

Hardware Interfacing

with

RobotBASIC

- The Fundamentals -

by

John Blankenship and Samuel Mishal

Copyright © 2011 by

John Blankenship and Samuel Mishal

ISBN-13: 978-1438272726 ISBN-10: 1438272723

All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage

or retrieval system without the prior written permission of the

copyright owner.

Trademarked names may appear in this book. Rather than use a

trademark symbol with every occurrence of a trademarked name,

we use the names only in an editorial fashion and to the benefit of

the trademark owner, with no intention of infringement of the

trademark.

Images of proprietary devices and sensors are reproduced with the

permission of the manufacturing companies.

The information and projects in this book are provided for

educational purposes without warranty. Although care has been

taken in the preparation of this book, neither the authors or

publishers shall have any liability to any person or entity with

respect to any special, incidental or consequential loss of profit,

downtime, goodwill, or damage to or replacement of equipment or

property, or damage to persons, health or life, or any costs of

recovering, reprogramming, or reproducing any data, caused or

alleged to be caused directly or indirectly by the information

contained in this book or its associated web site.

 Page i

Contents at a Glance

Preface vii

1- Introduction to I/O Ports 1

2- Parallel Port Examples 7

3- Serial Port Examples 19

4- Motor Control 31

5 Sensors 43

6- Speech, the Human Interface 55

7- Vision 65

8- Communication and Control Over the Internet 81

9- What’s Next 87

A- Bit-wise Operations 97

B- Finding Serial Port Numbers 103

C- Utilizing the TCP and UDP Protocols 105

D- Byte Buffers in RobotBASIC 153

Index 165

 Page ii

Table Of Contents

Preface vii

1- Introduction to I/O Ports 1
Parallel Ports 1

Serial Ports 2

Comparing Serial and Parallel 2

Synchronous vs. Asynchronous 2

Modern Ports are Serial 3

Converting Serial to Parallel 4

Virtual Serial Ports 4

I2C Communication 4

Virtual Parallel Ports 5

Utilizing Microcontrollers for I/O 5

Summary 5

2- Parallel Port Examples 7
OutPort 7

InPort 11

USBmicro I/O Boards 13

USB Alternatives 18

3- Serial Port Examples 19
Serial Communication with a Microcontroller 19

The BS2 Controller from Parallax 20

Synchronizing Communication 20

Analyzing the Program 21

The BS2 Program 22

Connecting the Hardware 24

Adding an Input Port 25

Creating New I/O Functions 26

Creating Custom I/O Functions 28

Conclusion 29

4- Motor Control 31
DC Motors 31

Buffering the Port 32

Controlling Speed 32

Controlling the Direction 33

Servomotors 37

Microcontrollers Can Help 38

Micro Maestro 6-Channel USB Servo Controller 38

Table Of Contents

 Page iii

Putting it all Together 40

Summary 41

5 Sensors 43
Modern Sensor Technology 43

Types of Sensors 43

Bumper Sensors 44

IR Perimeter Sensing 44

Ranging Sensors 46

Building a System 49

Line Sensors 51

An Electronic Compass 52

Other Sensors 53

6- Speech, the Human Interface 55
Synthesizing Speech 55

Voice Recognition 56

Eliminating the Need for ENTER 58

An Example Voice Recognition Application 59

7- Vision 65
Inexpensive Web Cams 65

Analyzing the Image 65

RobotBASIC’s Vision Capabilities 66

RoboRealm 72

Alternative Communication 79

Summary 80

8- Communication and Control Over the Internet 81
Internet Communication 81

Controlling a Simulated Robot Over the Internet 82

LAN or Internet 85

Summary 86

9- What’s Next 87
Why RobotBASIC? 87

A New Paradigm in Robotics 88

RobotBASIC’s Internal Protocol 91

Advantages of the New Paradigm 94

Summary 96

A- Bit-wise Operations 97
Logical Operations 97

Bit-wise Operations (2 Inputs) 97

Clearing Bits 101

Setting Bits 101

Toggling Bits 101

Unary Operations 102

Table Of Contents

 Page iv

B- Finding Serial Port Numbers 103
Using RobotBASIC to Find Out the Available Serial Ports 104

C- Utilizing the TCP and UDP Protocols 105
Scope 106

Some Terminology 106

A Local Area Network (LAN) 107

An Internet Service Provider (ISP) 108

The Internet 108

A Router 108

WiFi 108

Fire Wall 109

Dynamic Host Control Protocol (DHCP) 109

Network Address Translator (NAT) 109

Socket 109

Transmission Control Protocol (TCP) 110

User Datagram Protocol (UDP) 110

Simple Mail Transfer Protocol (SMTP) 111

Remote IP Address 111

Local IP Address 111

Packet 111

Utilizing the UDP System 111

Sending Data Using the UDP 113

Receiving Data Using the UDP 114

Checking The Socket’s Status 114

Receiver-Side Automatic Header Appending 116

Sender-Side Manual Header Appending 116

Developing a UDP Program 117

A Simple UDP Program 117

Another UDP Program 118

A More Practical UDP Example 119

The UDP_UserIO.Bas Program 120

The UDP_Calculator.Bas Program 123

Suggested Improvements 124

Utilizing the TCP System 127

Sending Data Using the TCP 129

Receiving Data Using the TCP 130

Checking the Socket’s Status 131

Server-Side Automatic Header Appending 132

Sender-Side Manual Header Appending 133

Developing a TCP Program 133

A Simple TCP Program 134

An Improved TCP Program 134

A More Practical TCP Program 136

Table Of Contents

 Page v

The TCPC_UserIO.Bas Program: 137

The TCPS_Calculator.Bas Program: 140

Suggested Improvements 141

Selecting a Port Number 143

Allowing Internet Throughput 144

Configuring the Router for Port Forwarding 148

D- Byte Buffers in RobotBASIC 153
Manipulating A Byte Buffer 153

Putting Text and Textual Numbers in a String Buffer 154

Putting Text and Binary Numbers in a Buffer 157

Bytes 159

Integers and Floats 161

Extracting Text and Numbers from a Buffer 161

Another Design 162

An Efficient and Flexible Design 163

Index 165

Page vii

Preface

lthough RobotBASIC is best known for its integrated

robot simulator, it also has extensive commands for

interfacing with external hardware, making it very useful

for many control applications in addition to robotics.

 Based on the emails we receive, there are many people

who want to experiment with controlling a robot and

electronic hardware through a personal computer but don’t

have the necessary skills in electronics or programming.

In this book we will show you that RobotBASIC and some

readily available hardware, can make the above goal easily

attainable.

 Modern technology has greatly reduced the complexities

of communicating with, and controlling external devices.

Companies like Parallax, Lynxmotion, and Pololu now

provide motor controllers and sensors that make it easy to

accomplish projects that would have required an

engineering degree only a short time ago. Even with all

these advancements though, a proper understanding of the

fundamental principles can help ensure your success.

 This book concentrates on how RobotBASIC programs

can interface with a wide variety of off-the-shelf hardware.

Many options will be explored including both serial and

parallel ports and how a separate microcontroller can be

used to handle the low-level I/O operations. You will even

A

Preface

Page viii

see how vision, speech synthesis, voice recognition, and

Internet communications can be used in your RobotBASIC

programs.

 The main portion of the book uses straightforward, less

intimidating examples to introduce the concepts without

being overwhelming. A series of appendices provide

additional details for more intricate information.

 Visit our web page to download your free copy of

RobotBASIC.

 www.RobotBASIC.com

Page 1

Chapter 1

Introduction to I/O Ports

his chapter will introduce you to the various types of

ports and some of the terminology associated with

them. Later chapters will discuss the details of using these

ports.

 When you write PC programs that need to obtain

sensory data from external devices and control electro-

mechanical actuators such as motors, you need to

understand what ports are and how to use them.

 Input/Output ports can be subdivided into two general

categories, serial and parallel.

Parallel Ports
Parallel ports generally make available 8 pins for either

input or output or both. That means they can transfer 8 bits

of I/O. Other sizes are also possible. The term bit

originated from the phrase, binary digit, which simply

means that each piece of information can only be one of

two values. These values are typically referred to as zero

and one, on and off, or low and high where low and high

generally correlate to voltage levels in an electronic circuit.

 When standard TTL (Transistor-Transistor Logic)

circuitry is used, a low usually means zero volts and a high

is typically associated with five volts. Since a bit can only

take on one of two possible values, there is a threshold

voltage (typically around 3 volts, but that varies by the

T

Chapter 1: Introduction to I/O Ports

Page 2

types of electronics being used) that marks the boundary

between a logical high and low.

 A group of 8 bits is often referred to as a byte, and two

associated bytes (16 bits) are often called a word. There is

even a term for a 4-bit grouping. It is called a nibble(half a

byte).

 When a computer program needs to transfer a group of

bits to or from some external hardware, a parallel port is

required. This term simply means that a group of bits are

transferred simultaneously - that is, in parallel.

Serial Ports
Serial ports get their name because the bits of information

are transferred between devices in a serial manner - that is

one bit at a time. Serial ports come in many different types,

as we shall see later.

Comparing Serial and Parallel
Imagine that we have eight ping-pong balls, each labeled

with a 1 or 0. Assume that together they make up a byte of

information that needs to be transferred from one device to

another.

 A parallel port is like gathering all eight balls together

and throwing them to someone. If you throw the balls one

at a time, it is similar to a serial port.

 One advantage of a parallel port transfer is speed. It is

obviously faster to transfer all the bits at once rather than

sending them sequentially. Older serial ports were

asynchronous and very slow compared to today’s

synchronous serial ports.

Synchronous vs. Asynchronous
The most common asynchronous serial transfer protocol is

called RS-232. The actual data being transferred is

sandwiched between a start and stop bit. The start bit

simply gives the receiving hardware a wake-up call,

indicating that the real data is coming. The start bit is

necessary in asynchronous transfers because the data can be

Chapter 1: Introduction to I/O Ports

Page 3

sent without warning (thus the term asynchronous). It is

the responsibility of the receiving hardware to watch for the

arrival of data. Timing is of paramount importance and it is

measured in relation to the time of arrival of the start bit.

The stop bit does not actually indicate the end of the data,

but only serves as a small delay between the transfer of

each group of 8 bits to ensure that the next start bit can be

distinguished from the last bit of the 8 bits.

 A synchronous transfer requires two wires instead of

just one used for asynchronous transfers.

Of course, both methods also require a ground

wire to complete the electrical circuit.

On asynchronous transfers, the second wire carries a clock

signal whose pulses indicate exactly when data is available

on the first wire. This can make synchronous transfers

much faster than asynchronous ones because this additional

clocking line helps make the timing much more precise

which helps in maintaining the transfer integrity and

synchronization even at high clocking rates.

Modern Ports are Serial
Not long ago, all printers came with a parallel port interface

operating through a 25-pin connector. Actually, the

interface was composed of three separate parallel ports.

One port carried the data (the codes for the letters to be

printed) and a second port was used to send error

information (paper out, printer off line, etc.) back to the

computer. The third port was used to control the transfer,

telling the printer when another piece of data was ready to

be taken. RobotBASIC has commands that allow reading

and writing to parallel ports, even though most computers

today do not have them anymore.

 Nearly all printers today communicate using a USB

port, which is a synchronous serial port with well-defined

Chapter 1: Introduction to I/O Ports

Page 4

standards. Because of its synchronous nature, USB ports

are nearly as fast as parallel ports, but can be implemented

less expensively.

Converting Serial to Parallel
When the 8 serial data bits arrive at their destination they

must be reconstituted back into a byte so that it can be used

in the computer (or microcontroller) as a single byte

representing a number or character. Fortunately, most

computers and microcontrollers provide either hardware or

software modules that make it easy to send and receive

serial data relieving you from having to understand all the

low-level details.

Virtual Serial Ports
On the PC, the Windows OS allows a device plugged into a

USB port to establish itself as a virtual serial port. Since

many languages, including RobotBASIC, have commands

to read and write to a serial port, this provides an easy way

to communicate with many modern external devices.

 Most modern PCs no longer have the original RS-232

serial ports just as they no longer have parallel ports.

However, many microcontrollers and even some sensors

communicate using the RS-232 standard, so robotic

projects will often need a standard serial port. In order to

provide compatibility, many companies provide a USB-

based serial port.

I2C Communication
USB is not the only synchronous interface. Many serial

memory modules, electronic compasses, and other devices

useful to robotic hobbyists use the I
2
C synchronous

interface which has the advantage of being able to

communicate bi-directionally with only two wires (in

addition to the ground wire).

 As with the USB interface, it is often easy to find

hardware or software modules that make it easy to utilize

Chapter 1: Introduction to I/O Ports

Page 5

I
2
C communication without having to understand all the

details of its internal low-level operation.

Virtual Parallel Ports
Just as many companies provide the necessary circuitry to

create a virtual RS-232 serial port over a USB port, so there

are also companies that provide circuitry to create a virtual

parallel port using a USB port. One such company is

USBmicro (www.USBmicro.com). Their U4x1 devices are

not just parallel port replacements. They also provide

many powerful features (see next chapter). RB has a suite

of functions to control the U4x1 and utilize all its facilities.

Utilizing Microcontrollers for I/O
Since microcontrollers are designed for low-level control

applications, they provide an easy way to add I/O

operations to nearly any PC. The micro controller can be

programmed to communicate with RobotBASIC using an

RS-232 interface. This allows the controller to perform the

actual Input/Output operations on its I/O pins as requested

through serial commands sent by RB.

 You might dislike the idea of having to program a micro

controller to act as your I/O interface, especially since one

of the major advantages of using RobotBASIC to control a

robot is that you get to program in an easy-to-use high-level

language. There is an important distinction though. The

program in the controller only has to handle very basic

operations, so it is easy to write, and, as you will see in

later chapters, the low-level program generally only has to

be written once. All of the major programming, that is all

of the decision-making and intelligence, can be fully

implemented in RobotBASIC.

Summary
This chapter provided an overview of various types of ports

and some terminology associated with them. The next

chapter will provide some practical examples of how to

utilize parallel ports in your RobotBASIC programs.

http://www.usbmicro.com/

Page 6

Chapter 2

Parallel Port Examples

n this chapter, we will look at some practical examples

of how a PC’s parallel I/O ports can be used to send and

receive data to and from external circuitry. Let’s start with

the most generic I/O commands in RobotBASIC, InPort

and OutPort. These commands allow you to read and

write to a valid I/O port on your PC. Because of that, these

commands should be considered dangerous. Many PC

devices (such as disk drives, video cards, sound cards, and

interrupt controllers, just to name a few) use I/O ports to

control their operation. Inadvertently writing improper data

to the wrong ports can alter your PC’s operation in strange

ways and potentially damage it.

OutPort
The OutPort command sends data to some external

circuitry and requires two parameters as shown below.

OutPort PortNumber, Data

The PortNumber is an address that specifies which of

65,536 ports to use (addresses 0-65,535). Most port

addresses are not used, and of those that are, many should

only be used by the operating system or other programs that

know how to use them properly. Let’s see how to use

OutPort by looking at a specific example.

I

Chapter 2: Parallel Port Examples

Page 7

 Older PC’s had a special 25-pin connector for

interfacing with printers. Nowadays, most computers use a

USB port for connecting to a printer, so spending a lot of

time on the older interface would not be fruitful. It does

provide a simple introductory example though, and you

may have an older computer that has a parallel printer

interface. This example is also valid, because the

techniques shown here can be used to exchange data with

any parallel port, not just the printer port.

RobotBASIC can run on any version of the

Windows OS from 95 to Vista and 7. If you have an

older computer you can use it to do your

experimentation. RB needs no installation and is

easily usable from a thumb-drive or CD or even

through the Internet. Using this possibility means

you can make use of old PCs and you do not have to

worry about damaging it.

As mentioned earlier, the old parallel port printer interface

is actually composed of three different I/O ports; a data

port, a control port, and a status port. The data port was an

8-bit output port used to send data to the printer. The

control port was a 4-bit output port used to initialize the

printer and to tell it when new data was available on the

data port. The status port was a 5-bit input port that

allowed the PC to receive information from the printer

(indicating, for example, that the printer is busy or out of

paper).

You can specify a hexadecimal number in

RobotBASIC by using 0x. For example 0xA4B3

would mean the hexadecimal number A4B3, which is

42163 in decimal. To specify a binary number use

0%. So 0%1101 is the binary number 1101, which is

13 in decimal.

Chapter 2: Parallel Port Examples

Page 8

On most desktop PC’s the location for these ports started at

a base address of 0x378 (888 in decimal), although some

PC’s and laptops use a different address. The data port was

located at the base address followed by the status port and

then the control port. For this example we will only use the

data port. Let’s assume we have three LED’s connected to

the three least significant bits (LSB) of the port, as shown

in Figure 2.1. The figure also shows the pin assignments

for the 25-pin connectors used for parallel printer

interfaces.

Figure 2.1: Three LEDs connected as shown allow us

to see the data written to the port.

When a l is written to one of the port pins, that LED will

light because it will have a voltage applied to its anode

terminal (typically 3-4 volts) and ground to its cathode

terminal. We can light all three LEDs by writing a 7

(binary 111) to the port. Let’s see how to light the LED’s

from RobotBASIC. Look at the one-line program below.

OutPort 0x378, 1

If you run this program with the LEDs connected, the D0

LED will light. If you send a 2 (0%010) to the port, the D1

LED will light, and a 4 (0%100) will light D2. Remember,

Chapter 2: Parallel Port Examples

Page 9

this program assumes the parallel port is at address 378. If

your printer port is at some other address, or if you are

using a different type of parallel port entirely, you must use

the appropriate address.

 The short program in Figure 2.2 will cause the D0 LED

to blink at a one-hertz rate.
while true // loop forever

 OutPort 0x378,1 // turn the LSB on

 delay 500 // wait ½ second

 OutPort 0x378,0 // turn all bits off

 delay 500 // wait ½ second

wend

Figure 2.2: This program blinks the LED on the LSBit.

We can make the light appear to move back and forth from

one side to the other by sending the proper data to the port.

In particular, the data we need to send to the ports is shown

below. If these numbers are sent over and over, the lit LED

will appear to move back and forth.

Decimal Binary

1 001

2 010

4 100

2 010

The program below shows how to accomplish this in RB.

You can adjust the delays to make the light move faster or

slower.

while true

 OutPort 0x378, 0%001

 delay 200

 OutPort 0x378, 0%010

 delay 200

 OutPort 0x378, 0%100

 delay 200

 OutPort 0x378, 2

 delay 200

wend

Figure 2.3: This program causes a light to move

back and forth on three LEDs.

Chapter 2: Parallel Port Examples

Page 10

InPort
Let’s see now how to input data from any PC port. The

InPort function is similar to OutPort except that it

returns the data from the designated port address. For our

next example, we will assume the circuitry in Figure 2.4 is

connected to the status port for the parallel printer interface.

Figure 2.4: The status port can be used for input.

Each input pin is connected to a switch and a resistor.

When the switch is closed, the input line is pulled to ground

causing the input to read a zero. When the switch is open,

the pull-up resistor will pull the line towards five volts,

causing the input to read a logical one. This means that a

normally-open switch will input a zero when pressed. If

you prefer the opposite, you can use normally-closed

switches or invert the data either with hardware or in

software. It is worth mentioning, that since the printer port

connector does not have the 5-volt supply available, that a

separate 5-fvolt supply must be connected. Note also that

the input data lines do not enter on the least significant bits

Chapter 2: Parallel Port Examples

Page 11

of the port (S0 would be the LSBit). This means that the

data must be shifted to the correct position after it has been

obtained.

 The program in Figure 2.5 obtains the data from the

switches and displays it in the raw form as well as inverted

and shifted. The program prevents flicker by updating the

display only when a new number is obtained from the port

by comparing the number obtained to the old number. Also

notice how the bit-wise AND (& or bAND) is used to clear

(or mask out) all the unwanted bits. This action only keeps

bits marked by 1’s in the number &ed with the data.

Individual bits in data can be inverted by bit-wise

exclusive-ORing them with a one. In this case, we want to

invert the three least-significant bits, so we bXor (or you

can use the @ operator) them with 7. If you are not

familiar with bit-wise operations, refer to Appendix A.

d=0 \ oldData=d \Gosub DisplayData

while true

 InPort 0x379, d // get data from port 0x379

 // and place in d

 d = d & 0%00111000 // zero all unwanted bits

 if d<>oldData

 Gosub DisplayData

 oldData=d

 endif

wend

end

DisplayData:

 clearScr

 print " Raw Data = ",d

 print " binary ",bin(d,3)

 print

 print " Shifted Data = ",d>>3

 print " binary ",bin(d>>3,3)

 print

 print " Shifted & Inverted = ",(d>>3)bXor(7)

 print " binary ",bin((d>>3)@7,3)

return

Figure 2.5: This program displays data from an input port in several

forms.

Chapter 2: Parallel Port Examples

Page 12

Assuming you use normally open switches, then if all the

switches are off (open) then each input pin will read a high

or 1. Since these bits are coming in three bit positions to

the left, if all bits are high, the number displayed in the raw

mode would be 56 (0%000111000) and the output from the

program would look like Figure 2.6.

 Once the raw data is obtained from the port, it can be

converted to a more desirable form by shifting it right three

positions using the shift operator (>>) or inverted the

desired bits by binary exclusive ORing them (@) with 1’s.

 Raw Data = 56

 binary 111000

 Shifted Data = 7

 binary 111

Shifted and Inverted = 0

 binary 0

Figure 2.6: This is the display from the program in Figure 2.5 when all

the switches are open.

The programs examined so far demonstrate the basic

principles for dealing with I/O ports utilizing the legacy

parallel printer port. If you are using an older PC, or if you

have added a third party parallel port board to your PC,

then these principles apply. Most modern personal

computers though, communicate with external hardware

with USB ports. RobotBASIC supports USB ports in

multiple ways, one of which is supplying special

commands for controlling products from USBmicro.

USBmicro I/O Boards
USBmicro (www.USBmicro.com) produces parallel port

I/O boards that can be connected to a PC through the USB

ports. The U401, shown in Figure 2.7, is fully supported

by RobotBASIC with commands that communicate with a

special DLL file supplied by USBmicro. We will explore

some of the basic commands here, but refer to

Chapter 2: Parallel Port Examples

Page 13

RobotBASIC’s HELP file and to USBmicro’s web page

documentation for complete information.

 The U401 has 16 I/O lines that can be individually

configured as inputs or outputs. The 16 lines are further

configured as two 8-bit ports, A and B. The required

USBmicro DLL (USBm.DLL) is provided when you

download the RobotBASIC zip file for a full install.

Figure 2.7: This U401 I/O board from USBmicro is fully supported by

RobotBASIC.

The output pins on a U401 board have VERY limited

current capabilities, so they should be buffered with some

form of buffer/driver as shown in Figure 2.8. When a

logical one is applied to the inverting buffer, it provides a

low output that turns on the associated LED. The rest of the

circuitry is similar to what we have seen before.

 There are many special RobotBASIC commands for

controlling the U401. The program in Figure 2.9

demonstrates a few commands that read the switch data

from Port A and send it to the LEDs on Port B. When this

program is running, anytime you change the switches, you

will see the results on the LEDs. Notice how commands

are used to verify that both the USBmicro DLL and I/O

board have been found.

Chapter 2: Parallel Port Examples

Page 14

Figure 2.8: External devices are easily connected to the U401 from

USBmicro.

if usbm_DllSpecs() != ""

 if usbm_FindDevices()

 //---there is a device and it will be device 0

 usbm_DirectionA(0,0,0) //set port A0 to A7

 // as inputs

 usbm_DirectionB(0,0xFF,0xFF) //set port B0 to B7

 //as outputs

 while true

 n = usbm_ReadA(0) // assume device 0 for

 //both read and write

 usbm_WriteB(0,n)

 wend

 else

 print "There are no Devices"

 endif

else

 print "The USBmicro DLL is not installed"

endif

Figure 2.9: This program reads switches and mirrors their status on

LEDs.

Chapter 2: Parallel Port Examples

Page 15

RobotBASIC has many advantages, when compared to a

micro controller, for handling control applications.

Microcontrollers, no matter how powerful they are, usually

have limitations when it comes to memory size, variable

types, multi-dimensional arrays, and high-level language

support. The program in Figure 2.10 demonstrates how the

simple task of reading and writing port data can be

enhanced by using a graphical interface. When the

program is run, the LEDs of Figure 2.8 will reflect the state

of the checkboxes on the screen and the state of the

switches will show in binary on the screen. Some of the

lines in our program listing are longer than the book’s page

width. When this happens, we use the \ character to allow

the code to continue on the next line. You may enter the

line into RobotBASIC using the \ character, or you may

enter it all on the same line. Either way is acceptable to

RobotBASIC.

 These examples show only a small portion of the power

of the USBmicro I/O boards. Refer to the RobotBASIC

HELP file and www.USBmicro.com for more information

and additional examples.

Chapter 2: Parallel Port Examples

Page 16

if usbm_DllSpecs() != ""

 if usbm_FindDevices()

 //---there is a device and we will use device 0

 usbm_DirectionA(0,0,0) // set port A0 to A7

 //as inputs

 usbm_DirectionB(0,0xFF,0xFF) //set port B0 to B7

 //as outputs

 xyText 10,10,"Set Output Port Status:" \

 ,,20,fs_Bold|fs_Underlined

 for i=0 to 2

 addcheckbox ""+i,430+20*(2-i),20," "

 next

 xyText 90,70,"Input Port Status:" \

 ,,20,fs_Bold|fs_Underlined

 rectangle 425,70,493,108

 while true

 for i=0 to 2

 if getcheckbox(""+i) // see if each box is

 // checked

 n = usbm_SetBit(0,8+i) //add 8 for

 //Port B bits

 else

 n= usbm_ResetBit(0,8+i)

 endif

 next

 // the following is done individually to

 // clarify each task

 n= usbm_ReadA(0) // read the port

 n= n bXor 7 // invert lower three bits

 n= bin(n,3) // convert to a binary

 // string

 n=right(n,3) // keep only right

 // three bits

 // note: all the above can be done in one line

 //n = right(bin(usbm_ReadA(0)@ 7,3),3)

 xyText 437,75,n,,20,fs_Bold

 wend

 else

 print "There are no Devices"

 endif

else

 print "The USBmicro DLL is not installed"

endif

Figure 2.10: A Graphical Interface can enhance interaction with ports.

Chapter 2: Parallel Port Examples

Page 17

USB Alternatives
The USBmicro boards are one of the easiest ways of

connecting to the real world though a USB interface.

Moreover, these boards provide much more than just

normal on/off I/O. The boards allow you to control stepper

motors with ease and to carry out I
2
C, SPI and 1-Wire

synchronous serial communications and to control an LCD.

The U451 also allows you to switch high-voltage-high-

current relays (240V 10A). These properties can be quite

useful in many projects.

 In the next chapter we will see another method for

interfacing with a USB port.

	Preface
	Introduction to I/O Ports
	Parallel Ports
	Serial Ports
	Comparing Serial and Parallel
	Synchronous vs. Asynchronous
	Modern Ports are Serial
	Converting Serial to Parallel
	Virtual Serial Ports
	I2C Communication
	Virtual Parallel Ports
	Utilizing Microcontrollers for I/O
	Summary

	Parallel Port Examples
	OutPort
	InPort
	USBmicro I/O Boards
	USB Alternatives

