNumber)
usbm_DirectionBOut(ne_DeviceNumber)
usbm_DirectionBInPullUp(ne_DeviceNumber)

Returns true if successful, false otherwise. These functions set the direction of all the pins on port A/B
to either all as input or as output or as input with internal pull-up resistors. This is the same as using
usbm_DirectionA/B() but is a shortcut to set ALL the pins.

usbm_WriteA(ne_DeviceNumber,ne_ByteValue)
usbm_WriteB(ne_DeviceNumber,ne_ByteValue)

Returns true if successful, false otherwise. The byte value is written to Port A/B to the lines that are set
as outputs. The function writes the value to the entire port (A or B). Lines that are not set as output will
not be affected.

RobotBASIC V4.2.0

Page 239 of 276

usbm_ReadA(ne_DeviceNumber)
usbm_ReadB(ne_DeviceNumber)

Returns the byte value representing the states of the pins on Port A/B. The value returned is not a valid
value if the device is not a validly active device, see usbm_DeviceValid(). The entire port (A or B) is
read.

usbm_ReadLatches(ne_DeviceNumber)
Returns a string that contains the values of the internal pin-change latches. After reading changed
latches the latches are reset.

The first byte (byte 1) in the string (byte array) will always hold the value 0x0F. Byte 2 and 4 contain
the latched value for a bit transition from 0xFF on port A (B) to any other value. If your port is pulled
high with resistors (external or internal) and a button press pulls the pin low then these are the bytes to
use. If your port is normally low and a button pres sets a line high, then the latch data returned in bytes
3 and 5 are the appropriate bytes to use.

usbm_SetBit(ne_DeviceNumber,ne_PinNumber)
usbm_ResetBit(ne_DeviceNumber,ne_PinNumber)

Returns true if successful, false otherwise. This function makes high or low a particular pin on any of
the ports. The pin numbering is 0 for A0 1 for A1...7 for A7...8 for B0,15 for B7. This lets you set or
reset any single bit out of all 16 port bits.

usbm_WriteABit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)
usbm_WriteBBit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)

Returns true if successful, false otherwise. This function reads the current status of the pins in the A/B
port and then ANDs the value with the ANDing mask, then the new value is ORed with the ORing
mask, then the result is written to port A/B.

LCD Related Functions
usbm_InitLCD(ne_DeviceNumber,ne_Sel, ne_Port)

Returns true if successful, false otherwise. It specifies the port to use for the data port and the pins to
use for the R/W, RS, and E lines for controlling an LCD. The LCD commands are appropriate for
HD44780 devices and devices that are compatible. Most common character LCD display modules will
work. These LCDs can have 8 bit or 4 bit data lines and 4 bit control lines. The U4x1 can send data to
and control such an LCD once set up to use the appropriate lines.

This function will set up I/O pins so that they are correctly configured to communicate with such
LCDs.

See the USBmicro documentation for more details and also see the
1Wire_DS1820_LCD_LED_PushButton_Tests.BAS demo program in the downloadable zip file. This
program communicates with a 1-Wire controllable thermometer (ds1820) and gets temperature data
and displays it on an LCD and the PC screen simultaneously.

usbm_LCDCmd(ne_DeviceNumber,ne_CommandByte)
Returns true if successful, false otherwise. Sends a command code to the LCD. This is a command
from among a list of commands that an LCD accepts like clearing the screen or setting up the display
format (see the USBmisro_Test2.Bas demo).

RobotBASIC V4.2.0

Page 240 of 276

usbm_LCDData(ne_DeviceNumber,ne_DataByte)
Returns true if successful, false otherwise. Sends a data byte to the LCD. These are usually the
characters that will be displayed on the LCD (see the USBmisro_Test2.Bas demo).

1-Wire Related Functions
usbm_Reset1Wire(ne_DeviceNumber,ne_Specs)

Returns the status of any devices on the 1-Wire line. Returns 0 if any device responded and 1 if none
did. This function also sets up the 1-Wire line to be used.

The 1-Wire protocol is a serial communications protocol that uses, well, one wire....but not really since
there has to be a ground line. The “1-Wire” line is both the power and the data line for 1-Wire devices.
The U4x1 can be configured to automatically send and receive data from a 1-Wire device on any of the
16 pins. The U4x1 can only be a 1-Wire master, not a 1-Wire slave device.

For an example of the use of this system see the USBmisro_Test2.Bas demo program that
communicates with a thermometer (ds1820) and gets temperature data and displays it on an LCD and
the PC screen simultaneously.

usbm_Write1Wire(ne_DeviceNumber,ne_Data)
Returns true if successful, false otherwise. Writes a byte to the 1-Wire device. The U4x1 will take care
of shifting out the 8 bits of the byte all in the background (see the USBmisro_Test2.Bas demo).

usbm_Read1Wire(ne_DeviceNumber)
Returns a byte value that is read from the 1-Wire device. The U4x1 takes care of shifting in the 8 bits
all in the background (see the USBmisro_Test2.Bas demo).

usbm_Write1WireBit(ne_DeviceNumber,ne_BitValue)
Returns true if successful, false otherwise. Writes a 0 or 1 to the 1-Wire device.

usbm_Read1WireBit(ne_DeviceNumber)
Returns a bit value that is read from the 1-Wire device.

2-Wire (e.g. I2C) Related Functions
usbm_Wire2Control(ne_DeviceNumber,ne_Signal)

This function sends a specific signal to the 2-wire port setting the data and clock lines as defined by
this command. Signals are specific patterns of setting the 2-wire clock and data lines high or low. For
I2C this command is good for initialization of the clock and data lines, for generating a start sequence,
and for making a stop sequence.

The function sends the ne_Signal value to the device and then returns an integer with only the LSByte
set to the current value of either the 2-wire data line or the 2-wire clock line for the signals that return
data. If the function fails it will return the value 0xFFFFFFFF.

PA.3 is the 2-wire data line, while PA.2 is the 2-wire clock line. For 2-wire communication these two
lines are set to be open collector/drain lines. Since they are only able to be set to zero by the U4x1
device, they must be pulled high (to 5V) by an external resistor in order to have a high state. This is
often called "active low and passive high." For typical 2-wire communication (such as I2C) a 4700
ohm (4.7 kohm) resistor will suffice. For I2C communication the first three signal types (0, 1, 2) are
useful for generating the initial I2C state, the start condition, and the stop condition. For transfer of
clocked bytes of data, use Wire2Data.

RobotBASIC V4.2.0

Page 241 of 276

Signal types
 0 - Set clock and data to open-drain, set data high, set clock high. (Good for I2C initialization.)
 1 - Set data high, clock high, data low, clock low. (Good for I2C start signal.)
 2 - Set data low, clock high, data high. (Good for I2C stop signal.)
 3 - Set clock low, data low.
 4 - Set data high, clock high.
 5 - Set data high
 6 - Set data low.
 7 - Set clock high.
 8 - Set clock low.
 9 - Return data line.
10 - Return clock line.

usbm_Wire2Data(ne_DeviceNumber,se_DataBytes)
This function sends data to the 2-wire port. Eight bits of data are clocked out the 2-wire port. The 2-
wire data line toggles to match the bits in the command as the clock line pulses high. Optionally a 9th
data bit can be sent. For I2C this command is good for transmitting/receiving a byte (8 bits) of data, as
well as an optional 'ACK' bit.

To see how the data bytes should be put in the byte array se_DataBytes read the USBmicro
documentation. The function expects the data bytes to be sent to the device to be in the byte array
(string) se_DataBytes but not the command code (just the data bytes). The function will then return a
string (byte array) with the data returned as described in the USBmicro documentation. The first byte
will be the value 0x19 always. The actual returned data starts at byte 2 in the returned string. See the
USBmicro documentation.

SPI Related Functions
usbm_InitSPI(ne_DeviceNumber,ne_Specs)

Returns true if successful, false otherwise. It sets the attributes of the SPI system.

The SPI protocol is a 3 wire serial communications protocol (really 4 since a ground is needed). The
communication lines are a clock line, a data line from the device, and a data line to the device. In this
protocol there is always a Master and multiple Slaves. The U4x1 can act as a slave if needed but most
devices like an ADC will be slaves. The U4x1 can be set up as a master to communicate with such
devices and control them and send and receive data from them.

The U4x1 uses particular I/O lines to do the work. See the USBmicro documentation for details. Also
see the USBmicro_Test4.Bas in the download zip file. This program communicates with the SPI slave
2-Chanel Analog to Digital 12 bit converter (LTC1298) and displays analog inputs from it on the PC
screen. The demo also explains all connections.

Most often the U4x1 is used as a SPI master (talking to an EEPROM or an SPI A/D chip) and then only
usbm_InitSPI() and usbm_SPIMaster() are used.

usbm_SPISlaveRead(ne_DeviceNumber)
Returns a string of byte data from the Slave buffer (maximum 6 bytes). You can use GetStrByte() to
extract the individual bytes.

RobotBASIC V4.2.0

Page 242 of 276

usbm_SPISlaveWrite(ne_DeviceNumber,se_DataBytes)
Returns true if successful, false otherwise. Writes 1 to 6 bytes to the SPI slave buffer. The length of the
data string determines the number of bytes written. Use PutStrByte() to create the data string. Use this
function to write data to an SPI Master when the U4x1 is the slave.

usbm_SPIMaster(ne_DeviceNumber,se_DataBytes)
Returns a string of byte values input from the SPI slave after it has read the corresponding number of
bytes from the data string. Use GetStrByte() to extract the byte values and PutStrByte() to create the
data string. Use this function to send data to and receive data from an SPI slave when the u4x1 is acting
as a master.

Note: The Bytes array se_DataBytes should contain a maximum of 6 data bytes, which are the data to
be sent to the slave. The function will then return a string (byte array) that contains any data
returned from the slave but the first byte in the string is not data. You should consider the data
from the slave to be in the returned byte array as starting at the second character in the returned
string.

Stepper Motor Related Functions
usbm_Stepper(ne_DeviceNumber,se_DataSpecs)

Returns true if successful, false otherwise. The byte data string specifies the channel and other details.
This function gives access to a very powerful feature of the U4x1 devices -you can control the Stepping
of two Stepper motors forward or backwards independently, all in the background so the PC can be
doing other things while the stepper motors are being operated.

The U4x1 does the LOGIC of the 4-line stepping. These lines must be connected to further POWER
DRIVER circuitry to do the actual driving of the motors. See the USBmicro documentation for detail
of this function and how to use the U4x1 to drive up to two stepper motors.

Strobe I/O Functions (See the USBmirco documentation for details of these functions)
usbm_StrobeWrite(ne_DeviceNumber,se_ByteData)

Returns true if successful, false otherwise. Writes a byte to a port based on a strobe line and timing.
The byte data string specifies the setup and so forth.

usbm_StrobeRead(ne_DeviceNumber,se_ByteData)
Returns a byte value of data read from a port based on a strobe line and timing. The byte data string
specifies the setup and so forth.

usbm_StrobeWrites(ne_DeviceNumber,se_ByteData)
Returns true if successful, false otherwise. Writes multiple bytes (1 to 6) to a port based on a strobe line
and timing. The byte data string specifies the setup and the data to be written.

usbm_StrobeReads(ne_DeviceNumber,se_ByteData)
Returns a string of byte data read from a port based on a strobe line and timing. The byte data string
specifies the setup and so forth.

RobotBASIC V4.2.0

Page 243 of 276

A General HOOK Function to future functionalities in the U4x1
usbm_DeviceCmd(ne_DeviceNumber,se_Data)

Returns a string that contains the results of the response to the command specified in the se_Data
string. The data string passed is a set of 8 bytes. The first byte specifies the command code and the next
7 bytes are any byte data required by the command. The returned string contains the first byte as the
command number (again) and then the next 7 bytes are any data returned by the command. Not all the
bytes may have significance in either the passed string or the returned string.

This function can be used to provide access to any functionality in the USBm.DLL that may be
implemented in the future. It can also provide access to all the above functions, but it is easier to use
the above formats of the functions. Details of how to access the additional functions will be spelled out
at the USBmicro web site.

The passed string will be truncated to 8 bytes if it is longer. It can be shorter if not all the byte positions
are required.
Use GetStrByte() function to extract the byte values from the string and PutStrByte() to put bytes into
the passed string. If you wish to display the data as hexadecimal values use Hex().

When creating the string of byte values use the PutStrByte(string,byte position,desired byte numeric
value) to place the byte value in the desired position in the string.

Internet Commands & Functions
General Information

The following commands allow for using a WAN/LAN or INTERNET connection to send/receive bytes of
data or send an email.

Note: See the notes at the top of the Standard User Interfacing section.

Note: The following functions and commands will help in manipulating the string buffer for sending or
after receiving. ToByte(), PutStrByte(), GetStrByte(), BuffPrintT, BuffPrintB, BuffWrite(),
BuffWriteB(), BuffRead(), BuffReadI(), BuffReadB(), BuffReadF() and of course all the string
mainpulation functions as well as number conversion functions. Also see CrLf(), Substitute(),
Extract() and NumParts(). Additionally, see mFromString and mToString().

Email (SMTP) Commands

SendEMail a_MessageSpecs,a_MessageBody {,ne_ShowProgress}
This command will send an email through the internet to a particular address. You can have multiple
addresses and also attachments.

a_MessageSpecs is a one-dimensional array and has to have at least 8 elements. The elements are as
described below. a_MessageBody is a one-dimensional array that holds the body of the email message.
There can be as many elements as you need. Each element will be a line in the message. The elements
can be numerical or string. If they are numerical they will be converted to strings.

If ne_ShowProgress is true or is not given, a Dialog Box will be shown that will show the progress of

RobotBASIC V4.2.0

Page 244 of 276

the operation of sending the email. If it is false then no dialog will be shown.

The program will not proceed to the next line after the SendEmail statement until the email has been
successfully sent. If there is a problem then an Error message will be issued and the program will halt.
If you wish you can use the OnError statement to trap errors and redirect the flow.

Once the email is successfully sent, program execution will proceed. If you specify ne_ShowProgress
as false then you may want to display a message of your own design.

a_MessageSpecs[0] = The user ID of the email account. This is the name of the email account e.g.
jimsmith

a_MessageSpecs[1] = The Host ID of the email account. This is the email server name e.g.
mail.somehost.net

a_MessageSpecs[2] = The sender's email address. This is the address of the sender e.g.
jimsmith@somehost.net

a_MessageSpecs[3] = The TO addresses. This is the addresses to send the email to. This can be many
addresses separated with a Crl/Lf character pair (see CrlLf()). e.g.
"rayd@yahoo.com"+crlf()+"marylew@hotmail.com"

a_MessageSpecs[4] = The CC addresses. This is the addresses to send a Carbon Copy of the email to.
This can be many addresses separated with a Cr/Lf character pair. e.g.
"rayd@yahoo.com"+crlf()+"marylew@hotmail.com"

a_MessageSpecs[5] = The BCC addresses. This is the addresses to send a Blind Carbon Copy of the
email to. This can be many addresses separated with a Cr/Lf character pair.e.g.
"rayd@yahoo.com"+crlf()+"marylew@hotmail.com"

a_MessageSpecs[6] = The Subject. This is the subject header of the email.
a_MessageSpecs[7] = Attachments. This is a list of files to be sent along with the email. The names of

the files have to be full path and extension. Also the names of the files have to be
separated with a Cr/Lf character pair. If a file does not exist the email will not be sent and
an error will occur.

a_MessageSpecs[8] = This element is optional and if it is not given or is not an integer that is greater
than 0 then it will be ignored. The email socket used will default to using port 25. With is
optional element you can set a different port to send the SMTP data over. If it is given and
is a valid integer greater than 0 and less than 0xFFFF then the port will be set to the value
specified in the element.

Note: The email socket utilizes port 25 to send the email and thus you have to have an ISP that
allows SMTP email sending and it has to be over port 25. You can change the port by
specifying its number in the 9th element of the parameters array (a_MessageSpecs). However,
most SMTP servers that serve ports other than 25 also require some authentication hand
shaking and this email socket does not have a provision for doing this.

Example:
data a;"myname" //User ID (account id)
data a;"mail.myserver.net" //Host ID (email server)
data a;"myname@myserver.net" //From Address (sender's
address)
data a;"myfriend1@somedomain.net"+crlf()+"myfriend2@hotmail.com" //To
addresses
data a;"" //CC addresses
data a;"" //BCC addresses
data a;"test email from RB" //Subject
data a;"d:\FileName1.doc"+crlf()+"c:\Test\FileName2.Jpg" //Attachment files
data b;"Hello Guys,"+spaces(20)+DateStr(Now()) //message body
data b;"","This is a test email sent from RB"

RobotBASIC V4.2.0

Page 245 of 276

data b;"These lines are to test math:"
data b;123+45,sin(23),"bbbbb"+3456,"",""
data b;"sam"
sendemail a,b //send the email
print "done"

TCP Sockets Functions

There are two TCP sockets provided in RobotBASIC. A Server and a Client socket. Use the Server socket
to accept connections from TCP Client sockets connecting to your application. Use the client socket to
connect to a system that has a TCP Server socket. All the functions below have a prefix which is either
TCPC_ to indicate functions that deal with the Client Socket, or TCPS_ to indicate functions that deal with
the Server Socket.

The server socket can accept multiple clients. It can receive from any or all the clients and can
BROADCAST to all the clients. Data received from clients connected to a server will be appended to a
buffer (only one) as they are received. All clients will put data in the ONE buffer. When the server sends
data it will be sent to ALL connected clients.

To start a server you must activate it using the TCPS_Serve(). To obtain the data received into the server
receive buffer use the TCPS_Read() and to send data use TCPS_Send(). To terminate serving use
TCPS_Close().

To use a client socket you must connect to a server socket using the TCPC_Connect() and you close a
connection using TCPC_Close(). To send data use TCPC_Send() and to obtain the data in the receive
buffer use TCPC_Read().

The client socket has a receive buffer where all data received from the server will be appended. Once you
read the buffer it will be erased. You can find out how many bytes there are in the buffer before you read it
using TCPC_BuffCount().

Once a client has established a connection to a server the link can be thought of as a Buffered
Asynchronous Serial Link and for all intents and purposes it acts as so, except it is over the internet or
LAN or WAN or WiFi.

To enable the server in identifying the data as being from one client or another you can send header data
and likewise to identify data from the server as being targeted to a particular client then again you must add
a header to indicate so.

Since there is only one server socket in RobotBASIC then you cannot create two server sockets
simultaneously in the same program. However, it is possible to run two RobotBASIC programs or two
instances of the same RB program on the same machine. If you do this you must ensure that none of these
instances is serving on the same port. You will get an error if you do.

If you wish to change the port a server socket serves you must TCPS_Close() it and then TCPS_Serve() to
open it again but with the new Port.

You must not have two instance of a server socket serving the same port on
the same IP address. If you do you will get a Window system error and your

RobotBASIC V4.2.0

Page 246 of 276

program will halt.

There is only one client socket in RB and you can only connect to one server at a time. You can
TCPC_Close() to disconnect the client from a server and then TCPC_Connect() to open it again but
connecting to a different server IP or port. You can have multiple instances of the same program all
connecting to the same server. However, when the server sends data they will all receive the same data. If
you wish to target a particular instance you must establish a system of addressing and handshaking
programmatically so that the server can target a particular client.

When data is received by the server it will be appended to a buffer. You can find out how much data there
is in a buffer using TCPS_BuffCount(). You can have the server automatically append a header to all
received packets that identify the client that sent the packet. This feature is off by default but can be turned
on or off using TCPS_Header(). See the details of the header in the description of TCPS_Header().

When data is received by the client it will be appended to a buffer. You can find out how much data there
is in a buffer using TCPC_BuffCount(). The client data does not have the option of a header since a client
only receives data from the server it is connected to and this is known by the client already since it
connected to the server.

Note: The OnTCPC and OnTCPS statements will interrupt normal program flow and jump to a
subroutine (event handler) that must handle the event and then return back to program
execution. This occurs every time there are bytes in the receive buffer of the server (onTCPS)
or the client (OnTCPC). Reading the buffer will clear it.

Example: For a more complex example of how to use this facility see the TCP_Server_Demo.BAS and
TCP_Client_Demo.Bas programs. You will find these in the RobotBASIC downloadable zip file
from www.robotBASIC.com. The example below is a simple one that shows how to create two
sockets that talk to each other.

MainProgram:
 addmemo "ss",10,40,350,250 \ addmemo "sr",10,340,350,250 \ readonlymemo "sr"
 addmemo "cs",380,40,350,250 \ addmemo "cr",380,340,350,250 \ readonlymemo "cr"
 addcheckbox "s",10,320,"Add Header",1
 xyText 120,10,"Server Send",,15,fs_Bold \ xyText 510,10,"Client Send",,15,fs_Bold
 xyText 120,310,"Server Receive",,15,fs_Bold \ xyText 510,310,"Client Receive",,15,fs_Bold
 n = tcps_serve() \n = tcps_header(on) \ delay 10 \ n = tcpc_connect(tcp_LocalIP())
 ontcps tcpsHandler \ ontcpc tcpcHandler \ onmemo mHandler \ oncheckbox cHandler
 while true
 wend
end
tcpsHandler:
 setmemotext "sr",tcps_read()
 setmemoselection "sr",memolinescount("sr")+1,1,1
 focusmemo "cs"
 ontcps tcpsHandler
return
tcpcHandler:
 setmemotext "cr",tcpc_read()
 setmemoselection "cr",memolinescount("cr")+1,1,1
 focusmemo "ss"
 ontcpc tcpcHandler
return
mHandler:
 lm = LastMemo()
 if lm == "ss" then n=tcps_send(getmemotext(lm))
 if lm == "cs" then n=tcpc_send(getmemotext(lm))
 onmemo mHandler
return
cHandler:
 lc =lastcheckbox()
 n = tcps_header(getcheckbox(lc))

RobotBASIC V4.2.0

Page 247 of 276

 oncheckbox cHandler
return

General Functions
TCP_LocalIP()

Returns the IP address of the machine the program is running on. This is useful for knowing the IP
address of the local machine so as to enable remote clients (and UDP sockets) to identify the machine.

Server Functions
TCPS_Serve({ne_Port})

Activates the server and starts it listening on the given Port. If the Port number is not specified or is less
than 1 or is greater than 65535 then 50000 is assumed. The function always returns 1.

If you attempt to activate the server on a port that is currently being used by
another server on the same machine you will get a Window system error
and your program will halt. You must not have two sockets (TCP or UDP)
serving the same Port number on the same IP address. Whether they are
from two RB programs or even non-RB programs.

TCPS_Header({on|off})
Data received by the server can have a header added to it that says [From:IP:Port: N Bytes]. Where N is
the number of bytes received and IP:Port is the IP address and port of the client that sent the data. This
is appended to every group of bytes received from a client sending to the server. By default there is no
header, but you can turn on header appending using this function.

If you specify on the header appending is turned on. Off will turn it off. If you do not specify either, the
state will not be changed. The function returns the current state of the header appending before
changing it.

Note: This header is appended by the server when it receives the data. It is not part of the received data.
The sender may put its own header information which is not under the control of the server.

TCPS_BuffCount()
Returns the number of bytes in the server's receive buffer. You can obtain the bytes using
TCPS_Read().

TCPS_Read()
Returns a string which contains the bytes in the server's receive buffer at the time of reading and clears
the buffer at the same time. If there is no data then a blank string will be returned "". You can treat the
returned buffer as a string or you can use it with the BuffRead/Write() manipulation functions.

It is possible for the buffer to contain more bytes than is reported by TCPS_BuffCount() by the time
you read it if a client is sending data at a rapid pace. The data is not lost since the buffer will continue
to append it until you attempt to read the buffer. When you read the buffer the current data in it is
returned by the function and is cleared at the same time. If data comes while this operation is occurring
it won't be lost; it will be appended to the buffer after it is cleared.

To effect a controlled rate of sending and receiving you need to establish a sequencing protocol so as to
prevent sending when the server does not want to receive and vice versa.

RobotBASIC V4.2.0

Page 248 of 276

TCPS_Peek()
Returns the bytes in the buffer at the time of peeking but does not clear the buffer. This is useful if you
wish to see what data there is in the buffer before you read it and remove the data from it.

TCPS_Send(se_Data)
Attempts to send se_Data to all the clients connected to the server. The function will wait until all the
data has been sent or a time out has occurred.

The function will always return true. To check if the data has actually been sent you must check the
status string using TCPS_Status(). The string will contain the words 'Sent N Bytes' if successful or
'Error:N' if not. Where N is a code that indicates the nature of the error

TCPS_Close()
Deactivates the server. All clients connected to it will be disconnected. If the server is not currently
active there is no effect. The function always returns true.

You need to make sure you issue this function before terminating your program to effect a controlled
disconnect from clients.

TCPS_Status()
Returns a string that shows the status of the client socket. This can be one of the following:

Server Off occurs when the socket is not activated.
Listening occurs when the socket is activated and is ready to accept clients.
Accepted [IP:Port] occurs when the socket has accepted and connected to a client. IP:Port is

the client's address and port.
Received N Bytes [IP:Port] occurs when the server receives data from a client. N is the number of

bytes received and IP is the address of the sending client and Port is its
Port number.

Error:N occurs when any problem is encountered with the link to a client. N
indicates the nature of the error.

Client Disconnected [IP:Port]occurs when a client disconnects from the server. IP:Port is the client's
address and port.

Sent N Bytes occurs when the server has sent data. N is the number of bytes that
where intended to be sent.

Client Functions
TCPC_Connect(se_ServerIPaddress{,ne_ServerPort})

Attempts to connect the client to the server with the desired IP address and Port number. If the port
number is not given or is less than 1 or is greater than 65535 then it will be assumed to be 50000. If it is
successful the status of the client will show 'Connected:IP' so to make sure the client is connected you
must check the status string using TCPC_Status(). The function always returns true.

TCPC_ConnectHost(se_ServerName{,ne_ServerPort})
Attempts to connect the client to the server with the desired Name Address and Port number. A Name
Address can be an IP address or a name like "My Server Machine". The text format has to correspond
to a valid name on the network that can be converted to an IP address by the router. If it is successful
the status of the client will show 'Connected:IP' so to make sure the client is connected you must check
the status string using TCPC_Status(). The function always returns true.

TCPC_BuffCount()
Returns the number of bytes in the client's receive buffer. You can obtain the bytes using
TCPC_Read().

RobotBASIC V4.2.0

Page 249 of 276

TCPC_Read()
Returns a string which contains the bytes in the client's receive buffer at the time of reading and clears
the buffer at the same time. If there is no data then a blank string will be returned "". You can treat the
returned buffer as a string or you can use it with the BuffRead/Write() manipulation functions.

It is possible for the buffer to contain more bytes than is reported by TCPC_BuffCount() by the time
you read it if the server is sending data at a rapid pace. The data is not lost since the buffer will
continue to append it until you attempt to read the buffer. When you read the buffer the current data in
it is returned by the function and it is cleared at the same time. If data comes while this operation is
occurring it won't be lost; it will be appended to the buffer after it is cleared.

To obtain a controlled rate of sending and receiving you need to establish a sequencing protocol so as
to prevent sending when the client does not want to receive and vice versa.

TCPC_Peek()
Returns the bytes in the buffer at the time of peeking but does not clear the buffer. This is useful if you
wish to see what data there is in the buffer before you read it and remove the data from it.

TCPC_Send(se_Data)
Attempts to send se_Data to the connected server. The function will wait until all the data has been sent
or a time out has occurred.

The function will always return true. To check if the data has actually been sent you must check the
status string using TCPC_Status(). The string will contain the words 'Sent N Bytes' if successful or
'Error:N' if not.

TCPC_Close()
Disconnects the client from the server it is currently connected to. If the client is not currently
connected to any server no action is taken. The function always returns true.

You need to make sure you issue this function before terminating your program to execute a controlled
disconnect from a server.

TCPC_Status()
Returns a string that shows the status of the client socket. This can be one of the following:

Disconnected occurs when the socket is not connected to a server.
Disconnecting occurs when the socket is in the process of disconnecting from the server.
Looking Up occurs when the socket is looking up the IP address of the required server.
Connecting occurs when the server has been found and the client is in the process of

connecting to it.
Connected:IP occurs when the client has established a link with a server. IP is the address of

the server.
Error:N occurs if the client is unable to find, connect or send data to a server. N is the

number of the error and identifies what is the cause.
Received N Bytes occurs when the client has received data from the server into its receive buffer.

N is the number of bytes received.
Sent N Bytes occurs when the client has successfully sent data to the server. N is the number

of bytes sent.

RobotBASIC V4.2.0

Page 250 of 276

UDP Sockets Functions

RobotBASIC allows you to create multiple UDP sockets in the same program which can be used to Send
and Receive data over the UDP protocol. This protocol does not require that you connect to a host and does
not guarantee that any data you send to one are actually received by it. All it guarantees is that the host
address (IP) you provided is a valid one and that the data was sent to it. No guarantee that it received the
data fully or partially or not at all. It is up to you to provide some kind of handshaking.

When you start a socket you specify the port number it will serve (i.e. receive data from). You can have
multiple sockets in the same program and multiple RB programs running on the same machine (i.e. IP) that

create sockets. However, you MUST NOT have two sockets (UDP or TCP) that
serve the same Port number on the same IP whether they are running in the
same program or in different programs on the same machine (i.e. same IP).
Whether they are from two RB programs or even non-RB programs.

When you use the socket to send data you must specify the IP address and the Port of the target socket

which could be on a different machine, a different program or the same program. However, you
must not send data to a port on the same IP as the sender socket that is not
being served by another socket. If you do you will get a Windows system error
and your program will halt.

When data is received by the socket it will be appended to a buffer. Each socket has its own receive buffer.
You can find out how much data there is in a buffer using UDP_BuffCount(). You can have the socket
automatically append a header to all received packets that identify the sender. This feature is off by default
but can be turned on or off using UDP_Header(). See the details of the header in the description of
UDP_Header().

The socket can receive and send simultaneously, so you can establish a buffered asynchronous serial
communications system which happens to be over the Internet or LAN or WAN or WiFi.

Note: There is no UDP_Close function. Once a UDP socket is created and associated to a port it will be
active until the program finishes. You will not be able to create another socket with the same port
again during the life of the program. If you do, all you will be doing is renaming the same socket.
You can, of course, send to different IP/Port addresses on the fly using the socket so there is no need
for it to be closed (unlike a client/server socket).

Also see TCP_LocalIP().

Note: The OnUDP statement will interrupt normal program flow and jump to a subroutine (event
handler) that must handle the event and then return back to program execution. This occurs
every time there are bytes in the receive buffer of the UDP socket. Reading the buffer will
clear it.

Example: For a more complex example of how to use this facility see the UDP_IO_Demo.BAS program.
You will find this program in the RobotBASIC downloadable zip file from
www.robotBASIC.com.
The example below is a simple one that shows how to create two sockets that talk to each other.

MainProgram:
 addmemo "u1s",10,40,350,250 \ addmemo "u1r",10,340,350,250 \ readonlymemo "u1r"

RobotBASIC V4.2.0

Page 251 of 276

 addmemo "u2s",380,40,350,250 \ addmemo "u2r",380,340,350,250 \ readonlymemo "u2r"
 addcheckbox "u1",10,320,"Add Header",1 \addcheckbox "u2",380,320,"Add Header",1
 xyText 120,10,"UDP 1 Send",,15,fs_Bold \ xyText 510,10,"UDP 2 Send",,15,fs_Bold
 xyText 120,310,"UDP 1 Receive",,15,fs_Bold \ xyText 510,310,"UDP 2 Receive",,15,fs_Bold
 n = udp_start("u1",4000) \ n = udp_start("u2",5000)
 n = udp_header("u1",on) \ n = udp_header("u2",on)
 onudp udpHandler \ onmemo mHandler \ oncheckbox cHandler
 while true
 wend
end
udpHandler:
 if udp_buffcount("u1")
 setmemotext "u1r",udp_read("u1")
 setmemoselection "u1r",memolinescount("u1r")+1,1,1
 focusmemo "u2s"
 endif
 if udp_buffcount("u2")
 setmemotext "u2r",udp_read("u2")
 setmemoselection "u2r",memolinescount("u2r")+1,1,1
 focusmemo "u1s"
 endif
 onudp udpHandler
return
mHandler:
 lm = LastMemo()
 if lm == "u1s" then n=udp_send("u1",getmemotext(lm),tcp_LocalIP(),5000)
 if lm == "u2s" then n=udp_send("u2",getmemotext(lm),tcp_LocalIP(),4000)
 onmemo mHandler
return
cHandler:
 lb =lastcheckbox()
 n = udp_header(lb,getcheckbox(lb))
 oncheckbox cHandler
return

UDP_Start(se_Name{,ne_ListenPort})
This function will create a UDP socket and give it the name se_Name which is the name you must use
with all the other UDP functions.

ne_ListenPort is optional and if not specified or is less than 1 then 50001 will be assumed.

You must not try to create more than one socket on the same port either in the same
program or in distinct programs that run simultaneously on the same machine (i.e.
same IP). If you create a socket with the same listening port as another socket on the
same machine both sockets may not receive data or one will get all the data while the
other would not; there is no guarantee to the behavior except that problems will arise.

In the same program if you try to start more than one UDP socket serving the same IP you will just be
renaming the socket and you will not be able to access the previous socket.

Once created a port can only listen on the specified port upon creation (or 50001 if not specified).
However it can send to any port and IP address any time, so it can send to one machine some moment
and another later. However you must not send to a port on the same IP as the sending
socket that does not have an associated socket. This will cause a Windows system
error and your program will halt.

If you wish to run two instances of the same program on the same machine then you must not have the
two instances use the same port for listening simultaneously. You can get around this by providing a
means for setting the listening port before starting the socket for each instance of the program.

RobotBASIC V4.2.0

Page 252 of 276

Each socket you create will have its own status and data receive buffer and count value.

UDP_BuffCount(se_Name)
Returns the number of bytes in the receive buffer of the UDP socket. The socket will continue to
receive data from any sender and will append them to a buffer as they are received. The buffer will
continue to grow until you read it. When you read a buffer it will be also cleared at the same time.

UDP_Read(se_Name)
Returns the bytes in the buffer at the time of reading and clears the buffer at the same time. If there is
no data then a blank string will be returned "". You can treat the returned buffer as a string or you can
use it with the BuffRead/Write() manipulation functions.

It is possible for the buffer to contain more bytes than is reported by UDP_BuffCount() by the time you
read it if a sender is sending data at a rapid pace. The data is not lost since the buffer will continue to
append it until you attempt to read the buffer. When you read the buffer the current data in it is returned
by the function and it is cleared at the same time. If data comes while this operation is occurring it
won't be lost; it will be appended to the buffer after it is cleared.

To effect a controlled rate of sending and receiving you need to establish a sequencing protocol so as to
prevent sending when the receiver does not want to receive and vice versa.

UDP_Peek(se_Name)
Returns the bytes in the buffer at the time of peeking but does not clear the buffer. This is useful if you
wish to see what data there is in the buffer before you read it and remove the data from it.

UDP_Send(se_Name,se_Data,se_TargetIP{,ne_TargetPort})
Will send the buffer se_Data to a target machine with UDP support. The machine is identified with the
se_TargetIP and ne_TargetPort combination.

The function will wait until all the data has been sent or a time out has occurred. If a time out occurs
then the status string will be set to "Bad Address [IP]" and the function will return 0. If the function
succeeds then the status string will be set to "Sent N Bytes [IP:PORT]" and will return the number of
bytes actually sent. Check the status string using UDP_Status() and also check the value returned in
comparison to the number of bytes in the sent buffer.

Note: The UDP socket is limited to sending only a maximum of 2048 bytes in one go. So you must
not send a buffer longer than this number. If se_Data is longer than 2048 it will be shortened
to that length and any data beyond 2058 bytes will be lost. If you need to send more than 2048
bytes you must send them over multiple sends.

UDP_Header(se_Name{,on|off})
Data received by the socket can have a header added to it that says [From:IP:N Bytes]. Where N is the
number of bytes received and IP is the IP address of the sender. This is appended to every group of
bytes received from a sender sending to the socket. By default there is no header, but you can turn on
header appending using this function.

If you specify on the header appending is turned on. Off will turn it off. If you do not specify either, the
state will not be changed. The function returns the current state of the header appending before
changing it.

RobotBASIC V4.2.0

Page 253 of 276

Note: This header is appended by the receiver socket when it receives the data. It is not part of the
received data. The sender may put its own header information which is not under the control of
the receiver socket.

UDP_Status(se_Name)
This function returns a string that describes the status of the UDP socket. The status can be one of the
following:

Received N Bytes [IP] occurs when data is received. N is the number of bytes received and IP is
the IP address of the sender.

No Activity occurs when there is no activity and also when the socket is first started.
No Data Sent occurs if you try to send an empty string.
Bad Address [IP] occurs when the send IP address is a bad address and IP is the bad

address.
Sent N Bytes [IP:PORT] occurs after a UDP_Send() succeeds. N is the actual number of bytes

sent and IP is the destination IP address and PORT is the destination
PORT.

Other messages are also possible depending on certain situations.

Commands & Functions
Alphabetically

The Commands List (350)
Note: See notes at the top of the Standard User Interfacing section

AbortMethod {ne_AbortCode}
AddButton se_Name,ne_X,ne_Y{,ne_W{,ne_H{,se_Hint}}}
AddCheckBox se_Name,ne_X,ne_Y{,se_Caption{,ne_Checked{,ne_LeftOrRight{,se_Hint}}}}
AddEdit se_Name,ne_X,ne_Y{,ne_W{,ne_H{,e_Text{,se_Hint}}}}
AddListBox se_Name,ne_X,ne_Y{,ne_Width{,se_Items{,se_Hint}}}
AddListBoxItem se_Name{,e_NewItem}
AddMemo se_Name,ne_X,ne_Y{,ne_W{,ne_H{,se_Text{,se_Hint}}}}
AddMemoLine se_Name{,e_Text}
AddRBGroup se_Name,ne_X,ne_Y{,ne_Width{,ne_Height{,ne_Columns{,se_Buttons{,se_Caption{,se_Hint}}}}}}
AddRBGroupButton se_Name{,e_ButtonCaption}
AddSlider se_Name,ne_X,ne_Y{,ne_Width{,ne_Min{,ne_Max{,ne_Vertical{,ne_TickFreq{,ne_BigIncr{,se_Hint}}}}}}}

AddSpinner se_Name,ne_X,ne_Y{,ne_W{,ne_H{,ne_Min{,ne_Max{,ne_Incr{,ne_Vertical{,ne_Wrap{,se_Hint}}}}}}}}

AddTimer se_Name{,ne_Period}
AllowEvents {on|off}
Arc ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_StartAngle{,ne_ArcLength{,ne_PenWidth{,ne_PenColor}}}}
Beep {ne_Count}
BmpChangeClr se_SourceFile,ne_FromColor,ne_ToColor{,ne_Tolerance}
BmpCompare se_SourceFile{,se_CompareFile{,se_ToFile{,ne_Tolerance}}}
BmpContrast se_SourceFile,ne_Ratio{,ne_Threshold{,se_ToFile}}
BmpEdges se_SourceFile{,ne_Threshold{,se_ToFile{,ne_EdgeType}}}

RobotBASIC V4.2.0

Page 254 of 276

BmpFindClr se_SourceFile,ne_Color,vn_Result{,vn_Confidence{,ne_ClrTolerance{,ne_ConfidenceTolerance{,ne_GridSize{a_SectorsCount}}}}}

BmpNegative se_SourceFile{,se_ToFile}
BmpRGB se_SourceFile,ne_Rratio,ne_Gratio,ne_Bratio{,se_ToFile}
BmpStats a_Stats{,se_FileName}
BmpToBW se_SourceFile{,ne_Threshold{,se_ToFile}}
BmpToCb {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
BmpToGray se_SourceFileName{,se_ToFileName{,ne_RedRatio{,ne_GreenRatio{,ne_BlueRatio}}}}
BorderEdit se_Name{,true|false}
BorderMemo se_Name{,true|false}
BuffPrintB vs_BuffString{,Expr,Expr,Expr...}
BuffPrintT vs_BuffString{,Expr,Expr;Expr...}{;|,}
CbFitBMP {se_FileName{,ne_Width{,ne_Height}}
CbToBMP {se_FileName}
CheckSerBuffer vn_NumOfBytes
Circle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenColor{,ne_FillColor}}
CircleWH ne_X1,ne_Y1,ne_Width,ne_Height{,ne_PenColor{,ne_FillColor}}
ClearListBox se_Name
ClearMemo se_Name
ClearRBGroup se_Name
ClearScr {ne_Color}
ClearSerBuffer {ne_Which}
ClrCB
CommaTab {true|false}
CopyFitScr {ne_CopyNumber{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
CopyScr {ne_CopyNumber{,ne_X1{,ne_Y1{,ne_Width{,ne_Height}}}}
CopyToScr {ne_CopyNumber{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}

Data a_Name;Expr{,Expr....}
Debug {Expr1,Expr2;Expr3...}
DebugOff
DebugOn
Declare v_Name {{=}e_InitialValue}{, ...}
Delay {ne_Milliseconds}
DeleteListBoxItem se_Name{,ne_Index}
DeleteMemoLine se_Name{,ne_LineNumber}
DeleteRBGroupButton se_Name{,ne_Index}
Dim a_Name1[ExprN{,ExprN...}]{ , a_Name2[ExprN{,ExprN...}] {,}}}...
DrawShape se_Shape,ne_X,ne_Y{,ne_Scale,ne_Color}
EnableButton se_Name{,true|false}
EnableCheckBox se_Name{,true|false}
EnableEdit se_Name{,true|false}
EnableListBox se_Name{,true|false}
EnableMemo se_Name{,true|false}
EnableRBGroup se_Name{,true|false}
EnableSlider se_Name{,true|false}
EnableSpinner se_Name{,true|false}
eRectangle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenWidth{,ne_PenColor}}
eRectangleWH ne_X1,ne_Y1,ne_Width,ne_Height{,ne_PenWidth{,ne_PenColor}}
FilePrintB vn_FileHandle{,Expr,Expr,Expr...}
FilePrintT vn_FileHandle{,Expr,Expr;Expr...}{;|,}
FitBMP {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
FitCb {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}

RobotBASIC V4.2.0

Page 255 of 276

Flip {on|off}
FlipBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne__MapY}}}}}}}

FlipCb
FloatEdit se_Name{,true|false}
FloodFill {ne_X{,ne_Y{,ne_NewColor{,ne_OldColor}}}}
FloodFill2 {ne_X{,ne_Y{,ne_NewColor{,ne_BorderColor}}}}
FocusButton se_Name
FocusCheckBox se_Name
FocusEdit se_Name
FocusListBox se_Name
FocusMemo se_Name
FocusRBGroup se_Name
FocusSlider se_Name
FocusSpinner se_Name
ge3Dto2DA a_3dPoints,a_CameraSpecs
ge3Dto2DV ne_X,ne_Y,ne_Z,ne_Rho,ne_Theta,ne_Phi,ne_Dist,ne_CenterX,ne_CenterY,vn_ScrX,vn_ScrY
ge3Dto2DVA ne_X,ne_Y,ne_Z,a_CameraSpecs,vn_ScrX,vn_ScrY
geCentroids a_3DPoints,a_SurfacesSpecs,a_Centroids
gePlotEdges a_3DPoints,a_Edges{,ne_LineWidth{,ne_LineWidth{,ne_Color}}
gePlotSurfaces a_3DPoints,a_SurfacesSpecs{,ne_DoFilling{,ne_LineWidth{,ne_OnlyVisible{,ne_CentroidAll}}}}

geRotateA a_3DPoints,ne_RotAngle,ne_AxisCode{,ne_From{,ne_To}}
geRotVx ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'
geRotVy ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'
geRotVz ne_X,ne_Y,ne_Z,ne_RotAngle,vn_X',vn_Y',vn_Z'
GetButton vs_Name
GetColor vn_PenColor,vn_BkgrndColor
GetCursor vn_Code
GetError vn_ErrNo{,vs_ErrMessage{,vn_LineNo{,vn_CharNo}}}
GetKey vn_KeyCode
GetKeyE vn_ScanCode
GetLineWidth vn_Width
GetTimeOut vn_TimeOutValue
GetXY vn_X,vn_Y
geVisibles a_3DPoints,a_CameraSpecs,a_SurfacesSpecs{,a_Edges{,ne_ColorFactor}}
GotoXY {ne_X{,ne_Y}}
HideButton se_Name{,true|false}
HideCheckBox se_Name{,true|false}
HideEdit se_Name{,true|false}
HideListBox se_Name{,true|false}
HideMemo se_Name{,true|false}
HideRBGroup se_Name{,true|false}
HideSlider se_Name{,true|false}
HideSliderDial se_Name{,true|false}
HideSpinner se_Name{,true|false}
HonorCrLf {true|false}
#Include "FileName.Ext"{,...}
InlineInputMode {on|off}
InPort ne_PortNumber,vn_ByteValue
Input {e_Prompt,}v_Name | a_Name[,,,] {,...}
IntegerEdit se_Name{,true|false}
Joystick ne_JoystickNo,vn_XAxisPos,vn_YAxisPos,vn_ThrottlePos,vn_Buttons

RobotBASIC V4.2.0

Page 256 of 276

JoystickE ne_JoystickNo,a_ReturnedData
Line ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenWidth{,ne_PenColor}}
LineTo ne_X,ne_Y{,ne_PenWidth{,ne_PenColor}}
LineWidth {ne_Width}
mAdd a_Sourced,a_Destination
mAND a_Source,ExprN
mBezier a_Vertices{,ne_PenWidth{,ne_PenColor}}
mCombineClr a_RedValues,a_GreenValues,a_BlueValues,a_RGBvalues
mConstant a_Source,Expr
mCopy a_Source,a_Destination
mDet a_Source,vn_Determinant
mDFT a_Samples{,ne_WindowFunction}
mDiagonal a_Source,Expr
MediaGetPosition {vn_X{,vn_Y{,vn_Width{,vn_Height}}}}
MediaPause ne_DeviceNumber{,on|off}
MediaPlay ne_DeviceNumber,se_FileName{,ne_Loop}
MediaRecord ne_DeviceNumber,se_FileName
MediaReposition {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
MediaSave ne_DeviceNumber
MediaShow ne_DeviceNumber{,true|false}
MediaStop ne_DeviceNumber
MediaVideoSize DeviceNumber{,vn_Width{,vn_Height}}
mExpFit a_XYdata,vn_Exponent,vn_Factor
mFFT a_Samples{,ne_WindowFunction}
mFromString a_TextLines,se_String{,se_Separator}
mGraphPaper a_Specs
MicroDelay {ne_Amount}
mInvert a_Source,a_Destination,vn_Determinant
MirrorBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne__MapY}}}}}}}

MirrorCb
mLogFit a_XYdata,vn_Factor,vn_Translation
mmAND a_Source,a_Destination
mmOR a_Source,a_Destination
mmShiftL a_Source,a_Destination
mmShiftR a_Source,a_Destination
mMultiply a_Left,a_Right,a_Result
mmXOR a_Source,a_Destination
mNOT a_Name
mOR a_Name,ExprN
mPlotXY a_Specs,a_Xvalues,a_Yvalues OR mPlotXY a_Specs,a_XYvalues
mPolyFit a_XYdata,a_Specs
mPolygon a_Verices{,ne_FillColor}
mRead a_Name,se_FileName
mReadBMP a_Pixels{,se_FileName{,ne_ClrCode}}
mRegression a_XYData,vn_Slope,vn_Intercept
mScale a_Name,ExprN
mScrFitArray a_Pixels{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
mScrFromArray a_Pixels{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_ArrayX{,ne_ArrayY}}}}}}
mScrToArray a_Pixels{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
mShiftL a_Name,ExprN
mShiftR a_Name,ExprN

RobotBASIC V4.2.0

Page 257 of 276

mSortR a_Name{,ne_OnRowNumber{,ne_Descending}}
mSortC a_NAme{,ne_OnColumnNumber{,ne_Descending}}
mSub a_Source,a_Destination
mTextFR a_TextLines,se_TextFileName
mTextFW a_TextLines,se_TextFileName
mTranspose a_Source,a_Destination
mWrite a_Name,se_FileName
mWriteBMP a_Pixels{,se_FileName}
mXOR a_Name,ExprN
ngc_DistanceHeading ne_LatA,ne_LonA,ne_LatB,ne_LonB,vn_Distance,vn_Heading
ngc_FractionDistancePoint ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_FractionalDistance,vn_Lat,vn_Lon

ngc_LatFromLonCrossing ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_Lon,vn_Lat
ngc_LonFromLatCrossing ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_Lat,vn_Lon1,vn_Lon2
ngc_RadialIntersection ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_HeadingFromA,ne_Heading,FromB,vn_Lat,vn_Lon

ngc_RadialPoint ne_LatA,ne_LonA,ne_Distance,ne_Heading,vn_Lat,vn_Lon
ngc_TrackPointsFromPoint ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_LatD,ne_LonD,ne_DstnceFrmPnt,vn_Lat1,vn_Lon1,vn_Lat2,vn_Lon2

ngc_XTrackError ne_LatA,ne_LonA,ne_LatB,ne_LonB,ne_LatD,ne_LonD,vn_XTrackDistance,vn_AlongTrackDistance

nrl_DistanceHeading ne_LatA,ne_LonA,ne_LatB,ne_LonB,vn_Distance,vn_Heading
nrl_RadialPoint ne_LatA,ne_LonA,ne_Distance,ne_Heading,vn_Lat,vn_Lon
nwt_GSpeedCourse ne_WindSpeed,ne_WindDirection,ne_TrueSpeed,ne_Heading,vn_GrndSpeed,vn_CourseHeading

nwt_GSpeedHeading ne_WindSpeed,ne_WindDirection,ne_TrueSpeed,ne_CourseHeading,vn_GroundSpeed,vn_Heading

nwt_TSpeedHeading ne_WindSpeed,ne_WindDirection,ne_GrndSpeed,ne_CourseHeading,vn_TrueSpeed,vn_Heading

nwt_TSpeedWSpeed ne_V1,ne_V2,ne_V3,vn_TrueSpeed,vn_WindSpeed
nwt_WSpeedDirection ne_GroundSpeed,ne_CourseHeading,ne_TrueSpeed,ne_Heading,vn_WindSpeed,vn_WindDirection

nwt_XWind ne_WindSpeed,ne_WindDirection,ne_RunwayHeading,vn_XWind,vn_HeadWind
ObjectGet a_ObjectArray,ne_ObjectNumber
ObjectPut a_ObjectArray,ne_ObjectNumber
OutPort ne_PortNumber,ne_ByteValue
OverlayText {ne_X{,ne_Y{,Expr{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_Quick}}}}}}}}
Pie ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_StartAngle{,ne_ArcLength{,ne_PenColor{,ne_FillColor}}}}
PlaySong {se_Notes}
PlayWav {se_FileName{,ne_Mode{,ne_Loop}}}
PPortIn vn_ByteValue
PPortOut {ne_ByteValue}
Print {Expr,Expr;Expr...}{;|,}
PrinterSetup
PrintScr
rCharge {ne_Value}
rCommPort ne_PortNum {,ne_BaudRate {,ne_NumBits {,ne_Parity {,ne_StopBits {,ne_Protocol}}}}}
ReadBMP {se_FileName{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}
ReadMouse vn_X,vn_Y{,vn_Buttons}
ReadOnlyEdit se_Name{,true|false}
ReadOnlyMemo se_Name{,true|false}
ReadPixel ne_X,ne_Y,vn_Color
ReadScr {se_FileName}
ReadSerSignals vn_Flags
RecordGet a_DataBaseArray,ne_RecordNumber
RecordPut a_DataBaseArray,ne_RecordNumber
Rectangle ne_X1,ne_Y1,ne_X2,ne_Y2{,ne_PenColor{,ne_FillColor}}
RectangleWH ne_X,ne_Y,ne_Width,ne_Height{,ne_PenColor{,ne_FillColor}}
RemoveButton se_Name
RemoveCheckBox se_Name

RobotBASIC V4.2.0

Page 258 of 276

RemoveEdit se_Name
RemoveListBox se_Name
RemoveMemo se_Name
RemoveRBGroup se_Name
RemoveSlider se_Name
RemoveSpinner se_Name
RemoveTimer se_Name
RenameButton se_CurrentName,se_NewName
ResizeBMP {se_SourceFileName{,ne_Width{,ne_Height{,se_ToFileName}}}}
RestoreScr {ne_X{,ne_Y}}
rFloorColor {ne_Color}
rForward {ne_Pixels}
rGps vn_X,vn_Y
rHeading {ne_Degrees}
rIgnoreCharge {true|false}
rInstError {ne_PercentageLevel}
rInvisible ne_Color1 {,ne_Color2...}
rLocate ne_X,ne_Y{,ne_Heading{,ne_Size{,ne_BorderColor{,ne_InsideColor{,ne_ObeyFlip}}}}
RotateBMP {se_FileName{,ne_Angle{,ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}}}

RotateCb {ne_Angle}
rPen ne_State {,ne_Color}
rRelocate {ne_X{,ne_Y{,ne_Heading}}}
rSenseType {ne_NumSensors}
rSensor ne_SensorNo,ne_Range,vn_Color,vn_Distance,vn_Found
rSensorA ne_Angle,ne_Range,vn_Color,vn_Distance,vn_Found
rSlip {ne_PercentageLevel}
rSpeed {ne_Speed}
rTurn {ne_Degrees}
SaveScr {ne_X1{,ne_Y1{,ne_X2{,ne_Y2}}}}
SaveScrWH {ne_X1{,ne_Y1{,ne_Width{,ne_Height}}}}
ScrFromCb {ne_ScreenX{,ne_ScreenY{,ne_Width{,ne_Height{,ne_MapX{,ne_MapY}}}}}}
ScrLimits vn_XLimit,vn_YLimit
ScrSetMetrics {ne_X{,ne_Y{,ne_Width{,ne_Height{,ne_PanelVisible{,ne_AllowResize}}}}}}
ScrGetMetrics {vn_X{,vn_Y{,vn_Width{,vn_Height{,vn_PanelVisible{,vn_AllowResize}}}}}}
ScrToCb {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
SeedRandom {ne_Seed}
SendEMail a_MessageSpecs,a_MessageBody {,ne_ShowProgress}
SerBytesIn ne_NumOfBytesToRead,vs_BytesRead,vn_ActualNumberRead
SerialOut Expr {,Expr {, Expr ...}}
SerIn vs_Bytes
SerOut Expr {,Expr {; Expr ...}}
SerPorts vs_PortsList
SetButtonCaption se_Name{,e_Caption}
SetButtonDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
SetButtonFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
SetCBText {se_Text}
SetCheckBox se_Name{,true|false}
SetCheckBoxCaption se_Name{,e_NewCaption}
SetCheckBoxColor se_Name{,ne_Color}
SetCheckBoxDim se_Name{,ne_X{,ne_Y}}
SetColor {ne_PenColor{,ne_BackGroundColor}}

RobotBASIC V4.2.0

Page 259 of 276

SetCommPort ne_PortNum {,ne_BaudRate {,ne_NumBits {,ne_Parity {,ne_StopBits {,ne_Protocol}}}}}

SetCursor {ne_CursorShapeCode}
SetEdit se_Name{,e_Value}
SetEditColor se_Name{,ne_Color}
SetEditDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
SetEditFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
SetEditMask se_Name,se_MaskSpecs
SetInputArea {se_Text}
SetListBox se_Name{,ne_Index}
SetListBoxColor se_Name{,ne_Color}
SetListBoxDim se_Name{,ne_X{,ne_Y{,ne_W}}}
SetListBoxFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
SetListBoxItems se_Name{,e_ItemsList}
SetMemoColor se_Name{,ne_Color}
SetMemoDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
SetMemoFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
SetMemoScrollBars se_Name{,ne_Value}
SetMemoSelected se_Name{,ne_StartCharPosition{,ne_NumCharacters}}
SetMemoSelection se_Name{,ne_LineNumber{,ne_CharacterNumber{,ne_SelectionLength}}}}
SetMemoText se_Name{,e_Text}
SetMousePos {ne_X{,ne_Y}
SetPixel {ne_X{,ne_Y{,ne_Color}}}
SetPPortNumber {ne_PortNumber}
SetPromptArea {se_Text}
SetRBGroup se_Name{,ne_Index}
SetRBGroupButtons se_Name{,e_ButtonsList}
SetRBGroupColor se_Name{,ne_Color}
SetRBGroupColumns se_Name{,ne_NumColumns}
SetRBGroupDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
SetRBGroupFont se_Name{,se_FontType{,ne_FontSize{,ne_FontStyle{,ne_FontColor}}}}
SetSerDTR {on|off}
SetSerRTS {on|off}
SetSliderBarEnd se_Name{,ne_Value}
SetSliderBarStart se_Name{,ne_Value}
SetSliderDim se_Name{,ne_X{,ne_Y{,ne_W}}}
SetSliderMax se_Name{,ne_NewValue}
SetSliderMin se_Name{,ne_NewValue}
SetSliderPos se_Name{,ne_PositionValue}
SetSpinner se_Name{,ne_Position}
SetSpinnerDim se_Name{,ne_X{,ne_Y{,ne_W{,ne_H}}}}
SetSpinnerIncr se_Name{,ne_Value}
SetSpinnerMax se_Name{,ne_NewValue}
SetSpinnerMin se_Name{,ne_NewValue}
SetSpinnerWrap se_Name{,true|false}
SetTextBuff {se_Text}
SetTimeOut {ne_MilliSeconds}
SetTimer se_Name{,true|false}
SetTimerPeriod se_Name{,ne_Period}
SetTimerTicks se_Name{,ne_Count}
ShowSliderBar se_Name{,true|false}
SizeBMP se_FileName,vn_Width,vn_Height

RobotBASIC V4.2.0

Page 260 of 276

SizeCb vn_Width,vn_Height
SortListBox se_Name{,true|false}
Sound ne_Frequency,ne_Duration{,ne_Mode}
Speaker {on|off}
Stepping {On|Off}
Swap v_Left | a_Left[...] ,v_Right | a_Right[...]
TextBuffToCB
ToBMP se_SourceFile{,se_ToFile}
Transparent {on|off}
Undeclare
VarSet se_VarName,e_Value
VPPortIn ne_VirtualPortNo,vn_ByteValue
VPPortOut ne_VirtualPortNo,ne_ByteValue
WaitKey {e_Prompt,}vn_KeyCode
WaitNoKey {ne_MillisWait}
WaitNoKeyE ne_ScanCode{,ne_MillisWait}
WrapMemo se_Name{,true|false}
Write {Expr,Expr;Expr...}{;|,}
WriteBMP {se_FileName{,ne_X{,ne_Y{,ne_Width{,ne_Height}}}}}
WriteScr {se_FileName}
xyInput v_Input{,ne_X{,ne_Y{,e_Title{,e_Default{,ne_BoxLength}}}}}
xyString ne_X,ne_Y,Expr{;expr,expr;...}
xyText {ne_X{,ne_Y{,Expr{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_BackgroundColor}}}}}}}}

The Functions List (475)
Note: See notes at the top of the Standard User Interfacing section

AbortFlag()
Abs(ExprN)
ACos(ExprN)
ACosH(ExprN)
Ascii(se_Text)
ASin(ExprN)
ASinH(ExprN)
ATan(ExprN)
ATan2(ne_X,ne_Y)
ATanH(ExprN)
Average(a_Data)
Bin(ExprN{,ne_NumBits})
BinToInt(e_BinaryValue)
BitSwap(ne_Number{,ne_NumberOfBits})
BlueValue(ne_Color)
BuffRead(se_Buffer,ne_Position,ne_NumBytes)
BuffReadB(se_Buffer,ne_Position)
BuffReadF(se_Buffer,ne_Position)
BuffReadF32(se_Buffer,ne_Position)
BuffReadI(se_Buffer,ne_Position)
BuffWrite(se_Buffer,ne_Position,e_Value)
BuffWriteB(se_Buffer,ne_Position,ne_Value)
BuffWriteF32(se_Buffer,ne_Position,ne_Value)

RobotBASIC V4.2.0

Page 261 of 276

ButtonEnabled(se_Name)
ButtonHasFocus(se_Name)
ButtonHidden(se_Name)
CaptureDlg({se_FileName})
CaptureImage({se_FileName})
CaptureRdy()
CaptureSrc()
CartX(ne_Radius,ne_ThetaRadians)
CartY(ne_Radius,ne_ThetaRadians)
CbRt(ExprN)
Center(se_Text,se_PadChar,ne_NumChars)
Char(ne_AsciiCode)
CheckBoxEnabled(se_Name)
CheckBoxHasFocus(se_Name)
CheckBoxHidden(se_Name)
ClrBit(ne_Number,ne_BitPosition)
ClrByte(ne_Number,ne_BytePosition)
CommandsList()
ConstantsList()
ConsToClr(ne_ColorConstantValue)
Contains(se_Text,se_CharList)
Convert(ne_ValueToConvert, ne_ConversionTypeCode)
CorrCoef(a_Data)
Cos(ne_Radians)
CosH(ExprN)
Count(a_Data)
CrLf()
Date({ne_Type})
DateStr(ne_DateTimeValue)
DateTime(ne_DateTimeValue{,se_Format})
DateTimeStr(ne_DateTimeValue)
DateTimeVal(se_DateTimeString)
DateVal(ne_Year,ne_Month,ne_Day)
Day(ne_DateTimeValue)
DayOfWeek(ne_DateTimeValue)
Degrees({ne_Degrees{,ne_Minutes{,ne_Seconds}}})
Degrees(se_FormattedDegrees)
DeskTopHeight()
DeskTopWidth()
DFtoSF(ExprN)
DirCount()
DirCreate(se_DirPath)
DirCurrent()
DirExists(se_DirPath)
DirList()
DirPrompt()
DirRemove(se_DirPath)
DirSet(se_DirPath)
DiskFree(ne_DiskNumber)
DiskSize(ne_DiskNumber)
DtoR(ne_Degrees)

RobotBASIC V4.2.0

Page 262 of 276

EditBorder(se_Name)
EditChanged(se_Name)
EditEnabled(se_Name)
EditHasFocus(se_Name)
EditHidden(se_Name)
EditReadOnly(se_Name)
Encrypt(se_Text,se_Key)
ErrMsg(se_MessageText{,se_BoxTitle{,ne_Style}})
Evaluate(se_Expression)
Exp(ExprN)
Exp10(ExprN)
Extract(se_Text,se_SeparatorChars,ne_Part)
FactorColor(ne_Color,ne_Factor)
Factorial(ExprN)
ff_CIFV(PV,INTR,TERM)
ff_CII(PV,FV,TERM)
ff_CIT(PV,INTR,FV)
ff_FV(PMT,INTR,TERM,TYPE)
ff_FVP(FV,INTR,TERM,TYPE)
ff_FVT(PMT,INTR,FV,TYPE)
ff_PV(PMT,INTR,TERM,BAL,TYPE)
ff_PVP(PV,INTR,TERM,BAL,TYPE)
ff_PVT(PMT,INTR,PV,BAL,TYPE)
ff_SLN(COST,SALVAGE,LIFE)
ff_SYD(COST,SALVAGE,LIFE,PERIOD)
FileChangeExt(se_FileName,se_NewExtension)
FileDelete(se_Name)
FileDir(se_Name)
FileDrive(se_Name)
FileClose(ne_FileHandle)
FileCopy(se_SourceFile,se_DestinationFile{,ne_Mode})
FileCreate(se_FileName)
FileDate(se_FileName)
FileEnd(ne_FileHandle)
FileOpen(se_FileName,ne_Mode)
FilePrompt({Expr})
FileRead(ne_FileHandle{,ne_ByteCount)
FileReadB(ne_FileHandle)
FileReadF(ne_FileHandle)
FileReadField(ne_FileHandle{,se_Separator})
FileReadI(ne_FileHandle)
FileSave({Expr})
FilesCount({se_Filter})
FileSeek(ne_FileHandle,ne_FromWhere,ne_OffsetCount)
FileSize(ne_FileHandle)
FileSize(se_Name)
FilesList({se_Filter})
FileWrite(ne_FileHandle,e_Value)
FileWriteB(ne_FileHandle,e_Value)
FileExists(se_FileName)
FileExt(se_Name)

RobotBASIC V4.2.0

Page 263 of 276

FileName(se_Name)
FilePath(se_Name)
FileRename(se_OldName,se_NewName)
FileSearch(se_FileName,se_DirList)
Format(ExprN,se_FormatSpecifier)
Frac(ExprN)
FunctionsList()
GetBit(ne_Number,ne_BitPosition)
GetButtonCaption(se_Name)
GetButtonFont(se_Name)
GetButtonH(se_Name)
GetButtonW(se_Name)
GetButtonX(se_Name)
GetButtonY(se_Name)
GetByte(ne_Number,ne_BytePosition)
GetCBText()
GetCheckBox(se_Name)
GetCheckBoxCaption(se_Name)
GetCheckBoxColor(se_Name)
GetCheckBoxX(se_Name)
GetCheckBoxY(se_Name)
GetEdit(se_Name)
GetEditColor(se_Name)
GetEditFont(se_Name)
GetEditH(se_Name)
GetEditUnmasked(se_Name)
GetEditW(se_Name)
GetEditX(se_Name)
GetEditY(se_Name)
GetListBox(se_Name)
GetListBoxColor(se_Name)
GetListBoxFont(se_Name)
GetListBoxItem(se_Name,ne_ItemIndex)
GetListBoxList(se_Name)
GetListBoxText(se_Name)
GetListBoxW(se_Name)
GetListBoxX(se_Name)
GetListBoxY(se_Name)
GetMemoCharNo(se_Name)
GetMemoCharPos(se_Name)
GetMemoColor(se_Name)
GetMemoFont(se_Name)
GetMemoH(se_Name)
GetMemoLine(se_Name,ne_LineNumber)
GetMemoLineNo(se_Name)
GetMemoSelection(se_Name)
GetMemoText(se_Name)
GetMemoW(se_Name)
GetMemoX(se_Name)
GetMemoY(se_Name)
GetRBGroup(se_Name)

RobotBASIC V4.2.0

Page 264 of 276

GetRBGroupButton(se_Name,ne_Index)
GetRBGroupCaption(se_Name)
GetRBGroupColor(se_Name)
GetRBGroupFont(se_Name)
GetRBGroupH(se_Name)
GetRBGroupItems(se_Name)
GetRBGroupText(se_Name)
GetRBGroupW(se_Name)
GetRBGroupX(se_Name)
GetRBGroupY(se_Name)
GetSliderBarEnd(se_Name)
GetSliderBarStart(se_Name)
GetSliderMax(se_Name)
GetSliderMin(se_Name)
GetSliderPos(se_Name)
GetSliderW(se_Name)
GetSliderX(se_Name)
GetSliderY(se_Name)
GetSpinner(se_Name)
GetSpinnerH(se_Name)
GetSpinnerIncr(se_Name)
GetSpinnerMax(se_Name)
GetSpinnerMin(se_Name)
GetSpinnerW(se_Name)
GetSpinnerWrap(se_Name)
GetSpinnerX(se_Name)
GetSpinnerY(se_Name)
GetStrByte(se_String,ne_ByteNumber)
GetTextBuff()
GetTimerPeriod(se_Name)
GetTimerTicks(se_Name)
GreenValue(ne_Color)
Hex(ExprN{,ne_NumBytes})
HexToInt(e_HexValue)
Hour(ne_DateTimeValue)
Insert(se_Text,se_Insert,ne_CharNum)
InString(se_Main,se_Sub{,ne_StartFrom})
IsNumber(Expr)
IsString(Expr)
JustifyL(se_Text,se_PadChar,ne_Len)
JustifyR(se_Text,se_PadChar,ne_Len)
KeyDown({ne_ScanCode})
LastButton()
LastCheckBox()
LastEdit()
LastKey()
LastListBox()
LastMemo()
LastMouse()
LastRBGroup()
LastSlider()

RobotBASIC V4.2.0

Page 265 of 276

LastSpinner()
LastTimer()
Lat_DM(ne_Degrees)
Lat_DMS(ne_Degrees)
Left(se_Text,ne_NumChars)
LeftTrim(se_Text)
Length(se_Text)
Limit(ne_Value,ne_LowerLimit,ne_UpperLimit)
ListBoxEnabled(se_Name)
ListBoxHasFocus(se_Name)
ListBoxHidden(se_Name)
ListBoxItemsCount(se_Name)
ListBoxSorted(se_Name)
Log(ExprN)
Log2(ExprN)
LogB(ne_Base,ExprN)
Lon_DMS(ne_Degrees)
Lon_DM(ne_Degrees)
Lower(se_Text)
MakeBit(ne_Number,ne_BitPosition,on|off)
MakeByte(ne_Number,ne_BytePosition,ne_ByteValue)
Map(ne_FromValue, ne_FromMin, ne_FromMax, ne_ToMin, ne_ToMax)
mAverage(a_Data)
Max(a_Data)
MaxDim(a_Name{,ne_Dimension})
MaxFloat()
MaxInteger()
MaxV(ExprN1,ExprN2)
mCount(a_Data)
mDim(a_Name)
Median(a_Data)
MediaIsVideo(ne_DeviceNumber)
MediaState(ne_DeviceNumber)
MemoBorder(se_Name)
MemoChanged(se_Name)
MemoEnabled(se_Name)
MemoHasFocus(se_Name)
MemoHidden(se_Name)
MemoLinesCount(se_Name)
MemoReadonly(se_Name)
MemoScrollBars(se_Name)
MemoWrap(se_Name)
Millisecond(ne_DateTimeValue)
Min(a_Data)
MinFloat()
MinInteger()
Minute(ne_DateTimeValue)
MinV(ExprN1,ExprN2)
mMax(a_Data)
mMin(a_Data)
Mod(ne_Numerator,ne_Denominator)

RobotBASIC V4.2.0

Page 266 of 276

Month(ne_DateTimeValue)
mRange(a_Data)
MsgBox(a_TextLines{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
mStdDev(a_Data)
mSum(a_Data)
mToCommaText(a_TextLines)
mToString(a_TextLines{,se_Separator})
mType(a_Name[...])
mVariance(a_Data)
nCr(ne_NumElementsAvailable,ne_NumElementsToSelect)
NLog(ExprN)
NoSpaces(se_Text)
NotContains(se_Text,se_CharList)
Now()
nPr(ne_NumElementsAvailable,ne_NumElementsToSelect)
NumParts(se_Text,se_Separator)
Pi({ne_Multiplier})
PixelClr(ne_X,ne_Y)
PolarA(ne_X,ne_Y)
PolarR(ne_X,ne_Y)
ProbG(ne_Element,ne_Mean,ne_StdDev)
ProbGI(ne_Probability,ne_Mean,ne_StdDev)
ProgName()
PromptBMP({se_Filter})
PromptColor({ne_DefaultColor})
Proper(se_Text)
PutStrByte(se_String,ne_ByteNum,ne_Val)
Random(ExprN)
RandomG(ne_Mean,ne_StdDev)
Range(a_Data)
rBeacon(ne_Color)
RBGroupEnabled(se_Name)
RBGroupHasFocus(se_Name)
RBGroupHidden(se_Name)
RBGroupItemsCount(se_Name)
RBGroupNumColumns(se_Name)
rBumper()
rChargeLevel()
rCommand(ne_Command,ne_Data)
rCompass()
rDBumper({ne_Color})
rDFeel({ne_Color})
re_End({ne_GroupNumber})
re_GrpNumber(se_GroupName)
re_Match(se_Text)
re_NumOfGrps()
re_Replace(se_Text{,se_ReplaceWith{,ne_SartFromPositionNumber{,ne_NumberOfMatchesToReplace}}})
re_Search(se_Text{,ne_SartFromPositionNumber})
re_Setup(se_Template{,ne_Mode})
re_Start({ne_GroupNumber})
RedValue(ne_Color)

RobotBASIC V4.2.0

Page 267 of 276

Replace(se_OriginalString,se_NewSubString,ne_StartingAt)
rFeel()
RGB(ne_RedValue,ne_GreenValue,ne_BlueValue)
rGpsX()
rGpsY()
rGround(ne_SensorNo)
rGroundA(ne_Angle)
Right(se_Text,ne_NumChars)
RightTrim(se_Text)
rLook({ne_Angle})
RotShape(se_ShapeString,ne_Direction)
Round(ExprN)
RoundDN(ExprN{,ne_Type})
RoundUP(ExprN{,ne_Type})
rPoints()
rRange({ne_Angle})
rSense({ne_Color})
RtoD(ne_Radians)
Second(ne_DateTimeValue)
SetBit(ne_Number,ne_BitPosition)
SetByte(ne_Number,ne_BytePosition)
SFtoDF(ExprN)
Sign(ExprN)
SignExtend8(ExprN)
SignExtend16(ExprN)
Sin(ne_Radians)
SinH(ExprN)
SliderBarHidden(se_Name)
SliderDialHidden(se_Name)
SliderEnabled(se_Name)
SliderHasFocus(se_Name)
SliderHidden(se_Name)
Soundex(se_Text{,ne_Length})
Spaces(ne_NumOfSpaces)
Spawn(se_ProgramName,se_Parameters,ne_Mode)
Spell(ExprN)
SpinnerEnabled(se_Name)
SpinnerHasFocus(se_Name)
SpinnerHidden(se_Name)
SqRt(ExprN)
sRepeat(se_RepeatChars,ne_NumTimes)
StatementsList()
StdDev(a_Data)
StringBox(se_Text{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
StrInput({e_Caption{,e_Prompt{,e_Default}}})
StrOfBytes(Expr{,Expr{,....}})
Substitute(se_Text,se_TextToReplace,se_ReplaceWith)
Substring(se_Text{,ne_StartChar{,ne_NumCharacters}})
Sum(a_Data)
Tan(ne_Radians)
TanH(ExprN)

RobotBASIC V4.2.0

Page 268 of 276

TCP_LocalIP()
TCPC_BuffCount()
TCPC_Close()
TCPC_Connect(se_ServerIPaddress{,ne_ServerPort})
TCPC_ConnectHost(se_ServerName{,ne_ServerPort})
TCPC_Peek()
TCPC_Read()
TCPC_Send(se_Data)
TCPC_Status()
TCPS_BuffCount()
TCPS_Close()
TCPS_Header({on|off})
TCPS_Peek()
TCPS_Read()
TCPS_Send(se_Data)
TCPS_Serve({ne_Port})
TCPS_Status()
TextBox(se_FileName{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
TextHeight(se_Text{,se_FontName{,ne_FontSize{,ne_FonctStyle}}})
TextWidth(se_Text{,se_FontName{,ne_FontSize{,ne_FonctStyle}}})
Time({ne_Type})
Timer()
TimerIsOn(se_Name)
TimeStr(ne_DateTimeValue)
TimeVal(ne_Hour,ne_Minute,ne_Second,ne_Milliseconds)
ToByte(Expr)
ToCommaText(se_Text)
ToNumber(Expr{,ne_Default})
ToString(Expr)
ToTime(ne_Seconds)
Trim(se_Text)
UDP_BuffCount(se_Name)
UDP_Header(se_Name{,on|off})
UDP_Peek(se_Name)
UDP_Read(se_Name)
UDP_Send(se_Name,se_Data,se_TargetIP{,ne_TargetPort})
UDP_Start(se_Name{,ne_ListenPort})
UDP_Status(se_Name)
Upper(se_Text)
usbm_ClearRecentError()
usbm_CloseDevice(ne_DeviceNumber)
usbm_DeviceCmd(ne_DeviceNumber,se_Data)
usbm_DeviceSpecs(ne_DeviceNumber)
usbm_DeviceValid(ne_DeviceNumber)
usbm_DirectionA(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)
usbm_DirectionAIn(ne_DeviceNumber)
usbm_DirectionAInPullUp(ne_DeviceNumber)
usbm_DirectionAOut(ne_DeviceNumber)
usbm_DirectionB(ne_DeviceNumber,ne_PinsDirection,ne_PinsFormat)
usbm_DirectionBIn(ne_DeviceNumber)
usbm_DirectionBInPullUp(ne_DeviceNumber)

RobotBASIC V4.2.0

Page 269 of 276

usbm_DirectionBOut(ne_DeviceNumber)
usbm_DllSpecs()
usbm_ErrorSpecs()
usbm_FindDevices()
usbm_InitLCD(ne_DeviceNumber,ne_Sel, ne_Port)
usbm_InitPorts(ne_DeviceNumber)
usbm_InitPortsU401(ne_DeviceNumber)
usbm_InitPortsU421(ne_DeviceNumber)
usbm_InitPortsU451(ne_DeviceNumber)
usbm_InitSPI(ne_DeviceNumber,ne_Specs)
usbm_LCDCmd(ne_DeviceNumber,ne_CommandByte)
usbm_LCDData(ne_DeviceNumber,ne_DataByte)
usbm_NumberOfDevices()
usbm_Read1Wire(ne_DeviceNumber)
usbm_Read1WireBit(ne_DeviceNumber)
usbm_ReadA(ne_DeviceNumber)
usbm_ReadB(ne_DeviceNumber)
usbm_ReadLatches(ne_DeviceNumber)
usbm_Reset1Wire(ne_DeviceNumber,ne_Specs)
usbm_ResetBit(ne_DeviceNumber,ne_PinNumber)
usbm_SetBit(ne_DeviceNumber,ne_PinNumber)
usbm_SetReadTimeout(ne_Time)
usbm_SPIMaster(ne_DeviceNumber,se_DataBytes)
usbm_SPISlaveRead(ne_DeviceNumber)
usbm_SPISlaveWrite(ne_DeviceNumber,se_DataBytes)
usbm_Stepper(ne_DeviceNumber,se_DataSpecs)
usbm_StrobeRead(ne_DeviceNumber,se_ByteData)
usbm_StrobeReads(ne_DeviceNumber,se_ByteData)
usbm_StrobeWrite(ne_DeviceNumber,se_ByteData)
usbm_StrobeWrites(ne_DeviceNumber,se_ByteData)
usbm_Wire2Control(ne_DeviceNumber,ne_Signal)
usbm_Wire2Data(ne_DeviceNumber,se_DataBytes)
usbm_Write1Wire(ne_DeviceNumber,ne_Data)
usbm_Write1WireBit(ne_DeviceNumber,ne_BitValue)
usbm_WriteA(ne_DeviceNumber,ne_ByteValue)
usbm_WriteABit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)
usbm_WriteB(ne_DeviceNumber,ne_ByteValue)
usbm_WriteBBit(ne_DeviceNumber,ne_AndingMask, ne_OringMask)
Variance(a_Data)
varsList({ne_Global})
varType(se_VarName)
varValue(se_VarName)
vType(v_VarName)
WavBusy()
Within(ne_Value,ne_LowerLimit,ne_UpperLimit)
Year(ne_DateTimeValue)

RobotBASIC V4.2.0

Page 270 of 276

The Simulator Commands (18)
Note: See notes at the top of the Standard User Interfacing section

rCharge {ne_Value}
rCommPort ne_PortNum {,ne_BaudRate {,ne_NumBits {,ne_Parity {,ne_StopBits {,ne_Protocol}}}}}
rFloorColor {ne_Color}
rForward {ne_Pixels}
rGps vn_X,vn_Y
rHeading {ne_Degrees}
rIgnoreCharge {true|false}
rInstError {ne_PercentageLevel}
rInvisible ne_Color1 {,ne_Color2...}
rLocate ne_X,ne_Y{,ne_Heading{,ne_Size{,ne_BorderColor{,ne_InsideColor}}}}
rPen ne_State {,ne_Color}
rRelocate {ne_X{,ne_Y{,ne_Heading}}}
rSenseType {ne_NumSensors}
rSensor ne_SensorNo,ne_Range,vn_Color,vn_Distance,vn_Found
rSensorA ne_Angle,ne_Range,vn_Color,vn_Distance,vn_Found
rSlip {ne_PercentageLevel}
rSpeed {ne_Speed
rTurn {ne_Degrees}

The Simulator Functions (16)
Note: See notes at the top of the Standard User Interfacing section

rBeacon(ne_Color)
rBumper()
rChargeLevel()
rCommand(ne_Command,ne_Data)
rCompass()
rDBumper({ne_Color})
rDFeel({ne_Color})
rFeel()
rGpsX()
rGpsY()
rGround(ne_SensorNo)
rGroundA(ne_Angle)
rLook({ne_Angle})
rPoints()
rRange({ne_Angle})
rSense({ne_Color})

RobotBASIC V4.2.0

Page 271 of 276

Modifications History
The list of modifications and additions will be from a base reference to version 4.0.2. The help file in the
latest version has all the information needed to use RobotBASIC without need to refer to or have ever used
previous versions.

If you are interested in a running history of modifications please go to www.RobotBASIC.com and visit
the Language Specification page to download the PDF file which has a list of all modifications since
version 1.3.0.

Versions 4.1.0 & 4.2.0
In this version the major changes are to do with:

- Fixed an error with the mPlotxy command that uses the 2D array of data where it was not
calculating the correct scaling in some situations.

- Added mSortC to perform sorting on the elements of a specified Column rather than on the
elements of a specified Row as in mSortR. The old mSort is still available but it is better to use
mSortR.

- Added the functions SFtoDF() to convert a 32 bit fixed float format of a number (stored in the 4
bytes of an integer in RB) to a standard RB float number which is in 64 bit format. Also DFtoSF()
to convert in the other direction. Also see BuffWriteF32() and BuffReadF32() to do the same thing
for buffers. This can be useful to read floating point data from microcontrollers such as the
Propeller Chip which stores floating point numbers using the IEEE 32 bit encoding in the Little-
Endian order. This way you can receive or send floating point numbers back and forth between RB
and the Propeller or similar microcontrollers.

- Before this version you could not use a function call in a line by itself just like a statement and you
had to use it in an assignment statement. However there are many functions whose return value is
of no consequence and rather it is the action of the function that is of use. In this version you can
now do a function call as a statement without assigning its return result to a value. You can do:

TCPS_Close()
 just as if it were a subroutine call. Notice how the return value is ignored and is not being assigned

to a variable as you had to do before. Read more details about this in the Functions subsection in
the Overview Of The Language section.

- Many new and modified Graphics Engine commands that are EASY to use but yet quite powerful.
- You can now use ++, --, +=, -=, *= and /= as assignment operators. See the Assignment Operators

section under the Operators section in the Language Overview Section.
- The new InlineInputMode allows you to make Input and WaitKey prompt and accept input from the

user within the Terminal Screen rather than in the input area of the Control Panel under the main
screen.

- This version now allows for optional parameters to be skipped using a space (or more or none)
between commas when specifying parameters for commands. See more details in the Commands
subsection in the Language Overview section also see the second note at the top of the Standard
User Interfacing section. So now you can say :

Circle 10,10,100,100, ,red //notice the missing 5th parameter
SaveScrWH ,,70 //notice the missing 1st and 2nd
parameters

- You can now use the \ character followed immediately by an Enter (i.e. CrLf) to indicate a line
continuation operator that allows for a long line of code to be continued on the next line. See The
Line Break Operator subsection in the Language Overview section.

- You can now use Parameterized subroutines with optional return values and by-value or by-

RobotBASIC V4.2.0

Page 272 of 276

reference parameters with optional parameter skipping and Local Scoped variables. See the
Sub/Call/Return statements in the Flow Control Statements section.

- Event handlers (On[control])can now either use normal Label: subroutines (just like a gosub) with
global scoped variables, or Sub subroutines with local scoped variables for their event handler
subroutines. But not OnError) it is only allowed to use Label subroutines (gosub like) since it may
need to use global variables during error handling.

- The new Declare statement allows you to RESTRICT RobotBASIC's variables to become Strict
Typing. That is, with the Declare statement you declare variables and their types as well as an
initial value. This will also make RB become a strict typing language where variables have to be
declared to be of a certain type before they can be used and their type will not be changeable. A
float can be assigned an integer but not a string. An integer can be assigned a float that can be
truncated to an integer but not a string. As string can be assigned only strings. From the first
moment the Declare statement is executed RB will perform strict typing from that point onwards.
Strict typing cab be turned off if desired with the statement Undeclare. See full explanation in the
Flow Control Directives section. Also the Input command and the Assignment Statement and the
For-Next loop structure which are affected areas.

- Two new commands can be used to facilitate the creation of a pseudo-object-based actions or a
simple database system. See ObjectPut/RecordPut and ObjectGet/RecordGet.

- With the new function VarsList() you can obtaine a list of variables (local or global) and with the
new command varSet and the already existing functions varType() and varValue() that facilitate
Indirection Access to variables (pointer like) you can do all sorts of tricks and even a rudimentary
Debugger.

- The set of commands MediaPlay, MediaPause, MediaStop, MediaRecord, MediaSave and the
function MediaState() provide the ability to play multiple media files simultaneously. The files can
be audio or video and of various types. Also recording is allowed of WAV Audio files. See also
MediaShow, MediaReposition and MediaGetposition.

- New USBmicro functions to support the new U451 device and the I2C capability of the new
firmware on later versions of the U401 and U421 with the newer USBm.DLL.

- The new mFFT and mDFT perform Complex Discrete and Fast Fourier Transform analysis on Real
or Complex sampled data.

- Normally the Terminal Screen window is not a sizeable window and the user will not be able to
modify the window width or height. However, you now can allow the user to resize the window
manually or move and resize the window under program control using ScrSetMetrics and
ScrGetMetrics. Also with these commands you can show/hide the control panel at the bottom of the
window. See these commands in the Standard User Interfacing section.

- Since now with the new Sub/Call routines you can have local variable scoping, this opens up the
opportunity for creating Libraries of subroutines that can be distributed as standard text files or
even as RB binary files (not compiled EXE...just RB binary). To facilitate the incorporation of
these libraries within programs the new #Include directive is now available. You can have multiple
includes and even includes within includes. The files can be normal text files or binaries created by
RB. See #Include statement under the Flow Control Directives section.

- Better Help Screen with an expandable Table of Contents that helps select topics in the help file as
well as 4 list boxes with commands and functions etc. so that you can directly locate the main entry
within the help file.

- A more sophisticated IDE Editor with Syntax Highlighting and ability to work on multiple
simultaneously open files. Also the ability to turn on/off a line numbering feature.

- A system for configuring the IDE with your preferences for syntax highlighting and other
parameters. Also these preferences will be save to disk file so as when you start RB the next time
all the settings would be as you have configured them.

- The File menu option now has a list of most recently open files. The number of files in the list is
configurable through a Preferences Configurations system.

RobotBASIC V4.2.0

Page 273 of 276

- Changed the line numbering in the Editor Screen to 1-based. That is the first line is line number 1
not line number 0 as it used to be in previous versions. Also when an error is reported it will report
the line number with 1-Base not 0 based as it used to be in previous versions. Additionally GetError
will also report the line number using 1-Base. Check that this does not affect your existing
programs.

- A new Find Dialog now allows for starting the search from the start of the file.

Altogether there are 5 new flow control statements, 1 new directive, 28 new functions, 29 new
commands, 12 modified functions and 10 modified commands.

Added the following Directive:
#Include "FileName.Ext"{,...}

Added the following Statements:
Sub SubName({{&}var1{,{&}var2{,...}})
Return {expr}
Call SubName({expr1{expr2{,...}})
On[control] SubName
OnAbort SubName

Added the following functions:
SFtoDF(ExprN)
DFtoSF(ExprN)
BuffWriteF32(se_Buffer,ne_Position,ne_Value)
BuffReadF32(se_Buffer,ne_Position)
FactorColor(ne_Color,ne_Factor)
varsList({ne_Global})
MediaState(ne_DeviceNumber)
MediaIsVideo(ne_DeviceNumber)
CommandsList()
FunctionsList()
StatementsList()
ConstantsList()
mToCommaText(a_TextLines)
ToCommaText(se_Text)
DeskTopWidth()
DeskTopHeight()
usbm_InitPortsU401(ne_DeviceNumber)
usbm_InitPortsU421(ne_DeviceNumber)
usbm_InitPortsU451(ne_DeviceNumber)
usbm_DirectionAIn(ne_DeviceNumber)
usbm_DirectionAOut(ne_DeviceNumber)
usbm_DirectionAInPullUp(ne_DeviceNumber)
usbm_DirectionBIn(ne_DeviceNumber)
usbm_DirectionBOut(ne_DeviceNumber)
usbm_DirectionBInPullUp(ne_DeviceNumber)
usbm_ReadLatches(ne_DeviceNumber)
usbm_Wire2Control(ne_DeviceNumber,ne_Signal)
usbm_Wire2Data(ne_DeviceNumber,se_DataBytes)

RobotBASIC V4.2.0

Page 274 of 276

Added the following Commands:
mSortC a_Name{,ne_OnColumnNumber{,ne_Descending}}
mSortR a_Name{,ne_OnColumnNumber{,ne_Descending}}
InlineInputMode {on|off}
rRelocate {ne_X{,ne_Y{,ne_Heading}}}
gePlotSurfaces
a_3DPoints,a_SurfacesSpecs{,ne_DoFilling{,ne_LineWidth{,ne_OnlyVisible{,ne_CentroidAll}}}}
geCentroids a_3DPoints,a_SurfacesSpecs,a_Centroids
ge3Dto2DVA ne_X,ne_Y,ne_Z,a_CameraSpecs,vn_ScrX,vn_ScrY
gePlotEdges a_3DPoints,a_Edges{,ne_LineWidth{,ne_LineWidth{,ne_Color}}
geRotateA a_3DPoints,ne_RotAngle,ne_AxisCode{,ne_From{,ne_To}}
Undeclare
Declare v_Name {{=}e_InitialValue}{, ...}
VarSet se_VarName,e_Value
ObjectGet a_ObjectArray,ne_ObjectNumber
ObjectPut a_ObjectArray,ne_ObjectNumber
RecordGet a_DataBaseArray,ne_RecordNumber
RecordPut a_DataBaseArray,ne_RecordNumber
MediaPlay ne_DeviceNumber,se_FileName{,ne_Loop}
MediaPause ne_DeviceNumber{,on|off}
MediaStop ne_DeviceNumber
MediaRecord ne_DeviceNumber,se_FileName
MediaSave ne_DeviceNumber
MediaShow ne_DeviceNumber{,true|false}
MediaReposition {ne_X{,ne_Y{,ne_Width{,ne_Height}}}}
MediaGetPosition {vn_X{,vn_Y{,vn_Width{,vn_Height}}}}
MediaVideoSize DeviceNumber{,vn_Width{,vn_Height}}
mDFT a_Samples{,ne_WindowFunction}
mFFT a_Samples{,ne_WindowFunction}
ScrSetMetrics {ne_X{,ne_Y{,ne_Width{,ne_Height{,ne_PanelVisible{,ne_AllowResize}}}}}}
ScrGetMetrics {vn_X{,vn_Y{,vn_Width{,vn_Height{,vn_PanelVisible{,vn_AllowResize}}}}}}

Modified the following commands:
Dim a_Name1[ExprN{,ExprN...}]{ , a_Name2[ExprN{,ExprN...}] {,}}}...
You now can specify multiple arrays' dimensional specification using the same Dim statement.
Data a_Name;Expr{,Expr....}...
You now can use , , to create an element without a specific value. So you create a place holder but
keeping the element's value and type unspecified. See mPlotXY to see how this ability can be useful
in some cases and how it is achieved.
xyText ne_X{,ne_Y{,e_Text{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_BackgroundColor}}}}}}}

see the command's description.
OverlayText {ne_X{,ne_Y,e_Text{,se_FontName{,ne_FontSize{,ne_FontStyle{,ne_PenColor{,ne_Quick}}}}}}}}

see the command's description.
geVisibles a_3DPoints,a_CameraSpecs,a_SurfacesSpecs{,a_Edges{,ne_ColorFactor}}
see the command's description.

FloodFill {ne_X{,ne_Y{,ne_NewColor{,ne_OldColor}}}}
Now you can use -1,-1 for the X.Y coordinates to use the current pen position, or not specify the
parameters.

FloodFill2 {ne_X{,ne_Y{,ne_NewColor{,ne_BorderColor}}}} Now you can use -1,-1 for the
X.Y coordinates to use the current pen position, or not specify the parameters.

RobotBASIC V4.2.0

Page 275 of 276

Input {e_Prompt,} v_Name | a_Name[...] {,...}
Now you can have multiple variables to be inputted. See command description. Also see the new
command InlineInputMode.
rLocate ne_X,ne_Y{,ne_Heading{,ne_Size{,ne_BorderColor{,ne_InsideColor{,ne_ObeyFlip}}}} See
the command's description for details on the new parameter.
mSort a_Name{,ne_OnColumnNumber}
This command is now superceded by the new command mSortR, but it still works.

Modified the following functions:
RotShape(se_ShapeString,ne_Direction)
Modified how the ne_Direction parameter is used. See the function's description.
Substring(se_Text{,ne_StartChar{,ne_NumCharacters}}) There are now optional parameters.
MaxDim(a_Name{,ne_Dimension}) "
StrInput({e_Caption{,e_Prompt{,e_Default}}}) "
ErrMsg(se_MessageText{,se_BoxTitle{,ne_Style}}) "
Time({ne_Type}) "
Date({ne_Type}) "
DateTime(ne_DateTimeValue{,se_Format}) "
Degrees({ne_Degrees{,ne_Minutes{,ne_Seconds}}}) "
MsgBox(a_TextLines{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
New parameters allow for more control of the box.
StringBox(se_Text{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
New parameters allow for more control of the box.
TextBox(se_FileName{,e_Title{,ne_X{,ne_Y{,ne_W{,ne_H{,ne_DoWrap}}}}}})
New parameters allow for more control of the box.

Things To Come
These items will be added in stages to future versions of RobotBASIC (not necessarily in this order):

Support for Stack/Queue/List utilization
Database creation and manipulation system with SQL.

RobotBASIC V4.2.0

Page 276 of 276

Customized Help
This section is available from within RobotBASIC's help system as a
jumping point. You can add your own text to replace this text and be able
to jump to it any time you wish from within the RB help system. Just
maintain the heading above intact and RB will be able to locate it within
the help file to direct you immediately to this area any time you need it.

The help system utilizes a customizable separate file called RobotBASIC_HelpFile.RTF. This is an RTF
formatted file that has to reside inside the same folder where the RobotBASIC.exe is contained. The file
can be modified to include special help catered to your requirements in this section.

This feature can be of utility to teachers. A teacher may customize the help file to the needs and level of the
students. Moreover, the help file may be used to give extra information to students regarding coursework
materials.

Note: This file is best modified using the WordPad program provided in all MSWindows systems. It must
be saved as an RTF format file. MSWord can read and write RTF format files but it may not save
using the version of the RTF format required by RobotBASIC. If you find that the file is garbled
when you read it in the RobotBASIC help screen, then load and save the file again using the
WordPad program. The headings in the file have the character before or surrounding all headings
(no space after it). This is important and the headings must remain as is for RB to be able to locate
them within the help file.

	The Integrated Development Environment
	The Editor Screen
	The Terminal Screen
	The Preferences System
	The Help Screen
	The Debugger Screen
	Creating, Saving And Running Programs
	Creating The Program
	Saving The Program (Text)
	Running The Program

	Running Finalized Programs
	From within the IDE
	Directly From Windows OS

	Sharing Finalized Programs
	Sharing a text .Bas file
	Sharing a binary .Bas file
	Sharing a compiled Executable (.EXE) file

	Setting up the Operating System
	Other Methods
	Using Shortcuts
	Using Drag and Drop

	Controlling How Your Programs Terminate
	Running from within the OS
	Running from within the IDE

	Overview Of The Language
	Statements
	Line Comments
	Block Comments
	Assignment Statements
	The line break operator
	As a line break substitute
	As a line Continuation operator

	Command Statements
	Labels
	Alpha-Numerical Style 1
	Alpha-Numerical Style 2
	Numerical Style

	Expressions
	Numbers
	Integer Numbers
	Hexadecimal Integer Numbers
	Binary Integer Numbers
	Floating Point Numbers

	Strings
	Simple Variables
	Arrays
	Functions
	Operators
	Parenthesis ()
	Math Operators (Listed in order of precedence)
	Unary Negate -
	Raise to the power ^ (exponentiation)
	Divide / Multiply * Percentage % Modulus #
	Add + Subtract -

	Comparison (Relational) Operators
	Logical Operators
	Logical AND
	Logical OR
	Logical XOR
	Logical NOT
	Operator Left Expression Right Expression Result

	Bitwise Operators
	Bit-wise AND
	Bit-wise OR
	Bit-wise XOR
	Bit-wise NOT
	Shift Right
	Shift Left
	Rotate Right
	Rotate Left

	Assignment Operators
	Increment ++
	Decrement --
	AddAssign +=
	SubtractAssign -=
	MultiplyAssign *=
	DivideAssign /=

	Flow Control Statements
	Flow Control Directives
	RobotBASIC Constants
	Color Constants
	Variable & Array Element Type Constants
	Serial Port Settings Constants
	Parity:
	Stop Bits:
	FlowControl:
	BaudRate:

	ErrMsg() Dialog Icon Codes And Return Values
	Buttons Codes:
	Icon Codes:
	Stop
	!
	?
	i

	Default Button Codes:
	Returned Value Codes:

	Mouse Cursor Constants
	Font Style Constants
	AbortMethod Constants
	Some Key Code Constants
	Spawn Modes
	File Low Level I/O Constants
	Conversion Codes Constants
	Regular Expression Mode Codes
	Numeric Type Byte Count
	Media Player State Codes
	DFT/FFT Window Functions Codes
	Other Constants

	Standard User Interfacing
	Standard Output
	Standard Input
	Keyboard Input
	Mouse Input
	Joystick Input
	Sound Output & Input

	Graphical User Interfacing
	Dialog Boxes
	Push Button Components
	Push Button Commands
	Push Button Functions

	Edit Box Components
	Edit Box Commands
	Edit Box Functions

	List Box Components
	List Box Commands
	List Box Functions

	Radio Button Components
	Radio Button Commands
	Radio Button Functions

	Check Box Components
	Check Box Commands
	Check Box Functions

	Slider/Progress Bar Components
	Slider/Progress Bar Commands
	Slider/Progress Bar Functions

	Spinner Components
	Spinner Commands
	Spinner Functions

	Memo Box Components
	Memo Box Commands
	Memo Box Functions

	Timer Components
	Timer Commands
	Timer Functions

	Screen & Bitmap Graphics
	Information About Colors
	Color Manipulation
	Printing The Screen Graphics
	Screen Output Buffer Control
	Screen Manipulation
	Bitmap Manipulation
	Clipboard Manipulation
	TWAIN Image Capture
	2D Screen Graphics Drawing
	3D Screen Graphics Drawing

	Creating & Using Arrays
	Arrays Creation & Manipulation
	Array Math Commands
	Arrays Statistical Functions

	Mathematical Functions
	Trigonometric Functions
	Cartesian To Polar Functions
	Polar To Cartesian Functions
	Logarithmic & Exponential Functions
	Hyperbolic Functions
	Probability Functions
	Financial Functions

	Great Circle Navigation
	Great Circle and Rhumb Line Navigation
	Wind or Current Triangle Navigation
	Navigation Conversion Functions

	String Functions
	String Manipulation Functions
	Regular Expression String Functions

	Conversion Functions
	Scaling And Weight & Measure Conversion
	Sign Conversion
	Float & Integer Conversion
	Number & String Conversion

	File & Directory Functions
	Directory Functions
	File Functions
	Byte Buffer Manipulation
	Low Level File I/O

	Time, Date, System & Other Functions
	Time & Date Functions
	Variables Manipulation & Indirection (Pointers)
	System Information
	Miscellaneous Functions

	Robot Simulator
	General Information
	Simulator Commands
	Simulator Functions
	Simulator Serial I/O Protocol

	Ports & Serial I/O
	General Information
	Serial I/O Commands
	Parallel Ports I/O Commands
	General Ports I/O Commands

	USBmicro U4x1 Functions
	DLL Specific Functions
	Device Information Functions
	Device I/O Functions
	LCD Related Functions
	1-Wire Related Functions
	2-Wire (e.g. I2C) Related Functions
	SPI Related Functions
	Stepper Motor Related Functions
	Strobe I/O Functions

	A General HOOK Function to future functionalities in the U4x1

	Internet Commands & Functions
	General Information
	Email (SMTP) Commands
	TCP Sockets Functions
	General Functions
	Server Functions
	Client Functions

	UDP Sockets Functions

	Commands & Functions Alphabetically
	The Commands List
	The Functions List
	The Simulator Commands
	The Simulator Functions

	Modifications History
	Versions 4.1.0 & 4.2.0
	Things To Come

	Customized Help

