
Page 1 of 37

Utilizing The TCP & UDP

Protocols Within RobotBASIC

obotBASIC has a very easy to use interface that facilitates a communication link between

networked computers over a Local Area Network or through the Internet. With just a handful of

functions you can implement a bidirectional communication conduit between two or more networked

computers using either the Transmission Control Protocol or the User Datagram Protocol.

With RobotBASIC‟s collection of TCP and UDP functions even the novice programmer can easily

implement a whole range of interesting projects that would otherwise challenge an expert even with

advanced development tools.

Imagine being able to collect instrumentation data on a PC in Australia and sending the data to a

machine in the USA for display purposes and for parameter settings and so forth.

Imagine being able to text chat with a friend in Australia while you are in the USA. Yes, yes; you can do

that on numerous web sites. But think of the pleasure of writing the program that can do this, yourself.

The two programs in the zip file TCP_Demo.zip were used to do precisely the above two actions

between a PC in Australia and a PC in the USA. The data transfer was nearly instantaneous and the chat

was great fun.

Imagine remotely controlling a robot in Australia through a PC in the USA. Also sending snap shots of

the robot‟s environment to the controller side. In fact that is exactly what the programs in the zip file

TCP_Robot.zip were used to do. Again, the control was nearly instantaneous, and the screen shots took

a second over the LAN and a little longer half way around the world.

The programs above were all developed in RobotBASIC. The longest program is 179 lines of code and

that includes 45 lines of instructions. Also see the demo programs in the RobotBASIC Help file in the

TCP and the UDP sections.

1- Scope Of The Article:

This article deals with the details of how to use RobotBASIC‟s functionalities to send data between

networked computers. The article does not attempt to explain the principles of networking using the

TCP and UDP protocols; this would require an entire book. Nevertheless, as you shall see, there is no

need to have such detailed knowledge to implement powerful networking projects with RobotBASIC.

R

http://www.robotbasic.org/resources/TCP_Demo.zip
http://www.robotbasic.org/resources/TCP_Robot.zip
http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 2 of 37

2- Some Terminology:

Throughout the article there will be reference to certain terminologies that pertain to the field of

networking. It is necessary to have a working knowledge of what these terms signify to be able to

effectively utilize the functionalities provided in RobotBASIC. The given explanations are for practical

use and are not meant to be an in depth explanation.

There are numerous ways of implementing a network using a plethora of hardware. It is not feasible to

cover all possible combinations, so only the setup shown in Figure 1 will be considered. If your network

differs from the arrangement shown you will need to consult with a network administrator if you wish to

communicate across the Internet so as to handle firewalls and other issues. However, if you will be

confining your projects to communicating computers inside the same LAN then the information in this

article is all you need. Appendix B discusses how to configure the arrangement in Figure 1 to enable

communication between two PCs across the Internet.

Figure 1: A Typical Network Arrangement.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 3 of 37

In Figure 1 notice that one of the computers is connected to electronics. This is to indicate that any or all

of the computers on the network can be performing data acquisition or control through external

instrumentation. Furthermore, any or all of the computers can carry out additional channeling of

communicated data over a wireless radio or through Bluetooth to a robot or any other microcontroller

performing instrumentation. Additionally, you can have any number of autonomous robots that have

their own WiFi TCP or UDP abilities and thus can be communicated with directly from any computer

on the network (not through a secondary channel) just as if they were a computer on the network, which

in fact, they would be.

A Local Area Network (LAN) is a group of computers dispersed over a relatively small area such as a

home or office building. The machines are interconnected using physical wires or wirelessly using some

interconnection system. Usually, there is a central server that serves as the communications coordinator.

This server can be a computer or a specialized device called Router.

An Internet Service Provider (ISP) is a company that provides a computer system through which

clients can obtain connectivity between their LANs and the Internet.

The Internet is a very large and complex network of interconnected ISPs around the world. An ISP

provides a method for a computer in one LAN to be able to communicate with another computer in

another LAN by managing the routing through other ISPs until eventually reaching the ISP of the

remote LAN and then on to the final target computer.

A Router is a device that manages the connectivity of the various machines in the LAN. Computers in

the LAN can be connected to the router through a physical wire or by WiFi. A router is sometimes

referred to as a NAT (Network Address Translator) and often serves as the connection point between

the LAN and the ISP which then provides a link to the Internet. Additionally, the Router often acts as a

Fire Wall as well as a DHCP (Dynamic Host Control Protocol).

WiFi is a system of hardware and software for linking a computer to the LAN wirelessly. For all intents

and purposes the computer will appear as if it is connected to the rest of the LAN over a wire. Other than

the convenience of mobility and lack of cumbersome wires the computer is no different, from the

network‟s point of view, than a wired computer.

A Fire Wall is software and/or hardware used for blocking access from outside a LAN to the computers

inside the LAN. This is a safety measure to prohibit illegitimate access to the computers in a LAN. A

Fire Wall can also limit access from inside the LAN to the outside. You can configure a Fire Wall to

allow certain communications while blocking others.

A Dynamic Host Control Protocol (DHCP), in short, assigns an IP address to each computer on the

LAN.

A Network Address Translator (NAT) makes sure that computers inside the LAN appear to the

outside world as valid computers with valid global IP addresses even though their actual IP addresses

are only local addresses with significance only inside the LAN.

An IP Address is basically the name of the computer. It is a set of 4 numbers separated by a dot (e.g.

192.168.0.120), however the whole address is not a number; rather it is a text. Each individual number

in the 4 fields ranges from 0 to 255. The network will not function without some method of addressing a

particular computer and the IP address is this method.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 4 of 37

A Socket is the endpoint of a bidirectional communication flow across the network. When data flows

between two computers or when a connection is established between them it is achieved through a

complex program called a Socket. This program is part of the internal structure of RobotBASIC with

which you interact through a handful of function calls. To carry out TCP communications you do it

through a TCP Client Socket (TCPC) to and from a TCP Server Socket (TCPS) [see later for more

details]. Communications over the UDP are between two UDP Sockets (see later for more details). A

Socket is identified by the IP address of the machine it is running on and a Port number. The port

number must not be previously assigned to any other socket (UDP or TCP) on the same IP address.

A Port Number is a further subdivision of a particular IP address. A machine has one IP address but it

may have various Sockets (programs) that provide access to the LAN. These Sockets will be addressed

on each machine through an additional number that can be considered as a sub-address on the machine.

This number is called the Port number and is an actual 16-bit number that ranges from 1 to 65535

(0xFFFFF). Think of an IP address as the street address of a building and the port number as the number

of particular apartment in the building. The building is the computer and apartments are the various

Sockets (programs) running on the computer. This is why a port number associated with a socket must

not be in use by any other active socket.

The Transmission Control Protocol (TCP) is a sophisticated standard for moving data over a network.

There is no need to understand this standard in depth in order to use the functions in RB. TCP is a client-

server protocol. A server socket can accept connections from multiple client sockets but a client socket

can only be connected to one server socket at a time. Once a client connects to a server it becomes as if

there is a direct wire between them and data can be exchanged between the two sockets. See later for

more details.

The User Datagram Protocol (UDP) is a simpler standard than TCP for exchanging data over a

network. It is not necessary to know the details of the protocol to be able to use the functions in RB.

UDP is not a connection oriented protocol. A UDP socket can send to any other UDP socket without

establishing a link first. There is no exclusive or maintained connection between the two machines. See

later for more details.

The Simple Mail Transfer Protocol (SMTP) is a protocol that ensures that an email is able to reach

the intended recipient‟s computer from the sender‟s computer through the ISP of the sender around the

Internet and finally to the ISP of the recipient and on to the recipient‟s computer.

A Remote IP Address is the address of the machine that is hosting the destination socket. That is the

remote socket to which the data is going to.

A Local IP Address is the address of the machine that is hosting the originating socket. That is the

socket being used to send data.

A Packet is a set of bytes (buffer or string) that is sent in one send action using TCP or UDP. When you

send data over the protocol you are sending multiple bytes in one go. This is called a packet. A big

amount of data can be sent in multiple chunks (Packets). UDP has a limit on the size of a packet (2048

bytes) while TCP does not.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 5 of 37

3- Manipulating A Byte Buffer (String):

Note: You may wish to skip this section and go on to Section 4. However the information here is

important for achieving effective communications using the TCP and UDP protocols, therefore, you will

need to come back and read this section in detail. In fact the information in this section is also of

importance to performing Serial I/O (see RobotBASIC_Serial_IO.pdf) and Low Level File I/O as well

as for utilizing the suite of USBmicro functions to control the U4x1 USB I/O devices.

In functions that send and receive data using the TCP and UDP you are in fact sending and receiving a

byte buffer that contains the data to be transferred between sockets. This buffer can be manipulated in

one of two ways:

1- As a string which can be manipulated with numerous string functions. There are functions to

extract parts of the string, extract a particular character, extract a particular character as a byte,

insert characters or bytes.

Note: All string functions index characters starting with 1. That is the first character is index

position 1.
2- As a byte array which can be managed with a set of specialized functions and commands to

insert in it or extract from it bytes, integers, floats, or text.

Note: All buffer functions index bytes starting with 0. That is the first byte is index position 0.

We shall refer to the buffer sometimes as a string buffer and at other times as a byte buffer. It does not

matter how it is referred to, it is an array of bytes. The individual bytes can be ASCII characters (actual

text) or they can be binary values. As the programmer all you are interested in is how to extract data

from the buffer when you receive it and how to insert data into the buffer in preparation for sending it.

To do these operations RobotBASIC provides a suite of functions and commands for treating the buffer

as an array of bytes. Additionally all the string functions in RB can be used to handle the buffer as a

string.

3.1- Putting text and textual numbers in a buffer (string):

The buffer is in fact a string variable that can be handled in all the normal ways you treat any normal

string variables. So for example if you want to have a buffer that consists of the text “Hello there” then

you would do:
SB = "Hello there"

The buffer becomes the variable SB, and it now contains 11 bytes which have the values:
72 101 108 108 111 32 116 104 101 114 101

 H e l l o t h e r e

If you later say:
SB = SB+" "+ (-45.7) //conversion of the numeric is performed implicitly

 Or you can say

SB = SB+" "+ToString(-45.7) //conversion is performed explicitly

http://www.robotbasic.org/resources/RobotBASIC_Serial_IO.pdf
http://www.usbmicro.com/

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 6 of 37

The buffer will now be holding 17 bytes with the additional 6 bytes being:
32 45 52 53 46 55

 - 4 5 . 7

Notice how the number has been converted to its textual representation and that the characters in the

string are the ASCII codes for the individual digits of the number including the minus sign and the

decimal point.

You can build a string buffer this way with as many expressions as you need over as many lines of code

as required. Once the variable SB is populated with the data it can then be used as the parameter for the

UDP_Send(), TCPS_Send() or TCPC_Send() functions which send the bytes in the string over the

corresponding protocol.

A command you may find useful for populating the string (buffer) with text or textual numbers is the

BuffPrintT command. This command is very much like the Print command except it will put the

resulting text of the expressions in a specified string (buffer). Numbers will be put as their textual

representations and you can even use ; and , to control tab spacing just like you would with the Print

command. For example:
X = 3.5e200

BuffPrintT SB,X," * ",2," +5 = ",2*X+5,

BuffPrintT SB,sRepeat(" ",3);"OK",

Notice that with the first usage of BuffPrintT, SB does not exist and therefore will be created as an

empty string. With the second usage, SB already exists and has data in it, so the new data will be

appended to it. Remember this when using the command. If SB already exists and you do not wish to

append to it you will need to say SB = "" to make it into a blank string before you use it with the

command.

After the above sequence of code SB will contain:
51 46 53 69 50 48 48 32 42 32 50 32 43 53 32 61 32 55 69 50 48 48 32 32 32 32 32 32 32 32 32 32 79 75

3 . 5 E 2 0 0 * 2 + 5 = 7 E 2 0 0 O K

Notice the , at the end of each line in the program. This is necessary if you do not want a CR/LF

[char(13)+char(10)] to be part of the buffer SB. The following lines:
X = 3.5e200

BuffPrintT SB,X," * ",2," +5 = ",2*X+5

BuffPrintT SB,sRepeat(" ",3),"OK"

Will cause SB to have the following:
51 46 53 69 50 48 48 32 42 32 50 32 43 53 32 61 32 55 69 50 48 48 13 10 32 32 32 79 75 13 10

3 . 5 E 2 0 0 * 2 + 5 = 7 E 2 0 0 O K

Notice the characters with the byte values 13 and 10 right after 200 and after the OK. These are the

Carriage Return and Line Feed character pairs that normally result in a new line. Since BuffPrintT

behaves just like a Print then these characters will be there if you do not end the command with a

comma to stop it from inserting a CR/LF character pair.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 7 of 37

3.2- Putting text and binary numbers in a buffer (string):

As far as text is concerned all the details in Section 3.1 apply. As far as binary numbers there are three

situations:

1- Byte numbers, which are numbers that range from 0 to 255.

2- Integers, which are 4 bytes long (in RB) and range from MinInteger() to MaxInteger()

3- Floats are 8 bytes long (in RB) and can range from +/-MinFloat() to +/-MaxFloat().

Bytes:

RobotBASIC does not have a byte type. Nonetheless, an integer can be truncated to become a byte.

There are two functions that can convert an integer to a byte value that will be usable for adding to a

string (buffer). These are Char() and toByte(). They do the exact same job but are named so as to be

appropriate for whatever situation requires the function.

Both functions in reality return a buffer (string) of one byte (character). The byte will have the value of

the Least Significant Byte (LSByte) of its integer parameter. This is the first byte from the right if you

represent the number as binary (or hex).

For example if you say SB = char(156) or SB = toByte(156) SB will become a one character string

(one byte buffer) with the byte having the value 159.

However if you say SB = char(456) or SB = toByte(456) SB will become one character string (one

byte buffer) with the byte value being 200. Why 200? Because if you look at the hex equivalent of 456

(=0x01C8) you will see that it is 2 bytes long and the LSByte is 0xC8 (=12*16+8 = 200).

For example if you want to create a buffer with the text “Hello” and the byte numbers 34 and 211, you

would write:

SB = "Hello"+char(34)+char(211) OR SB = "Hello"+toByte(34)+toByte(211)

SB will then contain the following bytes (notice the last two bytes are the numbers specified):
72 101 108 108 111 34 211

H e l l o

Another function that can be more convenient in certain instance is PutStrByte(). With this function you

can insert a byte value at a specific position in a string (buffer). For example:
SB = "Hello"

SB = PutStrByte(SB,Length(SB)+1,34)

SB = PutStrByte(SB,Length(SB)+1,211)

The above code will result in SB being exactly as listed above. This looks more complicated in this

situation; the previous method is more convenient. However, if you read the details of this function in

the RobotBASIC Help file, you will see that it facilitates certain actions that are required in certain

situations and is a good function to remember when the need arises. Its converse GetStrByte() is more

frequently needed.

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 8 of 37

BuffWriteB() is another function that is very similar to PutStrByte() but treats the buffer as a byte array

and thus indexes using 0 as the first byte and so forth. The following example will result in SB being

exactly as above:
SB = "Hello"

SB = BuffWriteB(SB,-1,34) //-1 means the end of the existing buffer

SB = BuffWriteB(SB,-1,211)

Read about these two functions in the RobotBASIC Help file. They are useful and once you know how

they work you will see that they are needed and necessary in certain situations that you may not

appreciate from the simple example given above (section 3.2 for example).

Integers and Floats:

How floats and integers are represented depends on the computer you are using. RobotBASIC runs

under the Windows operating system which usually runs on a PC that has an Intel processor. Integers

supported by RB are 4 bytes long and are stored in what is called the Little-endian format. This format

stores the 4 bytes of an integer in the order from left to right with the LSByte as the first byte.

Therefore, a number like 0xA412B8D7 will be stored as D7,B8,12,A4. Notice it is reverse to the way

we normally look at binary numbers. This is just the way it is and you just have to accept it (actually it

makes sense if you consider the low level data transfer mechanisms within the processor).

Some processors (e.g. 68HC11) store integers in the Big-endian format (reverse) and if you are going to

be sending numbers to devices based on these processors then it makes a difference what format is used.

However, if you are going to be sending buffers between machines using the Little-endian format then

you do not have to be concerned with how the numbers are stored, RB takes care of that.

With floats they are stored in a format called the IEEE 754 standard. This can get quite complex and

shall not be discussed here. Just know that a float in RB is stored as 8 bytes long, what these bytes are

and what values and order and so forth is immaterial. RB will take care of it.

The command BuffPrintB is one way to create a buffer with binary integers and floats in it. For

example:
X = 0x00A243C1

BuffPrintB SB,X,"*",2,"+5=",2*X+5,"OK"

This will result in the variable SB holding the following bytes:
193 67 162 0 42 2 0 0 0 43 53 61 135 135 68 1 79 75

C1 43 A2 00 * 02 00 00 00 + 5 = 87 87 44 01 O K

The numbers in bolded red are the hex values of the bytes and are arranged in the Little-endian format

for 0x00A243C1 (=10634177) and 0x01448787 (=21268359 = 10634177 *2+5) so you see how

BuffPrintB can be quite useful.

Notice how there is no CR/LF after OK even though there was no comma at the end. This is because

BuffPrintB does not behave quite like the Print command. It is a binary formatter and will not therefore

insert CR/LF as is required with text. Also there is no tabbing. A semicolon will have no effect. If you

wish to insert a CR/LF use the CrLf() function.

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 9 of 37

Notice how the numeric value 2 was inserted as an integer (4 bytes) even though it can fit in a byte. This

is because the BuffPrintB command will not make assumptions. If you wish to treat an integer as a byte

you need to convert it to one. Notice the blue area in the following code:
X = 0x00A243C1

BuffPrintB SB,X,"*",toByte(2),"+5=",2*X+5,"OK"

This will result in SB holding the following bytes (notice how 2 is now only one byte long):
193 67 162 0 42 2 43 53 61 135 135 68 1 79 75

 C1 43 A2 00 * 02 + 5 = 87 87 44 01 O K

The functions BuffWrite() and BuffWriteB() are also of use. The following example will result in SB

holding the same bytes as the example just above (also see section 3.3 below).
X = 0x00A243C1

SB = BuffWrite("",0,X)

SB = BuffWrite(SB,-1,"*")+BuffWriteB("",0,2)+"+5="

SB = BuffWrite(SB,-1,2*X+5)+"OK"

3.3- Extracting text and numbers from a buffer (string):

When you receive a buffer with data in it you must know in what arrangement the data is organized.

There has to be an agreement between the sender and receiver so that data can be inserted and extracted

in the correct manner. This is especially important when there there is a mixture of number types and

text. This is best illustrated with a concrete example.

An example:

We are going to create a buffer that is a record of data. The record will be divided into fields.

Let‟s say you are sending a database with data about people. Each record will be transmitted as one

buffer. In each of our hypothetical records there are the following fields:

Code, Name, Address, Zip_Code, Balance

In our example the Code will be considered to be a byte, the Zip_Code will be an integer and the

Balance a float.

We must also decide the following:

- Will the numbers be stored in the record as strings or as binaries?

- Will the text fields be of fixed lengths or variable lengths?

- If the text fields are to be of variable lengths how do we know where they end?

These questions have to be answered carefully in order to be able to store the data in the buffer to be

transmitted, but even more crucially, so as to be able to extract the values for each field correctly.

Let‟s say we used the following code to create the buffer SB to hold the record:
Code = 1

Name = "Sam"

Address = "Here and there"

Zip_Code= 55667

Balance = 100.23

SB = ToString(Code)+Name+Address+Zip_Code+Balance

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 10 of 37

Will result in SB holding

1SamHere and there55667100.23

There is no problem at all in creating the buffer. The problem, though, arises when we try to extract the

data from the buffer. Where does the Name field start and end? Where does the zip code field start and

end? As you can see we have not created the buffer in a good way. This code is a lot better:
BuffPrintT SB,Code,"|",Name,"|",Address,"|",Zip_Code,"|",Balance,

Will result in SB holding

1|Sam|Here and there|55667|100.23

With a record like this it is very easy to extract the various fields:
Code = toNumber(Extract(SB,"|",1),0) //defaults to 0 if bad text

Name = Extract(SB,"|",2)

Address = Extract(SB,"|",3)

Zip_Code = ToNumber(Extract(SB,"|",4),0) //defaults to 0 if bad text

Balance = ToNumber(Extract(SB,"|",5),0.0)//defaults to 0.0 if bad text

Notice how we had to convert the zip code and balance to a numbers from the text. Also notice that

the delimiter character has to be chosen with care. The character must not be likely to occur as part

of the bytes of the fields.

Another design:

With the above scheme we stored the numbers in the buffer as text. This can be wasteful. For instance, if

Code is 234 it will occupy 3 bytes („2‟, „3‟, and „4‟). Conversely, if we store it as a byte value, it will

only be one byte. Also notice the zip code; it is 5 bytes long, but if we store it as an integer we would

save one byte. Additionally, the balance field is a float. Imagine if Sam was a rich guy and had

10,000,000.23 in his account (wishful thinking). That would require 11 bytes to store as a text (no

commas). You can see that it is better to use 8 bytes to store the float as a binary rather than text.

However, if we store numbers as binary there will be no possible delimiter character to use to delimit

where the text fields end since binary numbers could be any values and there would be no way of having

a byte value that cannot occur as part of a field. The problem is not with the numbers since we know

their length, it is the text fields that pose a problem.

A possible solution is to fix the length of the text. So we would say that Name cannot be longer than 20

characters (bytes) and if it is less than 20 it will be padded with spaces (see JustifyL()). However, this is

wasteful and limiting. If the name is a lot shorter than 20 characters then we would be storing too many

unnecessary characters. If it needs to be longer than 20 characters then we have deteriorated the

flexibility of the application.

The most efficient and flexible design:

A better solution is to store a number before each text field that specifies the length of the text to follow.

If we know that the text cannot be any longer than 255 character we can store the number as a byte. If

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 11 of 37

255 is too short then we can store the number as an integer (4 bytes). Either way is a good method and

will result in the most efficient usage of the buffer. These program lines

Code = 1

Name = "Sam"

Address = "Here"

Zip_Code= 55667

Balance = 100.23

BuffPrintB SB,toByte(Code),Length(Name),Name

BuffPrintB SB,Length(Address),Address,Zip_Code,Balance

Would result in SB holding the following bytes:
1 3 0 0 0 83 97 109 4 0 0 0 72 101 114 101 115 217 0 0 31 133 235 81 184 14 89 64

1 3 S a m 4 H e r e 55667 100.23

The bytes in blue are one byte numbers. The bytes in red are the Little-endian format for the integers and

the bytes in purple are the IEEE 754 representation of the float.

Accordingly, we now send the buffer SB. On the receiver side, 28 bytes would be received and stored in

a buffer variable (say SB). How do we extract the individual fields from the buffer? Remember, we

know that just before every text field there is an integer that indicates how long the text that follows is.

Here is how we can extract the fields‟ values:
X = 0

Code=BuffReadB(SB,X) \ X= X+1

n=BuffReadI(SB,X) \ X=X+BytesCount_I \ Name=BuffRead(SB,X,n) \ X=X+n

n=BuffReadI(SB,X) \ X=X+BytesCount_I \ Address=BuffRead(SB,X,n) \ X=X+n

Zip_Code=BuffReadI(SB,X) \ X=X+BytesCount_I

Balance=BuffReadF(SB,X) \ X=X+BytesCount_F

We are able to specify the exact positions for reading the various fields from the array of bytes (buffer)

using the appropriate BuffRead/B/I/F() function. Notice a postfix of I means integer, a postfix of F

means float, B means byte and no postfix means text. Notice that with the text form of the function we

must also specify the number of bytes to be read. This is where the previously extracted integer that

specifies the length comes in use. Also notice how we keep track of the next position within the buffer to

read from using the counter X. The constants BytesCount_I (4) and BytesCount_F(8) are defined in

RobotBASIC to specify the lengths of an integer and a float in bytes, so you won‟t have to fix these

values in case of future modifications to the internal representation of integers and floats within RB.

4- Utilizing The UDP System:

In RobotBASIC you can create multiple UDP sockets in a program. Each socket must be assigned a

unique and not currently in use Port number. When created, the socket will automatically use the IP

address of the machine it is created on, but, you must assign it a particular port number.

Note: You must ensure that the port assigned to a UDP socket is unique and is not being used by

another active socket (UDP or TCP) in the same program or other programs on the same machine.

BE SURE OF THIS.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 12 of 37

To create and activate a UDP socket use UDP_Start(se_Name{,ne_ListenPort}). Notice that the port

number is optional. If you do not specify a port number it will be assumed to be 50001 (see Appendix A

for a list of preferred port numbers).

Another parameter of the function is the socket name. When you start a UDP socket you assign it a

name. This name is then used to refer to the socket in further functions that utilize it. The name

therefore has to be unique (within a program not across other programs) and is case sensitive.

Once a socket is started you can begin to use it to communicate with other UDP sockets. These other

sockets can be on the same machine (IP) or on a remote machine.

Note: You must not try to communicate with a non-existing socket on the same machine (IP) as the

socket you are using. It is not a problem if you try to communicate with a non-existing socket on a

remote machine, data will just not get there since the socket does not exist. However, there is a

problem with the Windows 2000 and Windows XP operating systems (not others) where if you try to

send data to a socket that does not exist on the same machine as the sender socket the OS hangs.

Therefore, Do Not Send Data To A Non-Existing Socket.

The functions discussed in the following sections enable the writing of a program to send and/or receive

data packets over the UDP. A socket in a RobotBASIC program can communicate over the LAN or

Internet with another socket that does not have to be another RB program. As long as the data format in

the send/receive buffer is in accordance with a format that both sockets are in agreement upon, the other

socket can be:

a- The same PC running another RB program.

b- The same PC running a non-RB program.

c- Another PC with another RB program.

d- Another computer (not just a PC) running a non-RB program.

e- A device (e.g. robot or microcontroller) that can use the UDP.

4.1- Sending data using the UDP:

To send data using a UDP socket use UDP_Send(se_Name,se_Data,se_TargetIP,ne_TargetPort). Notice

that you must specify the destination IP and Port number. The port number is a numeric and the IP is a

string but must be of a legal format ("n1.n2.n3.n4").

Notice also that you must specify the name of the socket you want to use to send the data. If you have

started multiple sockets in a program you will need to specify which one to use to send the data. It does

not matter which socket you use to send data. What matters is that you specify the IP and Port of the

target socket. Nevertheless, you need to specify the name of the socket to be used in order to tell RB

which one to use, even if you only have one.

The parameter se_Data is the data buffer to be sent. See Section 3 for how to create and manipulate the

buffer.

You must specify the IP and Port number of the destination socket every time you send data through

a UDP socket. This is because the socket does not actually establish a connection with the destination.

It does not even guarantee that the data has arrived. The only error reporting is if the destination IP

does not exist. If the destination IP does exist the data is sent even if the destination socket does not

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 13 of 37

and there is no way of knowing this. It is as if you are sending mail to an apartment in a building that is

not occupied. The mail will be put through the door but there is no one there to read it. All that the

mailman cares about is that there is a building.

UDP is a connectionless protocol in that there is no server-client or even pier-to-pier connection. A UDP

socket can be used to send to any other UDP socket and it can receive from any other UDP socket. So

you can use the one socket to send to multiple sockets.

Note: The send buffer must not exceed 2048 bytes since you cannot send more than 2048 bytes of

data at a time using a UDP socket. If you need to send more than this amount do multiple sends

where you divide the total bytes to be sent over multiple packets (chunks) of no more that 2048 bytes

each. There is no limit on the receive buffer of a socket so it can receive more than 2048 bytes.

4.2- Receiving data using the UDP:

When a UDP socket receives data it will be appended to the end of a receive buffer. This is performed

every time a data packet is received by the socket. The buffer will continue to grow until you read it (the

only limit to the size of the buffer is the memory). Once you read the buffer, the bytes in it will be

returned and at the same time the buffer will be cleared.

To determine the number of bytes currently in the buffer use UDP_BuffCount(se_Name). The function

returns the number of bytes currently in the buffer. Use this number to determine if there are bytes in the

buffer and when to read the buffer depending on the required byte count.

To obtain a socket‟s receive buffer use UDP_Read(se_Name). The function will return the bytes already

in the buffer and then will clear the buffer. The returned value is a string (buffer). See section 3.2 for

how to extract individual data fields from the string (buffer).

4.3- Checking The Socket’s Status:

The function UDP_Status(se_Name) returns a string that has information about the status of the UDP

socket. The status string indicates if the socket has sent the data after a send command. It also indicates

if data has been received after the socket has accepted received data. The receive status can also indicate

the IP address of the originating socket. Other activities also cause the status string to change. You

should check this string after utilizing the socket to ensure that the socket is actually carrying out the

requested operation.

One situation where you should check the status is after a send operation. The status string will indicate

if the send is successful and thus help in avoiding problems. Also the UDP_Send() function returns the

number of bytes actually sent, so this can be another way of ascertaining any problems.

The UDP does not indicate if the sent buffer has not in reality been received by the destination socket. If

you want to ensure this you must establish some kind of Acknowledgement Protocol between the

sockets. This means that the receiver socket must send some form of ACK code back to the sender for

the sender to be able to determine that the data has arrived.

The UDP does not have an extensive error correction protocol (unlike TCP). This means that a received

buffer may have some errors that are not corrected by the rudimentary error correction mechanism that

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 14 of 37

the UDP utilizes (CRC). Another shortcoming with the UDP is sequencing. If you send two packets

(buffers) consecutively it is possible for the latter to arrive at the destination socket before the former.

This becomes more likely if the destination is not on the same LAN where one packet takes longer to

arrive due to being routed over a longer link route than the other.

Therefore you need to establish a form of Error correction and Sequence verification protocols if you

wish to ensure that the data has arrived uncorrupted and is reassembled in the correct sequence. One way

to minimize problems is to send short packets (fewer bytes) and have a good ACK handshaking

protocol.

Nonetheless, over a LAN the UDP can be quite fast and error free and it is not often necessary to

establish an error protocol, however, it is advisable to establish an ACK system.

Receiver-side automatic header appending:

The data received in the receive buffer of a UDP socket will be appended to it regardless of which

socket has sent the data. This means that if the socket receives data from multiple sockets there will be

no way of distinguishing which data came from which socket. You can change this by using the

UDP_Header(se_Name{,true|false}) function to turn on header appending to the received data.

When header appending is activated, every packet received will have a header appended to it that

specifies the number of bytes and the originator IP address. Accordingly you can parse the received data

and separate the received bytes into separate buffers for each sender. This can help in separating data

received from multiple senders into separate buffers for actions that require different procedures

according to sender. This also can help in rejecting data from invalid senders.

Sender-side manual header appending:

The receiver-side header appending can be quite powerful and useful, especially if you are

communicating with systems that do not have the ability to append their own sender-side headers. Then

again, a better method, which also provides for more versatility, is to have the sender append headers to

the data packets. This header should have useful and application specific information. For example if

multiple sockets on the same IP send data to a central socket that collects data from all the sockets, the

automatic receiver-side header appending won‟t be able to distinguish between the sockets since they

are all on the same IP and the header only holds the IP of the sender not its Port. This can be solved if

the sender sockets appended a header to their data with their IP and Port and any other necessary extra

bytes like the length of the packet. The length of the packet is a good thing to have especially if the

packets can be of variable lengths.

4.4- Developing A UDP Program:

Sending and receiving data using UDP sockets in RobotBASIC is extremely easy. To illustrate this we

shall develop 4 programs. You can also see a slightly more sophisticated demo program for UDP

communications in the RobotBASIC Help file in the UDP Socket Functions section. For a more

advanced demo see the programs in UDP_Demo.zip.

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf
http://www.robotbasic.org/resources/UDP_Demo.zip

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 15 of 37

A very simple UDP program:

The first program is extremely simplistic as far as the user I/O is concerned and leaves much to be

desired in functionality. Nevertheless, it serves to illustrate the actions of sending and receiving data

through a UDP socket at its simplest without getting entangled with a GUI design or extraneous details.

The program gets a key stroke from the user then sends it through a UDP socket to another. In the

program listing below the remote socket is specified to be the very same socket.

Type the program and run it. If you wish you can start two instances of RobotBASIC and type the

program in both instances but make sure that the variable lclPort is different in both instances. Also,

make sure that the variable rmtPort on each instance is the value of the lclPort of the other instance.

If you run the two instances on different PCs then make sure that the rmtIP variable in each instance

reflects the IP of the other PC. To find out the IP of a machine run this one line program on it:

Print TCP_LocalIP()

Note: If you run two instances on the same PC then make sure both instances are up and running

before you start typing.

//----------UDP_VerySimple.Bas-----------

//--make sure the other side is a different port number

lclPort = 46000

//--change rmtIP and rmtPort to send to another socket

rmtIP = TCP_LocalIP() \ rmtPort = 46000

n=udp_start("u1",lclPort)

while true

 if udp_BuffCount("u1")

 print udp_Read("u1"),

 endif

 GetKey K

 If K

 n=udp_send("u1",char(K),rmtIP,rmtPort)

 waitnokey 150

 endif

wend

That is all you need to achieve data sending and receiving simply between UDP sockets.

A simple UDP program:

The second program is a little better at user I/O than the first one. It is still a simple program but it

illustrates how you can achieve a little better user I/O.

Just like in the previous program this one is set to send to itself. However, if you run the program in two

instances of RB on the same machine or on different PCs then you need to change the variables rmtIP

and rmtPort in each instance to be the values for the other instance. Also make sure the local Port

numbers are different if running the two instances on the same PC.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 16 of 37

//----------UDP_Simple.Bas-----------

lclPort = 46000 //--make sure the other side is a different port number

//--change rmtIP and rmtPort to send to another socket

rmtIP = TCP_LocalIP() \ rmtPort = 46000

n=udp_start("u1",lclPort)

addmemo "m1",10,10,380,400

addmemo "m2",400,10,380,400 \ readonlymemo "m2"

s = "Make sure the other side is running "

s = s+"before you start typing."

setmemotext "m1",s

SetMemoSelection "m1",1,1,length(s)

n = memochanged("m1")

focusmemo "m1"

while true

 if udp_BuffCount("u1")

 SetMemoText "m2",udp_Read("u1")

 endif

 if memochanged("m1") then n=udp_send("u1",getmemoText("m1"),rmtIP,rmtPort)

wend

Note: If you run two instances on the same PC then make sure both instances are up and running

before you start typing.

A more practical UDP program:

As a more practical use of the preceding information, we will develop an application that uses the UDP

to send and receive textual and numerical data between two RobotBASIC programs that may run on the

same machine or on separate machines within the LAN. The programs will also function between

machines across the Internet, however, certain actions have to be taken with the Routers on both

sides to allow for this. We shall describe these actions in Appendix B.

Each program will have one UDP socket that will serve as the sender and receiver simultaneously.

Remember that each socket is assigned a port number that must be unique. Consequently, if we are to be

able to run the two programs on the same machine (for easier testing) then we must ensure that the

two programs will not use the same port numbers for their sockets.

The programs will intentionally be kept simple so as to facilitate understanding without too much

complexity. The first program will have a user interface to obtain a text, an integer, a float and a number

that is not bigger than 255 (one byte). These data will be sent to the other program that will add one to

the numbers and will capitalize the text and then send it back to the sender which will display the

resultant data.

We shall name the program that obtains the data from the user UDP_UserIO.Bas and the program that

performs the calculations UDP_Calculator.Bas.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 17 of 37

The UDP_UserIO.Bas program:

When the program starts running it will create an edit box so that the user can enter a Port number for

the socket and press a push button to activate the socket. The Port number can be defined in the edit box

only upon running the program. Once the socket has been started it will remain attached to the assigned

port for the duration; the edit box will be disabled and the activation button will disappear. The user

must note the Local IP and Port so as to enter them in the other program‟s Remote IP and Port fields.

Other edit boxes will then be created that will allow the user to specify the remote IP and Port number of

the other program (UDP_Calculator.Bas) which can be on the same machine or another machine.

Another edit box will display the status of the socket as the program performs actions. The program will

then create edit boxes to obtain the data from the user [text, two integers (one will be assumed to be less

than 256) and a float]. There will also be a push button to initiate the data sending.

Once the Send button is pushed, the program will read the data from the edit boxes in order to create a

buffer with the data in it that will be sent to the remote socket defined by the remote IP and Port address.

Afterwards, the program will wait for data to be received. Once the data is received it will be read into a

buffer from which the data will be extracted [byte, integer, float and text] and then assigned to the

appropriate edit boxes for display. The entire action is repeatable as many times as the user wishes. See

Section 3 for details on what functions to use to do the data extraction and insertion into a buffer.

Before data can be sent by pushing the Send button, the other program (UDP_Calculator.Bas) should

be started and its socket activated. This is very important if you are running the two programs on the

same PC (and under XP or 2000) due to the error situation discussed at the top of Section 4. But it is

also important if a proper response to the sent data is to be assured, whether the two programs are

running on the same machine or separate machines.

Note: The function TCP_LocalIP() is used to find out what is the local IP address of the machine the

program is running on. This function can be used regardless whether you are using UDP sockets or TCP

sockets. It is a general network related function despite its prefix.

//----------UDP_UserIO.Bas-----------

MainProgram:

 GoSub Initialization

 while true

 if LastButton() != "" then GoSub SendData

 SetEdit "Status",UDP_Status("U1")

 wend

End

//==

Initialization:

 xyText 0,10,Center(FileNAme(ProgName())," ",45),"",20,fs_Bold

 line 0,43,800,43,3

 xyText 10,50,"Local IP = "+TCP_LocalIP(),"",14,fs_Bold

 xyText 10,75,"Local Port = ","",14,fs_Bold

 AddEdit "Local Port",145,75,50,0,47000 \ IntegerEdit "Local Port"

 AddButton "Start Socket",230,75

 AddEdit "Status",10,110,250

 repeat //wait until user pushes the button

 until LastButton() != ""

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 18 of 37

 x = UDP_Start("U1",ToNumber(GetEdit("Local Port"))) //--start the socket

 RemoveButton "Start Socket" \ EnableEdit "Local Port",false

 xyText 350,50,"Remote IP =","",14,fs_Bold

 xyText 350,75,"Remote Port=","",14,fs_Bold

 AddEdit "Remote IP",500,50,100,0,TCP_LocalIP()

 AddEdit "Remote Port",500,75,50,0,45000 \ IntegerEdit "Remote Port"

 xytext 10,200," Byte: +1 =","",14,fs_Bold

 xytext 10,230,"Integer: +1 =","",14,fs_Bold

 xytext 10,260," Float: +1 =","",14,fs_Bold

 xytext 10,290," Text:","",14,fs_Bold

 xytext 500,260," Result","",14,fs_Bold

 AddEdit "Byte",100,200 \ IntegerEdit "Byte"

 AddEdit "ByteRes",270,200 \ ReadOnlyEdit "ByteRes"

 AddEdit "Integer",100,230 \ IntegerEdit "Integer"

 AddEdit "IntegerRes",270,230 \ ReadOnlyEdit "IntegerRes"

 AddEdit "Float",100,260 \ FloatEdit "Float"

 AddEdit "FloatRes",270,260 \ ReadOnlyEdit "FloatRes"

 AddEdit "Text",100,290,300

 AddEdit "TextRes",420,290,300 \ ReadOnlyEdit "TextRes"

 AddButton "Send",420,220,100

Return

//==

SendData:

 EnableButton "Send",false

 B = toByte(ToNumber(GetEdit("Byte"),0)) \ SetEdit "Byte",Ascii(B)

 I = ToNumber(GetEdit("Integer"),0)

 F = ToNumber(GetEdit("Float"),0)*1.0 //--multiply by 1.0 to ensure is a float

 T = GetEdit("Text")

 s = "" \ BuffPrintB s,B,I,F,T //--create the buffer

 x = UDP_Read("U1") //--clear buffer by reading it to make sure it is empty

 RIP = GetEdit("Remote IP")

 RP = ToNumber(GetEdit("Remote Port"),1)

 x= UDP_Send("U1",s,RIP,RP) //--send the buffer

 repeat //--wait for at least 13 bytes (1+4+8)

 SetEdit "Status",UDP_Status("U1")

 until UDP_BuffCount("U1") >=13

 delay 100 //--allow any more bytes time to arrive

 SetEdit "Status",UDP_Status("U1")

 s = UDP_Read("U1") //--read them

 SetEdit "ByteRes", BuffReadB(s,0) //--extract a byte

 SetEdit "IntegerRes",BuffReadI(s,1) //--extract integer 4 bytes

 SetEdit "FloatRes",BuffReadF(s,5) //--extract float 8 bytes

 SetEDit "TextRes",BuffRead(s,13,-1) //--extract the text the rest of it

 EnableButton "Send"

Return

//==

Figure 2: User interface side of the system.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 19 of 37

The UDP_Calculator.Bas program:

When the program starts running it will create an edit box for the user to assign a Port number for the

socket and press a push button to activate the socket. The Port number can be defined in the edit box, but

only upon running the program. Once the socket has been started it will remain attached to the assigned

port number for the duration; the edit box will be disabled and the push button will disappear. The user

must note the Local IP and Port so as to enter them in the other program‟s Remote IP and Port fields.

The program will create edit boxes to allow the user to specify the remote IP address and Port number

where the other program (UDP_UserIO.Bas) is going to be run so as to be able to send the results back

to it. It will also have another edit box to show the status of the socket for observing what is going on

with the program.

Once the socket has been started the program will enter a loop waiting for data to arrive. Once data

arrives, it will be read into a buffer from which the data will be extracted [the numbers and text]. The

program will then perform the proper calculations and create a new buffer with the resultant data and

then will send it to the remote socket as indicated by the remote IP and Port, and then loop waiting for

incoming data again. See Section 3 for details on what functions to use to do the data extraction and

insertion into a buffer.

//----------UDP_Calculator.Bas-----------

MainProgram:

 GoSub Initialization

 while true

 repeat //--wait for at least 13 bytes 1+4+8

 SetEdit "Status",UDP_Status("U1")

 until UDP_BuffCount("U1") >=13

 delay 100 //--allow time for rest of bytes to arrive

 s = UDP_REad("U1")

 B = BuffReadB(s,0) //--extract a byte

 I = BuffReadI(s,1) //--extract integer 4 bytes

 F = BuffReadF(s,5) //--extract float 8 bytes

 T = BuffRead(s,13,-1) //--extract the text the rest of it

 xyText 120,200,B,"",14,fs_Bold

 xyText 120,230,I,"",14,fs_Bold

 xyText 120,260,F,"",14,fs_Bold

 xyText 120,290,T,"",14,fs_Bold

 s = "" \ BuffPrintB s,toByte(B+1),I+1,F+1,Upper(T) //--create the buffer

 RIP = GetEdit("Remote IP") \ RP = ToNumber(GetEdit("Remote Port"),1)

 x= UDP_Send("U1",s,RIP,RP) //--send the buffer

 wend

End

//==

Initialization:

 xyText 0,10,Center(FileNAme(ProgName())," ",45),"",20,fs_Bold

 line 0,43,800,43,3

 xyText 10,50,"Local IP = "+TCP_LocalIP(),"",14,fs_Bold

 xyText 10,75,"Local Port = ","",14,fs_Bold

 AddEdit "Local Port",145,75,50,0,45000 \ IntegerEdit "Local Port"

 AddEdit "Status",10,110,250

 xyText 350,50,"Remote IP =","",14,fs_Bold

 xyText 350,75,"Remote Port=","",14,fs_Bold

 AddEdit "Remote IP",500,50,100,0,TCP_LocalIP()

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 20 of 37

 AddEdit "Remote Port",500,75,50,0,47000 \ IntegerEdit "Remote Port"

 AddButton "Start Socket",230,75

 repeat //wait until user pushes the button

 until LastButton() != ""

 x = UDP_Start("U1",ToNumber(GetEdit("Local Port"))) //--start the socket

 RemoveButton "Start Socket" \ enableEdit "Local Port",false

 xytext 120,170,"Received Data","",14,fs_Bold

 xytext 10,200," Byte:","",14,fs_Bold

 xytext 10,230,"Integer:","",14,fs_Bold

 xytext 10,260," Float:","",14,fs_Bold

 xytext 10,290," Text:","",14,fs_Bold

Return

//==

Figure 3: The calculator side of the system.

4.5- Suggested improvements:

The two programs are pretty self explanatory and work quite adequately. However, there is one

shortcoming in the system. Notice the lines in red in Figures 2 and 3. They both cause a delay of 100 ms

after the loop that waits for at least 13 bytes.

The reason for the delay is that we do not know the length of a packet. We know that there are at least

13 bytes (1 + 4 + 8) which are the three numbers. But the text can be of any length. So we force a wait

until at least 13 bytes come in and then delay 100 ms to ensure that the bytes for the text would also

have enough time to come in before we read the buffer to get the data and then act upon it.

This delay is a guesstimate. If it is too long the program is not optimal but this is not a problem. What

would happen if it is too short? The buffer would be read before all the text data has had time to arrive

and we would be getting the incomplete data.

There are many ways we can get around this problem. The best solution is through the use of a header.

The data packet should always have an initial field that indicates the length of the data in it. We can then

wait for 4 bytes. Read the buffer (it may by then have more than 4 bytes). We extract the number of

bytes to be expected (say X) from the header. We then wait for (X-length of buffer already read) more

bytes to arrive. Once they arrive we append them to the previously read data and then start manipulating

the data.

The above assures optimal waiting. There are many other ways to achieve a similar action. For example

the sender can send the number of bytes to be expected and then wait for acknowledgement before it

starts sending the actual data. The point is that it is up to you how to implement the Hand-Shaking

protocol to achieve synchronized orderly and error free communications. RobotBASIC provides the link

for the data, while the data content and synchronization are up to you.

Both programs use a waiting loop that waits for data to arrive at the receive buffer. This is not much of a

problem in this application since the programs do not need to do much else. But, if the programs had to

do other tasks while waiting for the data to arrive, then it becomes necessary to use EVENT handling.

RobotBASIC can be instructed to interrupt what it is currently doing and jump to a special routine

whenever any bytes arrive at the receive buffer of any active UDP socket. In the routine (event handler)

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 21 of 37

you would determine which active sockets have data in them and read these data and transfer them to a

separate accumulator buffer for each. The handler also can initiate actions depending on which socket

has received the required amount of data and so forth. Once the handler routine finishes, the program

will return to doing what it was doing before the interruption.

This interrupt mechanism allows the program to do actions other than just sit in a loop waiting for data

to arrive. The mechanism is activated with the statement OnUDP; read about it in the RobotBASIC Help

file. Also for examples of how to use the mechanism see the demo program in the UDP section of the

RobotBASIC Help file as well as the following zip file UDP_Demo.zip

5- Utilizing The TCP System:

A RobotBASIC program has access to one TCP server socket and one TCP client socket.

 Figure 4: Client Server Conceptual Layout

The TCP is a connection oriented Client-Server protocol. A

server socket can accept multiple clients while a client socket

can only be connected to one server at a time. You can

disconnect a client from a server and then connect to another

server; however, it can only be connected to one server at a

time.

The server socket can accept multiple clients and will be able

to receive data from all the clients and can send data to all

the clients.

Once a client has connected to a server it becomes as if there

is a direct two-way com link between them. Figure 4 shows

the logical conceptual layout once connections between the

server and various clients have been established. Notice that the server and any of the clients can be on

distinct LANs or the same LAN.

A server socket must be assigned a unique and not currently in use Port number. When created, the

socket will automatically use the IP address of the machine it is created on, but, you must assign it a

particular port number. The client socket does not need to be assigned a Port number. It will

automatically use any available port and will use the IP of the machine it is running on.

Note: You must ensure that the port assigned to a TCP Server socket is unique and is not being used

by another active socket (UDP or TCP) in the same program or other programs on the same machine.

BE SURE OF THIS.

Since there is only one client socket and one server socket there is no need to name them when created

or when using functions related to them

To create and activate a TCP Server socket use TCPS_Serve({ne_Port}). Notice that the port number is

optional. If you do not specify a port number it will be assumed to be 50000 (see Appendix A for a list

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf
http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf
http://www.robotbasic.org/resources/UDP_Demo.zip

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 22 of 37

of preferred port numbers). A server socket can be closed any time and reactivated to use a different Port

number. To deactivate a server socket use TCPS_Close(). No parameter is required. It is important that

you monitor the status string of the server socket to know if it has been successfully activated. See

section 5.3.

Use TCPC_Connect(se_ServerIPaddress{,ne_ServerPort}) to create and activate a TCP Client socket

and at the same time connect to a server socket. Notice that the server port number is optional. If you do

not specify a port number it will be assumed to be 50000. This function will try to connect to the server

socket as specified by the IP and Port number combination. If the server is available and running the

connection will be established. A client socket can be closed any time and disconnected from the server

and then reactivated to connect to a different server. To deactivate a client socket use TCPC_Close(). No

parameter is required. It is important that you monitor the status string of the client socket to know if it

has been successfully activated. See section 5.3.

Notice that the client socket itself is not assigned an IP or Port number. As mentioned earlier the

client socket will automatically use any available free port and the IP of the machine it is running on.

The functions discussed in the following sections enable the writing of a program to send and/or receive

data packets over the TCP. A server/client socket in a RobotBASIC program can communicate over the

LAN or Internet with a client/server socket that does not have to be another RB program. So long as the

data format in the send/receive buffer is in accordance with a format that both sockets are in agreement

upon, the other socket can be:

a- The same PC running another RB program.

b- The same PC running a non-RB program.

c- Another PC with another RB program.

d- Another computer (not just a PC) running a non-RB program.

e- A device (e.g. robot or microcontroller) that can use the TCP.

5.1- Sending data using the TCP:

Once a client has established a connection with a server it can send packets to it and so can the server

send to the client. Use TCPC_Send(se_Data) to send data packets from the client to the server. Notice

that you do not need to specify an IP or port the only parameter is the data buffer (string). This is of

course because there is already an established link and the client can only send and receive data over this

link. A client cannot send to any other server socket without disconnecting from the currently connected

server and then connecting to the other server socket.

A server can send data to all the clients that are connected to it. The server socket in RobotBASIC

cannot send to a particular client only. It can send (broadcast) to all the clients connected to it. If you

wish to make the data significant to only one client you need to establish a header mechanism as

discussed in section 5.3. Use TCPC_Send(se_Data) to send data from the server socket to all the client

sockets currently connected to the server. Notice that there is no IP or port parameter. This is because

the connection link is already established and these values are already known from the link status.

In both the above functions the parameter se_Data is the data buffer to be sent. See Section 3 for how to

create and manipulate the buffer.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 23 of 37

Note: The send buffer in both the server and client sockets is limitless. However, from personal

experience an optimal size exists. It is best if you limit the send packet to 2
18

 (262144=0x040000)

bytes. This size seems to be able to reach its destination faster than smaller or bigger buffer sizes.

4.2- Receiving data using the TCP:

When either the TCP Server socket or the TCP Client socket receives data it will be appended to the end

of a receive buffer. This is performed every time a data packet is received by the socket. The buffer will

continue to grow until you read it (the only limit to the size of the buffer is the memory). Once you read

the buffer, the data in it will be returned and at the same time the buffer will be cleared.

To determine the number of bytes currently in the buffer use TCPC_BuffCount() for the client socket

and TCPS_BuffCount() for the server socket. The function returns the number of bytes currently in the

buffer. Use this number to determine if there is data in the buffer and when to read the buffer depending

on the required byte count.

The client socket can only receive packets from the server it is connected to and thus there is no problem

with knowing where the data came from. But, the server socket can receive data at any time from any of

the clients it is connected to. So there would be a problem of knowing which data came from which

client. See section 5.3 for solutions to this problem. Of course if you only have one client then there is

no problem.

To obtain the sockets‟ receive buffers use TCPC_Read() for the client socket and TCPS_Read() for the

server socket. The function will return the bytes already in the buffer and then will clear the buffer. The

returned value is a string (buffer). See section 3.2 for how to extract individual data fields from the

string (buffer).

5.3- Checking The Sockets’ Status:

The function TCPC_Status() for the client and TCPS_Status() for the server socket returns a string that

has information about the status of the socket. The status string indicates if the socket has sent the data

after a send command. It also indicates if data has been received after the socket has accepted received

data.

For the client socket the status string can also indicate if the client has connected to a server and which

one. It is also possible to read the status to find when and if the server has disconnected from the client.

Likewise, for the server socket there are similar status strings. Read the RobotBASIC Help file for a list

of these status strings and their significance.

The receive status on the server has information about the IP and Port number of the client socket that

sent the data. Other activities also cause the status string to change. You should check this string after

utilizing the socket to ensure that the socket is actually carrying out the requested operation.

One situation where you should check the status is after a send operation. The status string will indicate

if the send is successful and thus help in avoiding problems. Another situation where you may want to

monitor the status string closely is while connecting a client to a server. The status string will indicate

the progress of the operation and if successful or not.

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 24 of 37

The TCP implements a very rigorous error correction and sequence assurance mechanisms. Once a link

between the client and server is established you can almost always be assured that a sequence of data

packets sent in succession will arrive to the other side in the correct order and will be error free and will

definitely arrive. If there is any problem the status string will indicate so.

However despite all this assurance you may want to establish some kind of Acknowledgement Protocol

between the sockets. This means that the receiver socket must send some form of ACK code back to the

sender for the sender to be able to determine that the data has arrived. This is not strictly necessary but it

may be useful for synchronization purposes in certain situations.

To see how this is achieved see the programs in the zip files mentioned at the beginning of this article.

Server-side automatic header appending:

The data received in the receive buffer of a server socket will be appended to it regardless of which

client socket has sent the data. This means that if the socket receives data from multiple clients there will

be no way of distinguishing which data came from which client. You can change this by using the

TCPS_Header({,true|false}) function to turn on header appending to the received data.

When header appending is activated, every packet received will have a header appended to it that

specifies the number of bytes and the originator IP address and Port number of the sending client. This

way you can parse the received data and separate the received bytes into separate buffers for each client.

This can help in being able to receive data from multiple clients and to put the data from each in separate

storage areas for actions that require different procedures according to the client. This also can help in

verifying if a client is a valid one.

Note: There is no such mechanism for the client side as there is no need for it.

Sender-side manual header appending:

The server-side header appending can be quite powerful and useful, especially if you are communicating

with systems that do not have the ability to append their own client-side headers. However, a better

method which also provides for more versatility is to have the sender (server or client) append headers

to the data packets it sends. This header should have useful and application specific information. For

example a server acting as a central controller for multiple robots connected to it as clients (e.g. soccer

team) can tell a particular client to do an action by appending a header to each message it sends that

specifies the target client. So despite all the clients receiving the same message only one acts upon it

since the header indicates which client should act.

It is important to realize that the TCP functionality in RB provides a bidirectional data link between the

client and the server. It is up to you what the data content is and what methods you use for ensuring

synchronization and data integrity as well as what the data content signifies.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 25 of 37

5.4- Developing a TCP program:

Sending and receiving data using the TCP Server and TCP Client sockets in RobotBASIC is relatively

easy. To illustrate this we shall develop 4 simple programs. You can also see a slightly more

sophisticated demo program for TCP communications in the RobotBASIC Help file in the TCP Sockets

Functions section. For more advanced demos TCP_Demo.zip and TCP_Robot.zip.

A very simple TCP program:

The first program is extremely simplistic as far as the user I/O and error situations detection is

concerned and leaves much to be desired in functionality. Nevertheless, it serves to illustrate the actions

of sending and receiving data through the TCP server and client sockets at its simplest without getting

entangled with a GUI design or extraneous details.

The program gets a key stroke from the user and then sends it through the TCP Server (Client) socket to

the TCP Client (Server) socket.

Note: In the program listing below the program acts, both as the server and client. However, you can

run two instances of the program either on the same PC or on different PCs. You must decide which

instance is going to act as a Server and which will act as a Client. In the Client instance change the

variables rmtIP and rmtPort to be the values of the Server’s instance, and make sure the variable

IsServer is set to false. Additionally, make sure that in the server instance the variable IsClient is set

to false. Remember, now you will only see text on the server side when you type on the client side and

vice versa. Also make sure you run the server instance BEFORE the client instance.

//----------TCP_VerySimple.Bas-----------

lclPort = 50000 //--This is only important for the server side

//--change rmtIP and rmtPort to to the server's IP and Port

rmtIP = TCP_LocalIP() \ rmtPort = 50000

IsServer = true \ IsClient = true

if IsServer then n=TCPS_Serve(lclPort)

if IsClient then n=TCPC_Connect(rmtIP,rmtPort)

while true

 if IsServer

 if TCPS_BuffCount()

 print TCPS_Read(),

 endif

 GetKey K

 If K

 n=TCPS_send(char(K))

 waitnokey

 endif

 endif

 if IsClient

 if TCPC_BuffCount()

 print TCPC_Read(),

 endif

 GetKey K

 If K

 n=TCPC_send(char(K))

 waitnokey

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.rtf
http://www.robotbasic.org/resources/TCP_Demo.zip
http://www.robotbasic.org/resources/TCP_Robot.zip

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 26 of 37

 endif

 endif

wend

That is all you need to achieve data sending and receiving simply between TCP client and server

sockets.

A simple TCP program:

The second program is a little better at user I/O than the first one. It is still a simple program but it

illustrates how you can achieve a little better user I/O.

Note: In the program listing below the program acts, both as the server and client. However, you can

run two instances of the program either on the same PC or on different PCs. You must decide which

instance is going to act as a Server and which will act as a Client. In the Client instance change the

variables rmtIP and rmtPort to be the values of the Server’s instance, and make sure the variable

IsServer is set to false. Additionally, make sure that in the server instance the variable IsClient is set

to false. Remember, now you will only see text on the server side when you type on the client side and

vice versa. Also make sure you run the server instance BEFORE the client instance.

//----------TCP_Simple.Bas-----------

lclPort = 50000 //--this is important for the Server side

//--change rmtIP and rmtPort to send to another socket

rmtIP = TCP_LocalIP() \ rmtPort = 50000

IsServer = true\ IsClient = true

addmemo "m1",10,10,380,400

addmemo "m2",400,10,380,400 \ readonlymemo "m2"

s = "Start typing"

ts = "Make sure the "

ts2 = " is running before you start typing."

if IsServer & !IsClient then s = ts+"Client"+ts2

if !IsServer & IsClient then s = ts+"Server"+ts2

setmemotext "m1",s

SetMemoSelection "m1",1,1,length(s)

n = memochanged("m1")

focusmemo "m1"

if IsServer then n=TCPS_Serve(lclPort)

if IsClient then n=TCPC_Connect(rmtIP,rmtPort)

while true

 if IsServer

 if TCPS_BuffCount()

 SetMemoText "m2",TCPS_Read()

 endif

 if memochanged("m1") then n=TCPS_send(getmemoText("m1"))

 endif

 if IsClient

 if TCPC_BuffCount()

 SetMemoText "m2",TCPC_Read()

 endif

 if memochanged("m1") then n=TCPC_send(getmemoText("m1"))

 endif

wend

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 27 of 37

A more practical TCP program:

As a more practical use of the preceding information, we will develop an application that uses the TCP

to send and receive textual and numerical data between two RobotBASIC programs that may run on the

same machine or on separate machines within the LAN. The programs will also function between

machines across the Internet, however, certain actions have to be taken with the Routers on the

server side to allow for this. We shall describe these actions in Appendix B.

One program will be the server and the other will be the client. The programs will intentionally be kept

simple so as to facilitate understanding without too much complexity. The client program will have a

user interface to obtain a text, an integer, a float and number that is not bigger than 255 (one byte).

These data will be sent to the server program that will add one to the numbers and will capitalize the text

and then send it back to the client which will display the resultant data.

We shall name the client program which also obtains the data from the user TCPC_UserIO.Bas and the

server program that also performs the calculations TCPS_Calculator.Bas.

The TCPC_UserIO.Bas program:

When the program starts running it will create edit boxes so that the user can enter the server‟s IP

address and Port number (these should be obtained from the server‟s screen). A button will be shown

that allows the user to activate the socket and connect to the server indicated by the Remote IP and

Remote Port numbers. Before connecting to the server by pushing the Connect button, the server

program (TCPS_Calculator.Bas) should be started and its socket activated. This is important if a

connection is to be possible.

Another edit box will display the status of the socket as the program performs actions. The program will

then create edit boxes to obtain the data from the user [text, two integers (one will be assumed to be less

than 256) and a float]. There will also be a push button to initiate the data sending.

Once the Send button is pushed, the program will read the data from the edit boxes in order to create a

buffer with the data in it which will then be sent to the server. The program will then wait for data to be

received. Once the data is received it will be read into a buffer from which the data will be extracted

[byte, integer, float and text] and then assigned to the appropriate edit boxes for display. The entire

action is repeatable as many times as the user wishes. See Section 3 for details on what functions to use

to do the data extraction and insertion into a buffer.

Note: The function TCP_LocalIP() is used to find out what is the local IP address of the machine the

program is running on. This function can be used regardless whether you are using UDP sockets or TCP

sockets. It is a general network related function despite its prefix.

//----------TCPC_UserIO.Bas-----------

MainProgram:

 GoSub Initialization

 while true

 if LastButton() != "" then GoSub SendData

 SetEdit "Status",TCPC_Status()

 wend

End

//==

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 28 of 37

Initialization:

 xyText 0,10,Center(FileNAme(ProgName())," ",45),"",20,fs_Bold

 line 0,43,800,43,3

 xyText 10,50,"Local IP = "+TCP_LocalIP(),"",14,fs_Bold

 AddEdit "Status",10,110,250

 xyText 350,50,"Remote IP =","",14,fs_Bold

 xyText 350,75,"Remote Port=","",14,fs_Bold

 AddEdit "Remote IP",500,50,100,0,TCP_LocalIP()

 AddEdit "Remote Port",500,75,50,0,47000 \ IntegerEdit "Remote Port"

 AddButton "Connect",640,55,100

 repeat //wait until user pushes the button

 until LastButton() != ""

 RIP = GetEdit("Remote IP") \ RP = ToNumber(GetEdit("Remote Port"))

 x = TCPC_Connect(RIP,RP) //--connect to server

 RemoveButton "Connect"

 xytext 10,200," Byte: +1 =","",14,fs_Bold

 xytext 10,230,"Integer: +1 =","",14,fs_Bold

 xytext 10,260," Float: +1 =","",14,fs_Bold

 xytext 10,290," Text:","",14,fs_Bold

 xytext 500,260," Result","",14,fs_Bold

 AddEdit "Byte",100,200 \ IntegerEdit "Byte"

 AddEdit "ByteRes",270,200 \ ReadOnlyEdit "ByteRes"

 AddEdit "Integer",100,230 \ IntegerEdit "Integer"

 AddEdit "IntegerRes",270,230 \ ReadOnlyEdit "IntegerRes"

 AddEdit "Float",100,260 \ FloatEdit "Float"

 AddEdit "FloatRes",270,260 \ ReadOnlyEdit "FloatRes"

 AddEdit "Text",100,290,300

 AddEdit "TextRes",420,290,300 \ ReadOnlyEdit "TextRes"

 AddButton "Send",420,220,100

Return

//==

SendData:

 EnableButton "Send",false

 B = toByte(ToNumber(GetEdit("Byte"),0)) \ SetEdit "Byte",Ascii(B)

 I = ToNumber(GetEdit("Integer"),0)

 F = ToNumber(GetEdit("Float"),0)*1.0 //--multiply by 1.0 to ensure is a float

 T = GetEdit("Text")

 s = "" \ BuffPrintB s,B,I,F,T //--create the buffer

 x = TCPC_Read() //--clear buffer by reading it to make sure it is empty

 x= TCPC_Send(s) //--send the buffer

 repeat //--wait for at least 13 bytes (1+4+8)

 SetEdit "Status",UDP_Status("U1")

 until TCPC_BuffCount() >=13

 delay 100 //--allow any more bytes time to arrive

 SetEdit "Status",TCPC_Status()

 s = TCPC_Read() //--read them

 SetEdit "ByteRes", BuffReadB(s,0) //--extract a byte

 SetEdit "IntegerRes",BuffReadI(s,1) //--extract integer 4 bytes

 SetEdit "FloatRes",BuffReadF(s,5) //--extract float 8 bytes

 SetEDit "TextRes",BuffRead(s,13,-1) //--extract the text the rest of it

 EnableButton "Send"

Return

//==

Figure 5: User interface side of the system.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 29 of 37

The TCPS_Calculator.Bas program:

When the program starts running it will create an edit box for the user to assign a Port number for the

server socket and press a push button to activate the socket. The Port number of the socket can be

defined in the edit box, but only upon running the program. Once the socket has been started it will

remain attached to the assigned port number as long as the program is running; the edit box will be

disabled and the push button will disappear. The user must note the Local IP and Port so as to enter them

in the client program‟s Remote IP and Port fields.

The program will also create an edit box to show the status of the socket for observing what is going on

with the program. Also any received data will be displayed on the screen.

Once the socket has been started the program will enter a loop waiting for data to arrive. A client can

connect to the server then start sending data to it. Once data arrives, it will be read into a buffer from

which the data will be extracted [the numbers and text]. The program will then perform the proper

calculations and create a new buffer with the resultant data and then will send it to the clients connected

to it, and then loop waiting for incoming data again. See Section 3 for details on what functions to use to

do the data extraction and insertion into a buffer.

//----------TCPS_Calculator.Bas-----------

MainProgram:

 GoSub Initialization

 while true

 repeat //--wait for at least 13 bytes 1+4+8

 SetEdit "Status",TCPS_Status()

 until TCPS_BuffCount() >=13

 delay 100 //--allow time for rest of bytes to arrive

 s = TCPS_Read()

 B = BuffReadB(s,0) //--extract a byte

 I = BuffReadI(s,1) //--extract integer 4 bytes

 F = BuffReadF(s,5) //--extract float 8 bytes

 T = BuffRead(s,13,-1) //--extract the text the rest of it

 xyText 120,200,B,"",14,fs_Bold

 xyText 120,230,I,"",14,fs_Bold

 xyText 120,260,F,"",14,fs_Bold

 xyText 120,290,T,"",14,fs_Bold

 s = "" \ BuffPrintB s,toByte(B+1),I+1,F+1,Upper(T) //--create the buffer

 x= TCPS_Send(s) //--send the buffer

 wend

End

//==

Initialization:

 xyText 0,10,Center(FileNAme(ProgName())," ",45),"",20,fs_Bold

 line 0,43,800,43,3

 xyText 10,50,"Local IP = "+TCP_LocalIP(),"",14,fs_Bold

 xyText 10,75,"Local Port = ","",14,fs_Bold

 AddEdit "Local Port",145,75,50,0,47000 \ IntegerEdit "Local Port"

 AddEdit "Status",10,110,250

 AddButton "Serve",230,75

 repeat //wait until user pushes the button

 until LastButton() != ""

 x = TCPS_Serve(ToNumber(GetEdit("Local Port"))) //--start the server

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 30 of 37

 RemoveButton "Serve" \ enableEdit "Local Port",false

 xytext 120,170,"Received Data","",14,fs_Bold

 xytext 10,200," Byte:","",14,fs_Bold

 xytext 10,230,"Integer:","",14,fs_Bold

 xytext 10,260," Float:","",14,fs_Bold

 xytext 10,290," Text:","",14,fs_Bold

Return

//==

Figure 6: The calculator side of the system.

5.5- Suggested improvements:

The two programs are pretty self explanatory and work quite adequately. However, there is one

shortcoming in the system. Notice the lines in red in Figures 5 and 6. They both cause a delay of 100 ms

after the loop that waits for at least 13 bytes.

The reason for the delay is that we do not know the length of a packet. We know that here are at least 13

bytes (1 + 4 + 8) which are the three numbers. But the text can be of any length. So we force a wait until

at least 13 bytes come in and then delay 100 ms to ensure that the bytes for the text would also have

enough time to come in before we read the buffer to get the data and then act upon it.

This delay is a guesstimate. If it is too long the program is not optimal but this is not a problem. What

would happen if it is too short? The buffer would be read before all the text data has had time to arrive

and we would be getting the incomplete data.

There are many ways we can get around this problem. The best solution is through the use of a header.

The data packet should always have an initial field that indicates the length of the data in it. We can then

wait for 4 bytes. Read the buffer (it may by then have more than 4 bytes). We extract the number of

bytes to be expected (say X) from the header. We then wait for (X-length of buffer already read) more

bytes to arrive. Once they arrive we append them to the previously read data and then start manipulating

the data.

The above assures optimal waiting. There are many other ways to achieve a similar action. For example

the sender can send the number of bytes to be expected and then wait for acknowledgement before it

starts sending the actual data. The point is that it is up to you how to implement the Hand-Shaking

protocol to achieve synchronized orderly and error free communications. RobotBASIC provides the link

for the data, while the data content and synchronization are up to you.

RobotBASIC provides the link for the data, but the data content and the data sequencing is all up to you.

Both programs use a waiting loop that waits for data to arrive at the receive buffer. This is not much of a

problem in this application since the programs do not need to do much else. But, if the programs had to

do other tasks while waiting for the data to arrive, then it becomes necessary to use EVENT handling.

RobotBASIC can be instructed to interrupt what it is currently doing and jump to a special routine

whenever any bytes arrive at the receive buffer of any active UDP socket. In the routine (event handler)

you would determine which active sockets have data in them and read these data and transfer them to a

separate accumulator buffer for each. The handler also can initiate actions depending on which socket

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 31 of 37

has received the required amount of data and so forth. Once the handler routine finishes, the program

will return to doing what it was doing before the interruption.

This interrupt mechanism allows the program to do actions other than just sit in a loop waiting for data

to arrive. The mechanism is activated with the statements OnTCPS and OnTCPC; read about them in the

help file. For examples of how to use the mechanism see the programs in the zip files mentioned at the

beginning of this article as well as the demo program in the TCP section of the help file.

Appendix A – Selecting A Port Number:

When activating a TCP Server or when creating and starting a UDP socket the IP address for the socket

is determined by the machine it is running on. But the Port number has to be assigned.

Either you as the programmer can hard code the Port number in your program, or you can provide a

means for the user of your program to select a port number. Regardless of which option you opt for a

Port number has to be selected and assigned to the socket.

How would you select a number? Well the easy answer from experience is that it is safer mostly to

choose numbers greater than 40000 but any port that your system is not currently using will suffice.

The longer answer is that there are many ports that are universally agreed upon as standard ports for

usage with ubiquitous programs. For example FTP is usually assigned to port 21, SMTP to port 25,

HTML to port 80 and so forth. There are ports exclusively for UDP and others for TCP. Many other

applications assign port numbers for UDP usage and TCP usage.

So try to avoid these ports. To help you in deciding what ports are likely to be used on your system and

therefore to avoid, see these two web pages in order of preference:

http://www.iss.net/security_center/advice/Exploits/Ports/default.htm

http://www.portforward.com/cports.htm

It is generally true that ports above 40000 are safe to use. Do not ever use ports that are assigned for

HTML, SMTP, FTP and other universal Internet services.

http://www.iss.net/security_center/advice/Exploits/Ports/default.htm
http://www.portforward.com/cports.htm

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 32 of 37

Appendix B –Allowing Internet Throughput:

All the information given in this article is equally applicable whether you are running your application

within the LAN or across the Internet. As long as you have the right IP address and the right Port

number for the target UDP socket you can send data to it, and if you have the right IP address and Port

number of a server socket a client socket can connect to it.

With UDP sockets you need the IP and Port number for both ends to allow bidirectional

communications. With TCP you need to know the IP and Port of the server, the client can just connect

and the link is then automatically bidirectional without ever knowing the IP address or Port number of

the client. However you may want to know the IP addresses and Port numbers of valid clients so as to be

able to restrict access to just valid clients.

Figure 7: A typical network arrangement.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 33 of 37

When it comes to communicating to a machine outside your LAN you are going to have to deal with the

Fire Wall and NAT aspects of the system. An IP address within the LAN is not a valid address for usage

by a machine outside the LAN. This means that even though your machines local IP address is known it

cannot be used as a remote IP by another PC outside your LAN. It is a usable and legal IP address for

machines within the LAN but not across the internet.

If you look at Figure 7 (a repeat of Figure 1) you will notice that the routers have two distinct addresses

each. The addresses that start with 192.168 are what is called the inside the LAN address. This is the

address you can connect to your router by a machine inside the LAN. Also notice that all the machines

inside the LANs have addresses that start with 192.168 and that LAN1 machines have the same

addresses as LAN2 machines. Normally it is not legal for two machines to have the same address on the

internet. Each machine that is visible to the global internet must have a unique IP address, but since the

machines inside the LAN are not directly visible to the internet, it is possible for this address duplication

to occur.

The IP standard has set aside an address space that always starts with 192.168 which is designed to be a

LAN group of addresses and that the global internet will not use or assign to actual real machines. This

is what the NAT does. It translates LAN addresses so as to appear as if they are valid addresses on the

Internet. How this is achieved does not concern us. But what concerns us is that we need to achieve a

method for letting a machine on LAN2 to be able to communicate with a machine on LAN1.

As far as the internet is concerned your entire LAN is one machine given one address that is usually

assigned by the ISP. In Figure 7 you can see that LAN1 is given the address 67.134.100.225. This is the

address of your machine as far as any machine outside the internet is concerned. This IP is assigned by

the ISP usually on a lease basis. That means that it is not a permanent address and if your LAN ever

disconnects from the ISP and then reconnects you will end up being assigned another IP that, more often

than not, is different. It is possible to have a permanent (static) address given to you but this is normally

only possible for bigger companies that have big LANs.

The final outcome is that your LAN as far as the internet is concerned is one machine with one IP

address. In the setup in Figure 7 the router is what the Internet sees and nothing else. So any machine

trying to log on to your system can only go through the router.

Note: If your network setup differs from Figure 7 you will need to consult a network administrator on

how to setup your system to allow access to a machine within the LAN from a machine outside the

LAN. This discussion may help you get an idea of what is required in general but will not be

applicable due to the difference.

You can use the following web site to ascertain what your LAN‟s IP address is. But remember this can

change if you ever disconnect your system from the ISP. http://www.whatismyip.com/

When you log on the web site you will see the screen below (other information on the site is also of

interest). Another way you can get your Global (External) IP is by logging on to your router, which is

also an operation that will be necessary for accomplishing the task of setting up your LAN so that an

outside machine can connect with a machine inside the LAN. This action will be described shortly.

http://www.whatismyip.com/

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 34 of 37

So now we know what IP address to give to the external machine to use in the UDP or TCP functions

that require them (as described in sections 4 and 5). We also have decided on a port to use as described

by Appendix A. So we have all we need. A machine say in LAN2 can now communicate with a machine

in LAN1 using the IP address 67.134.100.225 and the chosen port, let‟s say 50000.

Well, not quite! There is an additional problem we need to resolve. The IP address is not in fact the

address of any PC inside LAN1; it is really the address of the router. So how do we get the data packets

that will reach the router to go to the PC that in fact is running the destination socket?

The answer to this is something called Port Forwarding. Simply, port forwarding is a way to tell the

router that whenever it sees a data packet coming to it on a particular port to forward that packet to a

PC inside the LAN. This PC will see the data packet and it will appear to it as if it came directly from

the machine on LAN2.

To summarize the steps so far are:

1- Decide what type of socket you are going to use, TCP Server or UDP (e.g. UDP)

2- Decide what Port your socket is going to be associated with (e,g. 45000)

3- Find out what is the internal LAN address of the machine hosting the socket (e.g 192.168.0.110).

You can use the TCP_LocalIP() function to do this.

4- Log on to your router and set it up to do port forwarding of Port 45000 for UDP traffic to

machine 192.168.0.110.

5- Reboot your router. This is needed for the changes to take effect. It will also change you external

IP address so there is no need to have found it before this step.

6- Find out what your External IP address is. You can do this by going to the web site above or by

logging onto the router again and reading the information. Say 87.134.100.225

7- Give this external IP address and the port number (45000) to the machine on LAN2 that is going

to send data to your UDP socket.

8- Start your program on the assigned machine and wait for data to come in.

9- Start the machine inside LAN2 and start a UDP socket and tell it to send data to the remote IP

87.134.100.225 and remote Port 45000.

10- That is all.

Note: For TCP you only need to set up port forwarding for the server side. A client, once

connected to a server, will establish a bidirectional link automatically and there is no need to set

up port forwarding on the client side.

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 35 of 37

Note: For UDP you need to setup port forwarding on each side that is going to receive data.

Configuring The Router For Port Forwarding:

The following procedure will show how to set up port forwarding for a very specific router (the one I

have). Your router will have a different layout. However, the procedure is generally similar and other

than different menus or screen layouts the principles and most of the terminologies are the same on most

routers. If you need help with your router ask technical support from your vendor or visit this website:

http://portforward.com/.

To access your router use your Internet Browser and type in the URL space the IP address of your

router. Most of the time this is 192.168.0.1 but it may be 0.0 or 1.0 or 0.2 etc. Consult the router‟s

manual or help desk.

You will then see a logon screen on your browser. You will have to login using a password. If you do

not know it, ask your technical support.

http://portforward.com/

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 36 of 37

Next you will see the screen shot below. Notice the External IP address information. But this is going to

change later so ignore it for now. Click on the advanced menu option.

When you have navigated to the screen below, fill in the indicated areas:

Utilizing The TCP & UDP Protocols Within RobotBASIC (www.RobotBASIC.com)

Page 37 of 37

After you finish click „Save Settings‟ which will cause the router to reboot and will also cause it be

assigned a new external IP which you can find out by going back the 1
st
 screen (you have to log in

again) or by going to the web site mentioned earlier.

That is all! You now have Port Forwarding. As far as the internet is concerned the machine on LAN1

with the IP address 192.168.0.110 will appear to the outside world as IP 87.134.100.225 for any TCP

traffic to Port 47000 and UDP traffic to Port 45000.

In the case of the UDP example we developed in section 4 you will also have to do the same for the

machine on LAN2. In the case of TCP you do not have to do port forwarding on the other machine since

it will be the client and thus will have automatic two way traffic.

Note: The above is a very specific example for a specific network layout and specific router. If

yours is a different setup or router you will have to take the above as a general guide. While the

specific actions may vary, the principles are the same. You need to establish a port forwarding

system.

WARNING!!!: Port forwarding is a hole in your fire wall. While it is not much use to any hackers

you may want to experiment with a machine that does not have any sensitive data.

