




 

 

 

A Hardware Interfacing  
And Control Protocol  

 

Using RobotBASIC  
And The Propeller Chip  

 
 
 
 
 

John Blankenship & Samuel Mishal  
 

 

 

 



 

 

 

 

 

Copyright © 2011 by 

John Blankenship & Samuel Mishal 

ISBN-13: 978-1438272849              ISBN-10: 1438272847  

All r ights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or 

mechanical, including photocopying, recording, or by any information storage or retrieval system without the prior 

written permission of the copyright owner. 

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a 

trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no 

intention of infringement of the trademark. 

Images of proprietary devices and sensors are reproduced with the permission of the manufacturing companies. 

The information and projects in this book are provided for educational purposes without warranty. Although care has 

been taken in the preparation of this book, neither the authors or publishers shall have any liability to any person or 

entity with respect to any special, incidental or consequential loss of profit, downtime, goodwill, or damage to or 

replacement of equipment or property, or damage to persons, health or life, or any costs of recovering, reprogramming, 

or reproducing any data, caused or alleged to be caused directly or indirectly by the information contained in this book 

or its associated web site. 

The source code for the program listings in this book (and much more) is available to the readers at 

http://www.RobotBASIC.com 

 

http://www.robotbasic.com/


 

 

Contents At A Glance 
 

 

 

Table Of Contents i   

Foreword ix   

Preface xi   

Acknowledgement xiii   

  1- Introduction  1   

  2- Hardware & Software Setup 15  

  3- Testing the Hardware and Serial Communications 25  

  4- Basic Communications and I/O 37  

  5- Multitasking & Parallel Processing 49  

  6- A Communications Protocol 103 

  7- Adding More Hardware 123 

  8- More Advanced Hardware 183 

  9- Severing the Tether 239 

10- RobotBASICôs Inbuilt Protocol 257 

11- Further Improvements 289 

Appendix A: Web Links 301 

Appendix B: Tables & Schematics 305 

Index 317 
 





 

Page i 

Table Of Contents 
 

Foreword   ix 

Preface   xi 

Acknowledgement  xiii  
 

1- Introduction   1 
 1.1 Why Do We Need the PC? 1 

  1.1.1 Advantages of Using a PC 4 

   Effective Operator Interfacing 4 

   Processing Power 4 

   Algorithmic and Data Processing Power 4 

   Utilizing Simulations 4 

   Access to the Internet or LAN 5 

  1.1.2 Versatility and Reusability 5 

 1.2 A Paradigm Shift 7 

  1.2.1 The RobotBASIC Advantage 8 

  1.2.2 Various Arrangements 9 

 1.3 Distributed Parallel Processing 9 

  1.3.1 A Remote Computational Platform (RCP) 9 

 1.4 What Will You Learn? 11 

 1.5 What Do You Need To Know? 11 

 1.6 An Overview of the Chapters 12 

 1.7 Icons Used In This Book 13 

 1.8 Webpage Reference Links in This Book 14 

 1.9 Downloading the Source Code of the Book 14 

 

2- Hardware & Software Setup 15 
 2.1 Hardware Setup 15 

 2.2 Software Setup 20 

  2.2.1 Ensuring the Propeller Chip is Blank 23 

 2.3 Summary  23 

 

3- Testing the Hardware and Serial Communications 25 
 3.1 Testing the LEDs 25 

 3.2 Testing the Pushbuttons 26 

 3.3 Asynchronous Serial Communication 27 

 3.4 Testing Communication with the PST 28 

  3.4.1 Floating Input Pins 29 

 3.5 Communicating RB Through the Programming Port 30 

  3.5.1 A Note About String and Byte Buffers 31 



Table Of Contents 

Page ii  

  3.5.2 Problem with Resetting the Propeller (use F11 not F10) 33 

 3.6 Communicating RB Through the Propeller Plug (PP) 33 

 3.7 Communicating With the PST and RB Simultaneously 35 

 3.8 Summary  36 

 

4- Basic Communications and I/O 37 
 4.1 Sending Data From RB to the Propeller 38 

  4.1.1 Sending Characters, Bytes, Words, Longs and Floats with RB 39 

  4.1.2 Extracting Numbers from a Received Buffer 40 

 4.2 Receiving Data with a GUI Display 41 

  4.2.1 Serial Streaming Speeds and Buffering 41 

  4.2.2 Hand Shaking 42 

  4.2.3 Data Remapping 43 

  4.2.4 An Example of Data Remapping 43 

 4.3 Sending and Receiving Data with a GUI Display 44 

  4.3.1 An Exercise 45 

   The Solution 46 

  4.3.2 An Exercise in Troubleshooting Weird Problems 46 

 4.4 Summary  47 

 

5- Multitasking & Parallel Processing 49 
 5.1 Multitasking Using Interrupts  50 

  5.1.1 RobotBASIC Simulation of a Microcontroller 50 

  5.1.2 Using Interrupts in RobotBASIC 51 

 5.2 Multitasking Using Polling 52 

  5.2.1 Polling in RobotBASIC 53 

  5.2.2 Polling on the Propeller Chip 53 

  5.2.3 Counting Time in Spin 54 

   Integer Multiplication Overflow 55 

   Determining the Clock Frequency 55 

 5.3 True Multitasking with Parallel Processing 55 

  5.3.1 Using Helper Modules 56 

  5.3.2 Using Multiple Microcontrollers 56 

 5.4 Parallel Processing with the Propeller Chip 57 

  5.4.1 Modularization in Preparation 57 

   A Variableôs Address in Memory (Pointer) 58 

   A Brief Note About Objects and Methods 59 

  5.4.2 Initial Multitasking With Polling 59 

  5.4.3 Achieving Initial Parallelism 61 

   The Relationship Between Cogs, Methods and Objects 62 

   Cogs and Stack Space 63 

  5.4.4 Systematic Debugging of Complex Programs 63 

  5.4.5 Sources For Obtaining Help With Difficult Problems 69 

  5.4.6 Parallel Processing Contention for Resources 72 

 5.5 Objects, Semaphores and Flags 72 

  5.5.1 Creating Objects 72 



Table Of Contents 

Page iii  

  5.5.2 Utilizing Semaphores 77 

   What is a Semaphore? 78 

   Using a Semaphore 79 

  5.5.3 Tighter Control With Flags 81 

 5.6 Parallel-Parallel Processing 84 

 5.7 Stack Overflow 86 

 5.8 A Musical Keyboard 87 

  5.8.1 A Different Way of Sharing RAM 87 

  5.8.2 Creating Frequencies (Numerically Controlled Oscillator) 88 

  5.8.3 Testing the Speaker Firmware 89 

  5.8.4 A Piano Keyboard Player 92 

   An Exercise 95 

   Solution 96 

  5.8.5 Some Thoughts and Considerations 96 

 5.9 Parallel Programming Can Create Puzzling Errors 97 

  5.9.1 An Example of a Parallel Processing Trap 97 

   The Problem 98 

   The Solution 99 

  5.9.2 An Example of a Propeller Specific Trap 99 

   The Problem 100 

   The Solution 100 

 5.10 Logistical Planning for Parallelism With the Propeller 101 

 5.11 Summary 101 

 

6- A Communications Protocol 103 
 6.1 A Better Protocol? 103 

  6.1.1 A Protocol Enables More Control 104 

  6.1.2 Specifying the protocol 104 

  6.1.3 Implementing the Protocol 106 

 6.2 Fault Tolerance With Recovery 115 

 6.3 GUI Instrumentations 116 

 6.4 Versatility of the Protocol 120 

  6.4.1 A Thought Exercise 120 

  6.4.2 Another Exercise 121 

   The solution 122 

 6.5 Summary  122 

  

7- Adding More Hardware 123 
 7.1 Utilizing the PPDB 124 

 7.2 Controlling Servomotors 126 

  7.2.1 A Simplistic Method For Driving a Servomotor 128 

   The Limitation of This Methodology 129 

   Using Helper Modules 129 

  7.2.2 The Propeller Advantage 129 

  7.2.3 Control With RobotBASIC 130 

  7.2.4 Using Servo32V7.Spin 133 



Table Of Contents 

Page iv 

 7.3 Using an Ultrasonic Ranger 135 

  7.3.1 Showing the Ping))) Values on the PST 136 

  7.3.2 Using the Ping))) With an RB Program 137 

 7.4 Using Two Potentiometers 140 

  7.4.1 Testing the Pots 142 

  7.4.2 Using the Pots With an RB Program 143 

 7.5 Putting It All Together 146 

  7.5.1 Modifying the Others Object 148 

  7.5.2 Modifying the Reader Object 150 

  7.5.3 Checking the New Hardware + Firmware + System So Far 150 

   A Simple Test RB Program 151 

   Using Program_10_B.Bas 152 

   An Exercise in Versatility 152 

 7.6 Adding the Motors Object 153 

  7.6.1 Further Modifications of the Main Object 155 

  7.6.2 Verifying the Motors Object 157 

   Simple Test For The Motors 158 

   Another Exercise In Versatility 158 

 7.7 RB Programs to Exercise the Entire System 160 

  7.7.1 Flexibility, Facility and Simplicity 167 

  7.7.2 A Really Simple Program 167 

 7.8 Improving the Motors Object 168 

  7.8.1 Allowing For Distance and Angle 169 

  7.8.2 Eliminating Jitter 169 

   Determining the Command Turnaround Frequency 170 

  7.8.3 Modifying the System Parameters 171 

  7.8.4 Timeout Range Remapping 171 

  7.8.5 Avoiding Serial Communications Timeout 172 

  7.8.6 The Modified Firmware 173 

  7.8.7 Testing the New Firmware 177 

  7.8.8 Robot Moves 178 

 7.9 An Exercise 180 

  7.9.1 The Solution 180 

 7.10 Summary 181 

 

8- More Advanced Hardware 183 
 8.1 Adding a Compass 183 

  8.1.1 Using the Compass 190 

  8.1.2 Inter-Cog Communications and Complex Object Interaction 191 

  8.1.3 Using the Compass Calibration 192 

   Manual Compass Calibration 193 

   Automatic Compass Calibration 193 

   Complexity of Programming the Automatic Calibration: 193 

  8.1.4 A Simulated Compass Instrument 193 

 8.2 A Procedural Strategy for Adding Other Hardware 198 

  8.2.1 Commands in the Protocol So Far 199 



Table Of Contents 

Page v 

  8.2.2 A Procedural Strategy For Extending the Hardware 199 

   Procedure For Adding a New Hardware or Command 200 

  8.2.3 Controlling Motors Separately 200 

   Testing the New Commands 204 

  8.2.4 Controlling a Ping))) on a Turret 204 

   A Radar Application 207 

 8.3 Saving The System Parameters to EEPROM 209 

  8.3.1 EEPROM Limitations 209 

  8.3.2 Required Changes to The Firmware 211 

  8.3.3 CRC and Validity Check 211 

  8.3.4 The New Commands & Firmware 212 

  8.3.5 Testing the EEPROM Commands 217 

 8.4 Adding an Accelerometer 219 

  8.4.1 Adding the Accelerometer Commands to the Protocol 219 

  8.4.2 Incorporating the H48C in the Protocol 221 

  8.4.3 Testing the New Command 224 

  8.4.4 Three Dimensional Animation of Airplane Pitch, Roll & Heading 225 

 8.5 Using the QTI Infrared Line Sensors 230 

  8.5.1 The New Firmware 230 

  8.5.2 Testing the QTI 231 

 8.6 Adding Sound 232 

  8.6.1 The New Firmware 233 

  8.6.2 Testing the Speaker 235 

  8.6.3 An Exercise 235 

 8.7 The Final System Firmware 236 

 8.8 Summary  238 

  

9- Severing the Tether 239 
 9.1 Wireless With RF, Bluetooth or XBee 239 

  9.1.1 XBee 240 

   The XBee Advantage 241 

   The XBee Disadvantage 241 

  9.1.2 Bluetooth 242 

   The Bluetooth Advantage 243 

   The Bluetooth Disadvantage 243 

  9.1.3 Pure Radio Frequency 243 

   The RF Advantage 244 

   The RF Disadvantage 244 

  9.1.4 Summary of the Wireless Options 245 

 9.2 Wi-Fi & Internet  245 

  9.2.1 TCP and UDP Networking Protocols 245 

  9.2.2 The Topology 247 

   The Software Side 248 

   The Hardware Side 248 

   The Client and the Server 248 

   The Required Modifications 249 



Table Of Contents 

Page vi 

   An Example Topology 249 

   A Testing Topology 249 

  9.2.3 IP Address and Port 250 

  9.2.4 The Server Program 251 

  9.2.5 The Client Program 252 

   The Serial Link Program 252 

   The LAN Program 252 

  9.2.6 Running the LAN System 254 

  9.2.7 Converting a More Complex Program 254 

 9.3 Summary  256 

 

10- RobotBASICôs Inbuilt Protocol 257 
 10.1 The RobotBASIC Simulator 259 

 10.2 How Does RBôs Protocol Work? 260 

 10.3 The PPDB Hardware as a Robot Emulator 262 

  10.3.1 Ranger and Turret 264 

  10.3.2 Reading the Compass 266 

  10.3.3 Reading the QTI Line Sensors 267 

  10.3.4 Other Devices 268 

  10.3.5 Handling Errors With the RB Simulator Protocol 269 

  10.3.6 Your Turn to Have a Go 271 

 10.4 The RobotBASIC Simulator Protocol Advantage 271 

  10.4.1 A Case Study 273 

   The Design Advantage 273 

   The Debugging Advantage 274 

   The Exhaustive Testing Advantage 275 

  10.4.2 Implementation Onto the Real Robot 276 

   Sensory Data Mapping To RBôs Requirements 277 

  10.4.3 An Exercise 279 

   A Comment About Feedback Control 279 

 10.5 A Simplistic Inertial Navigation System 280 

  10.5.1 The Experiment 280 

  10.5.2 The Results 281 

  10.5.3 The Programôs Details 282 

  10.5.4 A Brief Note About Sampling Rates and the Nyquist Limit 286 

 10.6 Summary 287 

 

11- Further Improvements 289 
 11.1 Extending Our Protocol 289 

  11.1.1 Example of an Extended Protocol 290 

   The Extended Firmware 291 

   Software for Testing the Extended Firmware 296 

   Table of Extended Protocol Commands 297 

  11.1.2 Working the Extended Protocol Over the TCP Link 297 

 11.2 Improvements For the Robotic Control Protocol 297 

 11.3 A RobotBASIC Robotic Operating System (RROS) 299 



Table Of Contents 

Page vii  

 11.4 Summary 300 

 

Appendix A: Web Links 301 
 

Appendix B: Tables & Schematics 305 
 Final Protocol Objects Hierarchy Map 305 

 Extended Protocol Objects Hierarchy Map 306 

 Figure B.1: Systemôs Conceptual Schematic 307 

 Figure B.2: Propeller Pin Utilization 308 

 Figure B.3: Hardware Connection Schematics 309 

 Figure B.4: Photograph of the Final PPDB Hardware Arrangement 310 

 Table B.1:  Final Firmware Protocol Command Codes 311 

 Table B.2:  System Parameters Mapping Formulas 312 

 Table B.3:  Extended Firmware Command Codes 313 

 Table B.4:  RobotBASIC Inbuilt Protocol Command Codes 314 

 Figure B.5: Protocol State Diagrams 315 

 

Index 317 

 



 

Page viii  

 

 



 

Page ix 

 

 
 

Preface 

 

 

he objective of this book is to provide an attainable solution for effecting communications between a PC and 

electronic hardware. You might wish to have an electronic device do some tasks like switching relays or actuating 

some motors and reading some transducers, while the PC does the Artificial Intelligence (AI). You might have a 

system that carries out some complicated tasks and you wish to use the PC to display data and control instrumentation 

using an effective and ergonomic GUI. Perhaps you have distributed nodes of sensors collecting data over a wide area 

and you want to use the PC as the central controller for data collection, storage and analysis (see Chapter 10) with the 

nodes communicating with the PC over wireless links or even across a LAN, WAN or the Internet (see Chapter 9). 

 

Until now, anyone creating a control application had to make a choice; use the microcontroller or the PC for their 

projects. As a student, hobbyist, or engineer you most likely have wished to utilize the PCôs capabilities in your 

projects - keyboard, data storage, Internet connectivity, arrays, floating point math, graphical user interface (GUI), 2D 

and 3D graphics and more.  While some of the more powerful microcontrollers (e.g. the Parallax multi-core Propeller 

Chip) can actually do many of these things, it can be complex to implement any one of them, let alone several at the 

same time. In contrast, these features are already available and readily usable on a PC. 

 

In the past, using a PC in electronic control projects was common practice and quite easy to do. The PC used to have 

I/O ports that were easily usable to interface with electronics projects and it was easily programmable to do 

deterministic timing without being unpredictably preempted by a complex multitasking operating system performing a 

myriad of other jobs. The PC grew progressively more complex, powerful and sophisticated with GUI, multitasking, 

3D graphics, virtual memory management, and much more. But it also became extremely convoluted to program while 

also prohibiting any access to low-level I/O systems; as a result most are nowadays only using the PC as a cross 

compiler to upload programs to a microcontroller.  

 

In the meantime, microcontrollers (ɛCs ) have been steadily advancing in capabilities and becoming more powerful, 

easier to program and much less costly. Naturally, engineers and hobbyists are opting to use them for their projects 

instead of the PC. However, most ɛCs lack the data storage and processing power as well as the user interfacing 

facilities of the PC and many engineers and hobbyists find themselves wishing to combine the two. Even though ɛCs 

are preferred for controlling electronics hardware and for robotics projects, it is evident that microcontroller-based 

applications can benefit greatly from the PC's capabilities.  

 

This book will detail a new conceptual model as a design strategy for incorporating the PC with ɛCs in your projects so 

that you no longer have to choose between the two (see Chapter 1). We aim to show techniques and strategies that can 

be implemented with many ɛC and most PC programming languages to create a protocol for interfacing and 

combining the PC and ɛC (or multiple microcontrollers) where the shortcomings of each are overcome by the 

capabilities of the other. We will expound methodologies for implementing a firmware layer on top of any 

amalgamation of hardware to act as a conduit for a software layer to carry out real time control of the overall 

integrated system. The details and particulars of the hardware and software are incidental. Rather, what is of primary 

significance is how the combination implements a communications protocol (Chapter 6). 

 

T 



Preface 

Page x 

Although we utilize a specific microcontroller (Parallax multi-core Propeller Chip
1
) and a specific PC programming 

language (RobotBASIC
2
), you should be able to utilize the strategy and methodology developed here as a template to 

create your own system of any combination of hardware controlled by a PC software of your design through a protocol 

of your devising implemented by a firmware layer applicable to your system. 

 

The Propeller Chip ï a multi-cored processor in a single chip with eight 32-bit processors running in parallel and 

sharing a common RAM ï with its powerful programming language (Spin) facilitates implementing multitasking and 

parallel processing, which are the crux of the bookôs outlined techniques (see Chapter 5). 

  

RobotBASIC is used as the PC programming language (interpreter/compiler) for its powerful readily usable tools that 

enable a programmer of any expertise to create GUI programs and to effect hardware communications that would need 

a high level of programming proficiency in other languages. Another advantage of RB is its suite of commands and 

functions that can be used with great ease to carry out communications over a LAN, WAN or the Internet. As we will 

see in Chapter 9, the ease with which we accomplish control over the network of the complex system developed here 

would have required a book on its own to explain had it been implemented in another language.  

 

To illustrate the strategy with concrete examples we use a variety of hardware modules that are typical of most devices 

you are likely to require in a electronics projects (see Chapters 7 and 8). Despite the fact that the hardware is most 

often used for robotic projects, it is sufficiently general to be of utility in numerous systems because the devices typify 

most of what may be utilized with a microcontroller. 

 

We hope this book will give you a running start on the way to achieving your own system using a PC and 

microcontrollers to create complex electronics control projects. Whether you want to build a Robot (Chapter 10) 

or an RUV (Remote Underwater Vehicle) using parallel processing (Chapter 5), with GUI Instruments such as a 

Compass and Accelerometer and SONAR (Chapters 7 and 8), or you wish to collect data from distributed 

loggers over the Internet (Chapter 9) and want to store the data on a central PC to graph and analyze the 

collected information (Chapter 10), we hope you will find the techniques and projects in this book helpful in 

accomplishing your own projects. 

 
 

 

 

http://www.parallax.com/Store/Microcontrollers/PropellerChips/tabid/142/List/0/CategoryID/18/Level/a/SortField/0/Default.aspx
http://www.robotbasic.com/


 

Page 1 

Chapter 1 

 

Introduction  

 While back, the PC, with its parallel port, ISA and PCI buses, and serial port provided a viable and powerful as 

well as moderately easy to program controller for electronic hardware projects. The PC had easily expandable I/O 

buses and with the microprocessors of the time it was easy to implement Assembly or higher level programs that 

utilized the interrupts ability of the processor to achieve multitasking and deterministic real time control, where you 

could create accurate and repeatable signals. With the support of the Operating System (OS), resources such as File 

I/O, Graphics, Mouse, Speaker, and so forth were easily accessible and of major utility to an electronics hardware 

control project.  
 

With the ever-increasing tighter control by the OS over the facilities of PC and its processor, programming hardware 

I/O on the PC became progressively more convoluted with each new version of the Windows OS. Furthermore, the fact 

that the operating systems these days are continuously performing tasks in the background makes it extremely hard to 

implement deterministic real time control. To aggravate the situation even further, the operating system now prohibits 

and denies the use of the PCôs hardware through programming languages without the use of special SDKs (Software 

Development Kits). And to add further difficulties, PCôs no longer have any readily usable serial ports or parallel ports, 

and the bus is almost impossible to use. 
 

All this means that engineers desiring to use a PC to control electronics systems have to resort to using specialized 

hardware and software designed by companies that have the inside knowledge of how to bypass the OS obstacles. For 

example, LabVIEW
TM

 provides hardware products that can be used on the PCôs I/O bus along with a proprietary 

specialized programming interface to utilize these devices. Such systems lack the versatility and flexibility desired by 

many engineers, and are usually overly costly. You, of course, can still use the PC to do hardware interfacing if you 

have the appropriate SDKs and are versed with Visual C++ and the COM model and know how to use DLLs and .NET 

programming and have a degree in computer science with many years of experience and so on and so forth. 
 

Due to the tremendous difficulty in bypassing the OS obstacles surrounding the PCôs hardware, many hobbyists find it 

exceedingly prohibitive in time and cost to program a PC for interfacing with external electronics. With the availability 

of powerful and easy-to-use microcontrollers, many hobbyists find it a lot easier and cheaper to use them for their 

projects and nowadays are mostly using the PC only as a cross-compiler to program the ɛCs through IDEs (Integrated 

Development Environments) provided by ɛC manufacturers. This is a very regrettable situation because the PC can be 

an extremely important and utilitarian component in a hardware control project for numerous compelling reasons.  

1.1 Why Do We Need the PC? 

Consider the following program and its resulting output shown in Figure 1.1. 
Inlineinputmode  

Input "Enter your name:",Name  

Input "Enter the year you were born:",BYear  

Age = round(year(now()) - ToNumber(BYear,0))  

Print "hello ",N ame," you are ",Age," years old"  

A 



Chapter 1 

Page 2 

 

 
Figure 1.1: A simple user interface program 

 

Despite the fact that this program is only 5 lines of code, and despite its simple actions, you would be extremely hard 

pressed to produce an equivalent process using a microcontroller alone. What most people take for granted about using 

a PC system with an appropriate program such as the above, are the numerous support systems that underlie the 

resulting overall interaction. The program may seem simple at face value but in fact it is an extremely complex one. As 

a user of the programming language (e.g. RobotBASIC) you did not have to concern yourself with a plethora of details. 

These details are neither trivial nor simple. If in reality you had to implement all the processes that enable the above 

program to work you might have to spend months and you would have to be a software engineer of the highest caliber. 

 

Letôs examine what the 5 lines of code accomplish. The first line is not important for now. The second and third lines 

each carry out two actions. They display a message on the screen and then wait for an input from the user. In order to 

do these two deceptively simple actions, numerous calls to underlying OS facilities have to be performed. The program 

has to request from the OS permission to output to the screen. It has to also tell the OS which window it is outputting to 

and what coordinates. It has to tell the OS what font and what color to output to the screen. All this on top of what the 

content of the output string is. This content itself had to be retrieved from its location in the RAM of the PC. This 

action of acquiring the text from some memory area in itself requires numerous calls to OS facilities. Waiting for a user 

input, again, necessitates countless calls to the OS to be able to interact with the keyboard and interpret its input. More 

memory actions have to be performed in order to store the user key presses and collate them into a string. 

 

The code in the fourth line performs a staggering amount of work. It may not seem so when you look at it. At the 

logical level the code converts the userôs birth year, inputted in text, to a numerical value and defaults to 0 if it is an 

invalid value. It then obtains the current year and subtracts the given year and stores the result in a memory variable. 

 

On the hardware level it is prohibitive to list here what actions are needed. However, consider the facilities made 

available in this line. We had to determine the current date. We had to figure out the year from that date. We also had 

to perform the action of converting the userôs input from a text representation of the year to a numerical value. This is a 

very involved algorithm in and of itself. You would need a program bigger than the original one just to perform this 

action. To be able to do the mathematical calculations, again, the program has to make many calls to the OS. This 

fourth line of code alone requires a program of thousands of lines if you were to implement all the necessary low-level 

functions it performs. The code in the fifth line is similar to the second and third in that it outputs to the screen and it 

also needs a lot of background processing to be able to concatenate all the required output strings and number. 

 



Introduction  

Page 3 

The above description does not even scratch the surface of what the RobotBASIC language is in fact performing for 

you when you type and run the simple 5 lines of code above. This is precisely the power and utility of the PC when 

used with an appropriately simple to use yet powerful language. If you had to program the above on a microcontroller, 

you as the programmer would have to take care of all the necessary sub-systems to be able to accomplish the 

transaction with the user, the keyboard, the screen, the real time clock and the math processor. 

 

Notwithstanding all the complexity, the above program can still be achieved on a capable microcontroller. This is 

because the input and output mechanisms are relatively simple. Imagine now if the programôs action was similar to that 

shown in Figure 1.2 (also see Figures 8.11, 8.15 or 10.2). The GUI (Graphical User Interface) alone would be 

impossible to achieve on almost all the microcontrollers available nowadays.  Even if you did achieve a modicum of 

what can be accomplished on the PC, the amount of work would be prohibitive and then there will be hardly any 

memory or I/O lines left over to do anything else. And the final outcome will not even begin to approach the quality 

attainable on a PC. 
 

 
Figure 1.2: An example of a GUI program in action 

 

Many of the limitations of microcontrollers discussed below do not apply to the Propeller multi-core Chip, 

as you will see throughout this book. You can do things with the Propeller never thought possible with a 

microcontroller. It has eight processors (cogs) in one chip that can operate simultaneously, either independently 

or cooperatively, sharing common resources through a central hub. In fact the PPDB (Figure 2.2) used in later 

chapters can be made into a PC more powerful than some of the PCs of not too long ago. 



Chapter 1 

Page 4 

 

Many modern microcontrollers are also very powerful and all the work we do in this book with the Propeller 

is very much applicable to these microcontrollers. The techniques we will elaborate in the next ten chapters are 

just as achievable with these capable microcontrollers as they are with the Propeller. 

1.1.1 Advantages of Using a PC  

What is not widely appreciated is that even though microcontrollers (ɛCs) are easy to program and are seemingly able 

to do just about anything, in fact they are very limited when compared to microprocessors (ɛPs). Most hobbyists will 

not usually be hindered by the limitations since their projects are often not overly complicated and often a single ɛC is 

sufficient for most projects. 

Effective Operator Interfacing  

A ɛC is just that ï a controller. It is designed with the express purpose of controlling hardware. A ɛC is superb for 

controlling digital I/O and even in certain cases some analog I/O as well. If a project requires hardware control without 

much user interaction then a ɛC is the best possible choice. However, if the project requires more extensive operator 

interfacing and data processing then you need to use a ɛP, which is a lot more suited to doing just that ï processing. 

 

Using a PC with its graphics capabilities in a control project you can create an ergonomic operator interface. You can 

use GUI components and 2D and 3D graphics to provide the user with intuitive and effective feedback and control 

over the system (see Figures 1.2, 8.11 and 8.15). 

Processing Power 

A ɛC is limited in the amount of RAM and ROM available to it. Unlike a ɛP, which is designed to process data, a ɛC 

does not make available its memory buses and has a fixed memory. This means that there is no way to expand the 

memory available to it except by using some of its I/O lines. Indeed, you can, with ingenuity and sufficient finagling, 

make a microcontroller achieve some impressive acts. Even so, that is not what a ɛC was designed for. The aphorism 

ñHorses For Coursesò comes to mind here. Of course you can use a screwdriver as a hammer, but think how much 

better it would be to use an actual hammer.  

Algorithmic and Data Processing Power  

Most ɛCs are limited in their ability to manipulate arrays and perform floating-point as well as other high-level math 

operations. Even simple multiplication and division are limited or in some cases hard to implement. Simple projects 

may not require many mathematical calculations, but more complex projects will usually require the processing power 

of a PC.  

 

To accomplish most Artificial Intelligence (AI) algorithms, structures such as Multi -Dimensional Arrays, Files, 

Databases, Queues, Lists, Binary trees, Graphs, Stacks, Searching, Sorting, Fast Fourier Transforms and much 

more are necessary. There are not many ɛCs that can be programmed to handle such constructs at the level required by 

even simple AI projects. Consider for instance the case of controlling a robotic arm. Most ɛCs would not even 

approach adequacy for some of the number crunching required to calculate the forward and reverse kinematics of a 5-

degrees of freedom arm. Calculating the Jacobian alone would task the majority ɛCs to the extreme. 

Utilizing Simulations  

An effective and powerful design methodology in engineering is to use simulations. Simulations provide an extremely 

effective method for testing a system before spending much time and money building the real hardware. A simulated 

system allows engineers to try out various algorithms and ideas, to examine what-if situations and to hone the control 

algorithms. All this can be accomplished with safety and minimal expenditure. 

 

Once a simulation is perfected it can be used to train operators while the physical system is being built. A simulation 

enables catastrophic training scenarios to be thrown at the operator with none of the obvious ramifications. Think of a 

flight simulator where a pilot can fail and crash and still go back home that evening to his family unscathed. 



Introduction  

Page 5 

 

Once the hardware system is available the very same programs that controlled the simulations can be used to control 

the real hardware instead of the software simulation algorithms that emulated the hardware. The time spent developing 

the simulation would have been efficiently used and becomes an integral part of the overall design process. Operators 

do not need to be retrained and there is no need to translate the control algorithms to the native language of the 

hardware microcontroller. Moreover, the control algorithms can be as complex as needed without being hindered by 

limitations in the processing ability of the microcontroller. No new equipment is required to effect the user-interface 

since the same PC systems used for the simulation are used with the real hardware. 

 

An example of such a system is shown in Figure 1.2 above; also see Chapter 10 for more examples. Figure 1.3 below is 

a schematic layout of how this can be conceptually achieved. If you look at Figure 1.2 on the middle right hand part of 

the image, just above the graph area, you would see a box labeled Simulation. If this box is set to N (no) then a user 

interacting with the system would be in fact interacting with the real hardware being driven by the program. If the box 

is set to Y (yes) then the interaction would be with the algorithms that simulate the hardware. Notice that the very same 

user interface is used for both the real and simulated interaction.  

 

 
Figure 1.3: Simulation/Real Hardware Control Conceptual Schematic 

Access to the Internet or LAN  

Most ɛCs do not have the capacity to provide a TCP or UDP stack. To enable a microcontroller to communicate over 

the Internet one has to use a specialized module. This adds extra expense to the project and may not be a versatile 

option. If we use a PC in the project then the PC can also act as the conduit for achieving Internet communications 

using a wired or wireless link (Wi-Fi). Additionally if the link between the PC and the hardware is also wireless 

(XBee), then the hardware would be able to communicate through the Internet or LAN completely wirelessly. See 

Chapter 9 for how to implement such a system and see Figure 9.7 for various layouts. 

1.1.2 Versatility and Reusability  

What makes the PC such a versatile device? A PC is a Rolodex, a diary, a personal planner, a book, a typewriter, a CD 

player, a DVR ï the list is endless. However, when you first start the machine it is none of that. What makes it become 

all these things is its ability to run programs that make it accomplish the tasks necessary for acting as the appropriate 

analogue. 

 

What is a PC? It is a set of hardware with a capable ɛP appropriately programmed with the right Operating System 

(firmware). When you want to make the PC perform a particular task you give it a series of instructions (software) that 



Chapter 1 

Page 6 

it can understand. This software tells the PC what hardware to use as well as how and when in order to be able to 

emulate the analogous tasks. See Figure 1.4. 

 

 
Figure 1.4: Conceptual model of a PC system 

 

This conceptual model is the secret of the power and versatility of a PC system. Imagine if every time you wanted to 

make the PC perform a different task to what it is currently doing you had to: 

Ç Fire up another machine. 

Ç Load a program on the machine. 

Ç Connect the PC to the machine. 

Ç Write a program in the machine that has all the firmware as well the software required. 

Ç Compile them. 

Ç Upload the compiled result to the PC. 

Ç Unplug the PC. 

Ç Run the PC. 

Ç Test if the new software is working. 

Ç If it is not repeat the above steps after having first used the other machine to fix the problem. 

Ç If you need to do a new action on the PC, repeat the above steps having first devised the necessary new 

software for the action. 

 

You can imagine that not many people would be using computers. The above process would soon get to be too irksome 

to say the least. Yet, if you have not noticed, that is exactly what we do every time we want to run a new program on a 

ɛC. Notice too, that it is not just the software that we upload to the ɛC, rather it is the firmware as well as the software. 

We donôt normally think of it that way. We think of the uploaded program as one program. However if you are using 

things like LCDs, Key Pads, Serial Ports and so forth, then every program you do has a common set of basic 

underlying subroutines that make these devices function. Most often you just cut and paste or #include these routines 

into your program. But these subroutines in fact constitute a firmware. Your new code would be the software. 

 

We also tend to think of the ɛC as being independent of the PC. But in reality it is not. The ɛC would not be versatile if 

we did not have the PC. We would not be able to quickly and easily change its action (load it with new software). So in 

fact, the PC is a crucial and integral part of the life cycle of a ɛC system. Read the previous statement again. Mull 

over it for a few minutes. What makes the ɛC versatile and useful is the PC. Without the PC, using a ɛC would be quite 

aggravating and perhaps impossible. 

 

If what you need is to make a ɛC based system be a versatile one, you will need the PC. However, with the traditional 

method of using a PC just as a cross-compiler and IDE platform to program the ɛC, the PC constitutes only an implicit 

function of the final resulting system once the ɛC is carrying out the designed task. 

 



Introduction  

Page 7 

Donôt think of the PC as just a ɛP. The PC is a complex combination of systems that are the culmination of 

over 60 years of engineering expertise by thousands of innovators. Every time you use a PC you are ñriding on 

the shoulders of giantsò. By opting to incorporate a PC in your design you are starting from an advanced 

position instead of from scratch. 

1.2 A Paradigm Shift  

What we are proposing in this book is a new paradigm. What we want is to make the microcontroller an explicitly 

integral component of an overall PC system. 

 

On a PC when we want to load new software we do not need another machine to do so. We even can use a 

programming language on the PC itself, to write a new software if a commercial one is not available. However on a ɛC 

system in the traditional way we use it, this would not be possible. Nevertheless, if we expand our conceptual 

perception of what a ɛC system is and regard the PC as an integral component in the system then in fact we can write 

software and run it on the ɛC without relying on an external device, since now the PC is actually part of the system. 

 

This new paradigm is not as simple as just thinking of the PC as important. Rather, it is a concrete and decisive action 

that has to be taken to realize the benefits of such a new concept. We need to setup the ɛC to be a sub-system of the PC 

as an overall unit. Just like the PC has a hard disk or a sound card or an LCD screen, so will the ɛC be yet another 

hardware sub-system in the PCôs repertoire of peripheral devices, much like a printer or a scanner and so forth, 

 

What you may not have actually realized about devices that constitute a PC system is that in fact many of them have 

their own ɛCs onboard. Hard Disks these days are almost standalone devices. In actuality, PC peripheral devices 

communicate with the ɛP using a ɛC (or even a ɛP) of their own, utilizing the SATA bus lines. USB ports are nothing 

more than another kind of bus line to the PCôs ɛP. 

 

In concrete terms, the ɛC + firmware become a substitution for the old parallel ports and serial ports. All you need is 

the right programming language and you can successfully make the PC an electronics hardware control and 

experimentations platform just like in the old days, but with even more power and versatility as well as functional 

utility. See Figure 1.5. 

 
Figure 1.5: Conceptual model of the new paradigm 



Chapter 1 

Page 8 

 

The PC alone is no longer a viable hardware controller. The ɛC alone is a poor user interfacing and data 

processing platform. However, with our new paradigm and using RobotBASIC to be able to communicate 

through the USB ports with the appropriate software and firmware we can convert the PC and ɛC together into 

a very powerful, efficient, and versatile hardware control and experimentation platform with ergonomic and 

effective user interfaces. The next ten chapters of this book will show you how to program a ɛC with the right 

firmware to make it an integral subsystem of the PC. This way you can carry out control of electronic hardware 

as easily as using a PC. 

1.2.1 The RobotBASIC Advantage  

As you saw above, all you need to implement the new paradigm is a programming language that makes it easy to 

communicate with the microcontroller. There are a plethora of languages out there that can eventually achieve this. 

Many of them however are complex and have very steep learning curves. Many of them also require a lot of resources 

on the PC and cannot be used on the fly. They need installation and cannot be used from such devices as a flash drive 

or a CD. All of them are quite powerful; however, you would need lots of experience to be able to use them at a 

functional level. 

 

What is desirable is a language that can be used at any level of expertise and yet produces programs at a level a 

professional in other languages would produce. RobotBASIC
2
 (RB) is one such language. There are numerous 

advantages to using RB listed on its web site. The ones of immediate import to our paradigm shift are the ability to: 

ü Communicate with devices on the USB ports such as a microcontroller or XBee transceiver. 

ü Communicate with Bluetooth devices. 

ü Communicate Over the Internet or LAN using TCP or UDP. 

ü Fully Control the U4x1 family of devices from USBmicro
3
 (see later). 

 

With RBôs 2D and 3D graphics engines and its extensive GUI components, combined with its numerous commands 

and functions for math and matrices and File I/O (low and high level) as well as the tremendously easy syntax, RB 

enables even the most novice programmer to create programs for controlling hardware with ergonomic and 

professional looking interfaces (see Figure 1.2 or 8.15) 

 

Another major advantage of RB is its integrated robot simulator as well as its associated robotic hardware 

communications protocol. See Chapter 10 for more details on both these systems. As we saw in the previous section, a 

simulation should be an indispensable part of the design cycle carried out by a prudent engineer. 

  

One very effective and convenient method to implement the new paradigm explained above is through the 

U4x1 USB I/O family of devices from USBmicro
3
. RobotBASIC has an extensive set of functions that enable 

easy use of the U4x1ôs port I/O, SPI and 1-Wire communications, control of two Stepper Motors and control of 

High-Voltage-High-Current built in Relays. This family of devices is an excellent and powerful substitute for a 

ɛC in certain classes of projects (or to use in conjunction with a ɛC) that you may want to consider. In addition 

to the information resources available at the USBmicro web site, we have an in-depth tutorial
66

 teaching how to 

use these devices on our web site. 

 

The RobotBASIC IDE and compiled RB programs can run under any Windows OS version from 95 to W7 

from a CD or Flash drive with no installation required. Also RB makes it easy to interact with the parallel port 

and ISA/PCI buses on older PCs. This makes RB ideal for making use of old PCôs and giving them a new life as 

electronics hardware experimentation platforms, instead of a reason for spouses to complain about them taking 

too much storage space. 

http://www.robotbasic.com/
http://www.usbmicro.com/
http://www.usbmicro.com/
http://www.robotbasic.org/resources/RobotBASIC_USBmicro_U4x1.pdf


Introduction  

Page 9 

1.2.2 Various Ar rangements  

There are various alternatives for how to incorporate a ɛC as an extension of the PCôs hardware: 

1. Laptop, Notebook or Desktop directly wired through a USB to an appropriate USB to TTL Serial converter 

which then is wired to two of the ɛCôs I/O lines as Rx and Tx lines. 

This option is not very mobile if you use a Desktop, but even with a Notebook it may be too bulky for 

some situations (e.g. a small robot). The U4x1 devices would be an excellent option here as well. 

2. A PC Motherboard + SD card or USB flash memory to hold the OS and software, directly wired to the ɛC as 

in option one above. 

This option is mobile but not very convenient if you require user interfacing and active real-time system 

monitoring. However, this option is great for mobile applications that require the computational 

augmentation the PC motherboard provides. You can also combine it with option 3. Again, the U4x1 

devices would be an excellent option here too. 

3. The PC is connected to a wireless transceiver (see Chapter 9) through its USB port. The ɛC is also connected 

to a compatible transceiver through two of its I/O lines. The transceivers act as a wire replacement between 

the PC and the ɛC. 

This is the most versatile alternative and it has the power of being mobile and at the same time providing 

user interfacing and real time systems monitoring. This would be the option of choice for a distributed or 

a mobile system (e.g. robots or monitoring stations). 

1.3 Distributed Parallel Processing  

Complex engineering systems comprise numerous subsystems that can be thought of as a collection of subtasks. You 

should divide a complex system into simpler subsystems (just like you do for a complex programming project). Each 

subtask can be controlled by a dedicated ɛC along with some additional circuitry. The overall project is coordinated by 

the PC as a master controller which communicates with the various subordinate ɛCs. The distributed processing 

provided with this divide-and-conquer strategy, allows the PC to require less I/O conduits than would have been 

needed if it had to control all the sub-processes directly. Also due to the parallel processing provided by the various 

ɛCs, multitasking is readily achievable (see Chapter 5).  

 

On the PC you can have an overall controller software program or even multiple programs running in parallel, with 

each program controlling one USB port that carries throughput to the ɛC. These software programs can also 

communicate with each other using hard disk files or the UDP protocol (despite being on the same PC) to transfer data 

between each other if the need arises. 

 

The PC provides the AI Brain . The microcontrollers only deal with reading transducers and activating actuators but 

not with why they need to do so. The PC decides what and why and delegates the how to the microcontrollers. The ɛC 

is programmed with the appropriate firmware to be able to communicate with the PC software and to be able to control 

the various hardware components it is dedicated to. The firmware is therefore quite simple with only sufficient 

complexity to independently control its subtask according to parameters transmitted to it by the PC software. 

1.3.1 A Remote Computational Platform (RCP)  

A PC used in the manner described above can be easily converted into a Remote Computational Platform (RCP) by 

using wireless or Wi-Fi connections to all the subordinate ɛCs. This provides levels of functionality and diversity that 

facilitate many interesting possibilities.  

 

The RCP also acts as an operator interface node that provides operators with information about and control over the 

system and with the ability to reconfigure the system dynamically (i.e. while it is working) and/or to override the 

systemôs automatic actions when required. This remote control can also take place across the Internet (see Chapter 9). 

 

There are numerous advantages in having an RCP. Think of Planetary exploration. If you have an orbiting RCP that 

controls multiple surface Rovers, you can simultaneously explore multiple regions, rather than being limited by one 



Chapter 1 

Page 10 

explorer. Also each individual explorer is simple and expendable. The RCP stays ñsafeò up in orbit and does not incur 

the possibility of damage during landing.  Since there are numerous explorers, there would be no problem if one or 

more are damaged during the landing. You will still be able to achieve the mission or reassign another rover to take 

over the task of its defunct ñsiblingò. With this option a robotic platform can be kept small. Only the sensory and 

actuations systems are needed onboard and perhaps some gyros and accelerometers ï in the case of airborne or 

seagoing platforms ï for doing attitude control or an INS (inertial navigation). 
 

Also with the RCP option, once the robot is configured and its onboard microcontrollers programmed, it 

never needs to be tampered with again. All the work can now be done through the PC to make the robot do 

different tasks and actions depending on the projects. You can even reconfigure the robot in real time while it 

is in the field still doing its work. You can convey to it imperatives to make it alter its previously assigned 

behavior remotely while it is still in the field.  

 

Some lateral thinking and a paradigm shift in conceptualization are necessary to appreciate this kind of robot. Most 

people think that an autonomous robot has to be human like. We humans do not have an RCP ï or do we; food for 

thought. An autonomous robot is still autonomous even though it is using additional not onboard brains. 
 

Another advantage of this idea is that you can have multiple robots sharing the same RCP to act as a hive or matrix of 

robots. They can then intercommunicate and be orchestrated all at the same time through the RCP. Moreover, the RCP 

can provide information to the hive that is otherwise not possible to obtain by the individual robots. Imagine having a 

robot able to access the Internet to collect some data it requires (e.g. GPS augmentation, weather data, satellite 

imagery). Think of a hive that is distributed over remote places but yet can communicate and orchestrate actions by 

using the Internet as a communications link. Researchers call hive members ñAgentsò. Currently this kind of structure 

is under intense research. Resistance Is Futile . 

 
Figure 1.6: An RCP research systemôs conceptual model. 



Introduction  

Page 11 

See Figure 1.6 for the conceptual model of an RCP used by a researcher at MIT
4
 to implement a helicopter control 

system. The controller onboard the helicopter is able to autonomously maintain the vehicleôs attitude. But to go places 

or to change altitude the decisions come from the ground controller (PC). The RCP communicates through three serial 

links with three ɛC-based devices. One uses RF transceivers. Another uses a LASER link (similar to Infrared). The 

third uses Ultrasound. Notice how the RCP provides the mission planning aspect ï in other words the AI. 

1.4 What Will You Learn?  

The goal of this book is to show a strategic methodology for implementing the new paradigm expounded in Section 

1.2. We will gradually evolve a series of programs into a capable and functional firmware layer that can be used to 

carry out the communications protocol between the ɛC and the software system running on the PC.  

 

Along the way we will use an amalgamation of hardware (such as an accelerometer, ultrasound ranger, infrared line 

sensors, compass, servomotors, potentiometers and more) to demonstrate the utility of the overall concept by 

controlling the hardware through software programs to carry out real time control of the integrated system. Even 

though we are using specific hardware and a specific ɛC and PC programming language, the aim is not to teach these 

particular systems or even the particular protocol. Rather the aim is that you would be able to utilize the methodology 

as a template to achieve your own requirements. 

 

The multitasking and parallel processing concept is of paramount importance and you will need to use it regardless of 

the particulars of your system. This book will utilize the concept almost right from the start. 

 

There are four levels at which a person can acquire a new skill: 

ü Rote: where a skill can be repeated only by emulation, with no understanding for why it is performed so. 

ü Understanding: where one still can only repeat the skill but now with an understanding for why it is applied 

within the particular application with which one is familiar. 

ü Application:  where the skill can be applied in different situations and with understanding. However, there is 

no additional innovation of technique. 

ü Correlation:  where one can adapt the skill to apply it to new applications in an innovative manner. 

 

We hope this book will induce you all the way to the correlation level where no matter what new situation 

you face you would find the information acquired here an inspiration for you in creating your own unique and 

innovative solutions. 

1.5 What Do You Need To Know?  

This is not a book about learning how to program RobotBASIC or Spin. Nor is it about how to use particular devices. 

All these are skills best acquired from the resources mentioned in Appendix A. However, this book is about how to 

create a system to allow a PC to control electronics hardware in an efficient and useful way. 

 

You are not expected to be an expert in any of the systems used in the book. In most cases we do show enough detail to 

be useful even to a novice. However, you are expected to be at a level of knowledge where you can read code and 

discern the algorithms in it. If you are not familiar with certain syntax, you are expected to read the manuals and learn 

about the particulars you are not sure about. 

 

We will use RobotBASIC (www.RobotBASIC.com) and Spin (www.Parallax.Com/Propeller) at an intermediate to 

advanced level and there will be a few programming techniques and tricks to achieve efficient results. Some of these 

may be explained in some detail. However, you are expected to be sufficiently versed in both languages to be able to 

follow along with the explanations since not every detail might be expounded. You should be familiar with these 

http://mit.edu/whall/www/heli/paper/node3.html#SECTION00030000000000000000
http://www.robotbasic.com/
http://www.parallax.com/Propeller


Chapter 1 

Page 12 

languages, at the very least, beyond the beginner level. You can find tutorials for both at their respective web sites (see 

items 1, 2, 62, 63, 65 in Appendix A). 

 

In RobotBASIC we will use techniques for serial communications and for communication across the Internet. Detailed 

Tutorials for both these can be found at our website (see items 18-20, 57 in Appendix A). Additionally there are 

numerous YouTube video tutorials about the RobotBASIC language (see item 63 in Appendix A). 

 

There are also five other books that teach RobotBASIC at an advanced as well as a beginner and intermediate levels. 

There are many links on the RB web site but also see item 62 in Appendix A. The book Hardware Interfacing With 

RobotBASIC, the Fundamentals is designed to be a precursor to this book for beginners(search for it on 

www.Amazon.com or see the link www.RobotBASIC.com). 

 

Similarly, for the Spin language as well as most of the hardware used here, there are tutorials, specification sheets, 

example code and much more on the Parallax web site (see Appendix A). Also see www.parallax.com/propeller/qna 

and www.parallax.com/propeller. 

 

You are expected to be able to read schematics and translate them into physical wiring arrangements. We assume that 

you are versed with electronics hardware and are able to determine what you need from specification sheets and other 

information resources that would augment whatever detail we give in this book.  

1.6 An Overview of the Chapters  

In Chapter 2 we list the required hardware and software, so you can collect the necessary equipment before you start 

building the projects and prepare it to be ready for later chapters. 

 

In Chapter 3 we develop programs to test the initially simple hardware setup. This verifies the hardware and software 

systems and provides a working starting point. Also it provides base line programs for carrying out serial 

communications that can be evolved as we progress through the book. We also learn certain important facts about 

serial communications buffers. 

 

In Chapter 4 we develop further sophistication in the software establishing some GUI programming techniques. We 

further develop the serial communications techniques required to achieve effective interaction between the PC and the 

Propeller. We also learn about some pitfalls in serial communications and how to avoid them using software 

handshaking and how to use software to complement and enhance the hardware and to work around certain limitations 

that may arise. 

 

In Chapter 5 we delve into the all-important concepts of Multitasking and Parallel Processing. We look at the three 

different techniques of Polling, Interrupts and Parallel Processing. We learn about timing and timers in RB and Spin. 

We learn about memory sharing using pointers in Spin. We also learn about semaphores and flagging. For examples of 

parallel processing we utilize frequency generation and use that to create musical tones and tunes on a speaker. 

Additionally, we learn about avoiding some elusive traps while utilizing parallel programming in general and the 

Propeller Chip in particular. 

 

In chapters prior to Chapter 6, we utilize ad hoc protocols to effect the communications as required by the systems 

being developed at the time; every program had a different technique and a different standard. This would be sufficient 

for small one-off projects but not adequate for complex more general ones. In Chapter 6 we develop a standard 

protocol to effect the communications on a more versatile and robust level. We then demonstrate how the protocol 

provides fault adaptability and tolerance as well as versatility while using it in complex GUI software programs that 

provide professional looking instrumentation applications on the PC. 

 

Before Chapter 7 only simple hardware was utilized to experiment with the techniques being learned. This aided in 

keeping the complexity at a minimum while concentrating on the algorithmic content rather than being mired in the 

details and intricacies of hardware. In Chapter 7, armed with the sophistication of parallel processing and a versatile 

communications protocol, we start imparting more complexity to the hardware. We add an ultrasound ranger, two 

http://www.amazon.com/
http://www.robotbasic.com/
http://www.parallax.com/propeller/qna
http://www.parallax.com/propeller


Introduction  

Page 13 

continuous motion servomotors and two potentiometers. Initially we develop each system on its own and develop 

simple test programs in firmware and software to establish a base line mechanism for using them. We then integrate 

them into one overall system. We gradually evolve the firmware developed in Chapter 6 to allow the software to 

control and interact with the hardware by means of the established protocol with everything functioning in parallel in a 

smooth and controlled manner. We then go on to impart more abilities to the firmware and also develop another 

complex GUI software program to utilize the improved firmware and hardware. 

 

In Chapter 8 we add further hardware and outline a general and methodical strategy for incorporating any hardware 

into the firmware and protocol. Additionally, we learn more sophisticated programming techniques in both Spin and 

RobotBASIC. We add a compass, an accelerometer, a standard servomotor to be a turret for the ranger, infrared line 

sensors, ability to save system parameters to an EEPROM, and a better way to use a speaker. We also learn about RBôs 

3D graphics engine and see how to develop professional looking instrumentation. 

 

In Chapter 9 we see how to make the hardware system remote from the controlling PC using wireless communication 

with systems such as the XBee and Bluetooth. Another method for achieving remote control is over a Local Area 

Network with Wi-Fi or across the globe using the Internet. We do this using RBôs simple to use yet powerful suite of 

TCP commands and functions.  

 

In Chapter 10 we look at the RobotBASIC simulated robot and see how to use RBôs inbuilt protocol to effect control 

over the hardware developed in previous chapters using it as a robot emulator. In fact, the protocol developed in 

chapter 6 and implemented in Chapters 7 and 8 is followed by RBôs inbuilt protocol exactly. In this chapter we see how 

to use the simulator to develop a program to make the simulated robot move in the simulated environment on the 

screen. But then we see how the very same program with the change of a single number can be made to drive the 

hardware. All this is possible due to RBôs intrinsic protocol that follows the same standards we develop throughout the 

book. We then go on to use the simulator protocol to develop a simplistic INS (inertial navigation system) to prove 

how versatile the protocol can be. 

 

In Chapter 11 we examine some of the limitations of the firmware and we discuss and suggest possible improvements. 

As an example for how some of these improvements can be implemented we go ahead and create an extended 

firmware that applies some of those suggestions. We also talk about the soon to be developed RROS (RobotBASIC 

Robotic Operating System) which is a more sophisticated and general version of the strategies and techniques 

elucidated in this book.  

1.7 Icons Used In This Book  

The icon  denotes a point of interest of which you should be aware. The icon  denotes a warning about 

something that could lead to problems if you are not fully aware of the pertinent facts. The icon J is to prompt you to 

laugh whenever we think we made a joke. You might think otherwise but you should laugh regardless; it is good for 

the mind. 

 

In code listings we will sometimes draw attention to some lines of code in particular from among the other lines in the 

listing. There are three levels (other than normal code): 

 
Normal code  

First level is Bolded text in the listing.  

          Called Bold code or lines.  

Second level is in white text on a dark gray background.  

          Called Highl ighted code or lines.  

Third level is white text on black background.  

          Called Reverse code or lines.  

 

 

 



Chapter 1 

Page 14 

 

 

We often refer to RB or the Propeller or Spin by saying something to the effect: ñyou will send to RBéò or 

ñRB will expecté.ò meaning a program created in RB running on the PC either within the RB IDE or as a 

compiled executable (exe) running as a standalone program in the OS. Likewise for the Propeller or Spin when 

we say ñthe Propeller will é.ò or ñSpin wants toéò  we mean a program written in Spin (or PASM or both) 

then compiled and uploaded to the Propeller and is currently running on the Propeller.  

1.8 Webpage Reference Links in This Book  

We use many devices and refer to many items that can be viewed on the Web. In the bookôs text such items are 

underlined and numbered with a superscripted number. You need to use the superscript number adjacent to the 

reference and index in the list given in appendix A to find the full URL address of the relevant link. You will also find 

Appendix A included in a PDF file in the downloadable Zip file that contains all the source code of the book (see 

Section 1.9). This will be useful since you can click on the link in the PDF file to visit the site instead of having to type 

the URL by hand in the browser. 

1.9 Downloading the Source Code of the Book  

You can download from www.RobotBASIC.com a Zip file containing all the code (Spin and RB) organized in folders 

for each chapter. Additionally there is a file called System_References.PDF, which has in it all the appendices at the 

end of this book and a selection of some of the figures but in color. There will also be an additional download file 

containing corrections for any critical errors in the book. There will be no need to download this file since it will 

remain empty, of course J. 

 

http://www.robotbasic.com/


 

Page 15 

 

Chapter 5 

 

Multitasking & Parallel 

Processing 

 

 

n Chapter 4 we gained experience in communicating RB and the Propeller and we developed a system for 

controlling the process by having RB initiate the interaction. The Spin program repeatedly waits for RB to send 

information. Once the data from the PC is received, the Propeller responds by using the received information to set or 

interrogate certain hardware and then sends its information. The RB program uses that information and goes on to send 

the next information. The process repeats ad infinitum. This is an excellent procedure in that we have an orderly 

system with no swamping and buffer overflow due to disparate and asynchronous transfer rates and processing speeds. 

 

However, we do have a slight glitch with this methodology. The system is fine if the Spin program does not need to do 

anything else other than wait for RB to send its data. Consider these lines of code from Program_03.Spin: 

 
  repeat  

     outA[23..16] := RB.RX   ' receive the byte and set the LEDS  

     RB.TX(inA[7..5])        ' read the buttons and send the states  

 

RB.RX is the method used to receive a byte of data from RB. This method will continue trying to receive the byte 

forever. The Spin program will not proceed to the next statement until the byte is received. This, of course is exactly 

what we want since the next statement sends data and we did not want this to take place until RB is ready to receive it. 

But, this becomes a problem if we want the Spin program to do other things in the background while it is waiting for 

the byte from RB to arrive. Unfortunately, with this strategy we cannot do this. 

 

The concept of doing things in the background while waiting for other things to happen is called Multitasking. Another 

related concept is called Parallel Processing which is another way to do multiple tasks at the same time or what 

appears to be at the same time. Consider if we wanted Program_03.Spin to also blink an LED at the same time it is 

waiting to receive the byte from RB. With the current program this is not possible, since the RB.RX method will wait 

for the byte and there is no way to go off to do something else occasionally.  

 

In this chapter we will examine how we can achieve this multitasking action. There are three ways we can achieve 

multitasking in a program: 

ü Interrupts 

ü Polling 

ü Parallel Processing 

I  



Chapter 5 

Page 16 

5.1 Multitasking Using Interrupts  

This option is not available for us using the Propeller and Spin. The Propeller is a parallel processing microcontroller, 

which, as we will see later, is a much better option than interrupts. So interrupts will not be much use in projects using 

the Propeller (and a good thing too). Nonetheless, this is an option that is widely used with other microcontrollers and 

may be something you would like to use in other projects. RobotBASIC is able to perform Interrupt-Driven 

processing, and we will use it to learn briefly about this option using RB programs. Even so, despite the fact that RB 

makes it easy to learn about interrupt-driven programming, it is a complex issue and is hard to achieve real 

multitasking with it. You are much better off using the Propeller which is an amazing technology that makes it painless 

to achieve real multitasking without having to acquire a PhD in computer science before you do so. 

 

What exactly is an interrupt? Well, as the name implies, it is a signal that occurs while a program is performing a task 

that forces the program to branch to a particular place in code memory and execute some action, then go back to where 

it was when it was interrupted to proceed where it left off. The interrupt can be any one of a variety of things. It can be 

the press of a button, or the arrival of data on a serial port, or the tick of a clock. In microcontrollers, for example, it 

can be the change of state (e.g. high to low) on an I/O pin, or the overflow of a register, or a transition on an encoder, 

and the like. 

 

This is actually the way all microprocessors and microcontrollers have been achieving multitasking up until the advent 

of multi-cored processors not too long ago. We will not delve into this now antiquated, yet ubiquitous, methodology 

other than to see it in action because RB makes it very simple to do so. 

 

In fact, interrupt operation is not really multitasking. It just appears to be so due to the speed of processing achievable 

with microcontrollers and processors. In reality the processor is only doing one task at a time, since while off attending 

to the interruption the main task it was executing is halted. Nevertheless, if attending to the interruption takes only a 

few lines of code, then the main task will appear to have never been halted. But since the action carried out in response 

to the interruption has been accomplished along with the actions in the main process then both appear to us mere 

humans as if they were executed simultaneously. 

 

Compare this to the human brain. The human brain is capable of true multitasking in that it can attend to the eyes and 

the muscles in your arm and hand while also still making your heart beat and receive information from your ears and 

nose.  

5.1.1 RobotBASIC Simulation of a Microcontroller  

Before going on to examine how RB interrupts work, letôs have a look at an RB program that simulates something you 

can do with a microcontroller. Letôs say we have a microcontroller that blinks an LED at a particular on/off duration: 

 

Blinker_01.Bas 
i=0 \  duration = 500 \  data clr;white,red  

t = timer()  

while true  

   circlewh 10,10,30,30,red,clr[i]  

   dela y duration \  i = !i  

   //if timer() - t > duration then i = !i \  t=timer()  

wend 

 

This program works as desired and blinks an LED on for 500 ms and off for 500. Try changing the duration. For now 

ignore the commented bold line. 

 

In fact the program is faulty: 

1. It does not account for the time it takes to execute code. So it is not really at the desired rate. To verify this run 

Blinker_01_B.Bas (see below). After about a minute or so the perceived count of seconds as counted by the 

number of blinks will start to lag behind the actual lapsed time in seconds. The reason is that the perceived 



Multitasking & Parallel Processing 

Page 17 

time as counted by the number of blinks does not take into account the time it took to execute the code for the 

loop and for the counting and so forth. This takes very little time of course and if the duration was larger you 

may not even see any discrepancy for a long time. The shorter the duration the quicker you will see a lag. Try 

changing the 200 to 100 (in Blinker_01_B.Bas) and see what happens, also change it to 700 and see what 

happens. In summary, this method of counting time is faulty but works for slow rates and for a low count. 

2. The real problem however, is that while the program, hence the processor, is executing the delay statement it 

cannot do anything else. The delay duration is just wasted time.  

 

Blinker_01_B.Bas 
i=0 \  duration = 200 \  data clr;white,red  

t = timer() \  n=0 

while true  

   circlewh 10,10,30,30,red,clr[i]  

   delay duration \  i = !i  

   n++ \  xystring 10,300,n*duration/1000;(timer() - t)/1000  

wend 

 

We can solve both problems in Blinker_01.Bas by commenting out the highlighted line and un-commenting the bold 

line. With this change we are using a timer so that the LED is blinked at the right rate which is not affected by the time 

it took to execute other lines of code. Also since the program does not sit in a delay which does nothing else other than 

count time we can now do other things inside the loop. For example with this method we can now blink other LEDs at 

different rates (see Blinker_02.Bas), while with the previous version we would not have been able to do so. 

 

Blinker_02.Bas 
Main:  

  data clrs;white,red,white,green,white,yellow  

  data rates;200,500,1000  

  data states;0,0,0  

  data timers;timer(),timer(),timer()  

  while true  

     for i=0 to 2  

        circl ewh 10+100*i,10,30,30,clrs[i*2+1],clrs[states[i]+i*2]  

        if timer() - timers[i] > rates[i]  

           states[i] = !states[i]  

           timers[i]=timer()  

        endif  

     next    

  wend 

End 

 

5.1.2 Using Interrupts in RobotBASIC  

Now letôs see how an interrupt may be used. Say there is a pushbutton that when pushed the program Blinker_02.Bas 

should toggle the color of the LED between blue and red. The bold and highlighted lines in Blinker_03.Bas (see below) 

are the new lines added to implement the action.  

 

Notice that the bold lines constitute what is called the interrupt handler; code that will be executed whenever the 

interrupt occurs. The handler has to do certain initialization tasks, then the work it needs to do, and before returning it 

must do certain finalization tasks. In a microcontroller the initialization tasks are to, for instance, disable further 

interrupts, clear certain flags, save the current program counters, and stack pointers and so forth. The finalization tasks 

are to update registers and re-enable interrupts reinstate the program counter and pop the stacks and such. With RB, 

initialization and finalization tasks (but nowhere as complicated) are also necessary as explained in the RobotBASIC 

help file. Also, it is necessary that an interrupt handler be brief and to only have a small amount of code to be executed. 

Otherwise the interruption will be too long and the multitasking illusion would be lost. 

 



Chapter 5 

Page 18 

Blinker_03.Bas 
Main:  

  addbutton "Blue",10,60  

  onButton bHandler  

  data clrs;white,r ed,white,green,white,yellow  

  data rates;200,500,1000  

  data states;0,0,0  

  data timers;timer(),timer(),timer()  

  while true  

     for i=0 to 2  

        circlewh 10+100*i,10,30,30,clrs[i*2+1],clrs[states[i]+i*2]  

        if timer() - timers[i] > rates[i]  

           states[i] = !states[i]  

           timers[i]=timer()  

        endif  

     next    

  wend 

End 

bHandler:  

  lb = LastButton()  //initialization  

  if lb == "Blue"  

     renamebutton lb,"Red"  \  clrs[1] = blue  

  elseif lb == "Red"  

     renamebutton lb,"Blue"  \  clrs[1] = red  

  endif    

  onButton bHandler  //finalization  

return  

   

It is important to note that the above seems all too easy. This is because RobotBASIC is an excellent language that 

enables doing such things easily. However, with microprocessors and microcontrollers achieving interrupt handling is 

not an easy or trivial task. There are numerous considerations and obstacles that can make interrupts fail if not designed 

and coded correctly. Additionally, in the programs above, RB did scads of housekeeping for you in the background, 

alleviating the need for you the programmer to have to do all those intricate and confusing details. On the other hand 

with a microcontroller you have to attend to all these details yourself. 

 

In any case, we will not use this method with the Propeller chip since there is no need for interrupts due to its ability to 

do real multitasking without having to resort to the illusion of one. If you opt to use another microcontroller, then you 

will need to learn about its interrupt capabilities and how to program for them. If your processor does not support 

interrupts, then you need to consider using another one. It will not be easy to achieve viable multitasking without an 

effective interrupt mechanism. 

5.2 Multitasking Using Polling  

The second method for achieving multitasking is yet another illusion. Polling is the action of occasionally glancing 

over to see if something else other than the task at hand needs attending to. Think of polling as a self-imposed 

interrupt. Imagine you are working on your computer and are typing something. Your work requires that you answer 

emails when they arrive. If you have setup your email program to sound a bell whenever an email arrives, you have an 

interrupt. However if you do not have that ability then you can elect to, either regularly or whenever you feel like it, 

stop your typing and go over to the email program to check if there is an email.  

 

The polling mechanism can be fine if every time you go to check for an email there happens to be one and moreover, it 

has not been sitting there for too long. If you frequently go to check and there is no email then you are wasting too 

much time. If you go there too seldom and emails pile up or you lose certain ones because you did not attend to them 

on time or they sit there for too long, then again you are not functioning correctly. 



Multitasking & Parallel Processing 

Page 19 

 

Interrupts are in fact the optimal method for this kind of multitasking in that you only abandon the task at hand when 

emails arrives and do not waste time checking when there are none. Also with interrupts you will never miss an email 

due to not going there in time to check if one has arrived. Polling is not an efficient mechanism for handling time-

critical and frequent interruptions. However, it is an option that you can use and in many situations it is an adequate 

strategy and is easy to implement. 

5.2.1 Polling in RobotBASIC  

 

[Cut Out] 

5.2.2 Polling on the Propeller Chip  

[Cut Out] 

5.2.3 Counting Time in Spin  

[Cut Out] 
 

Integer Multiplication Overflow  

[Cut Out] 

Determining th e Clock Frequency  

[Cut Out] 

5.3 True Multitasking with Parallel Processing  

Interrupts and Polling are functional methods and are what has been traditionally used in numerous viable systems; 

they work well. Polling is simple but not easy to make optimal. Interrupts is the better of the two methods but is hard 

and complex to program. 

 

The third alternative, Parallel Processing, is in fact the most effective alternative. With parallel processing we can 

achieve real multitasking instead of the illusion of it. In the past this option has been expensive and complicated and 

only available to few systems. With the advent of the most innovative microcontroller, the Propeller Chip, all this has 

changed. It is now possible to implement parallel processing cheaply, easily and effectively. It is truly an innovation 

and a revolution on many levels. 

 

What is parallel processing? There was a movie a while back called Multiplicity that starred Michael Keaton. In it 

Michael was overtaxed by the number of things he had to juggle in his life. As one person he could not be in two 

places at the same time. He could not pick up the children from school while attending a meeting at work and painting 

the fence. If only he could have multiple versions of himself. He could then do all those tasks simultaneously. You 

cannot really be picking up the children from school in one part of town and then occasionally jump over to the other 

side of town to attend to a meeting when it is time for you to speak. So the option of polling or interrupting is not 

possible in this situation. The only way for Michael to multitask these life obligations is to either, allocate them non-

overlapping time slots and allow for travel from one to the other, or he can clone himself and assign each clone the 

various tasks. Being clones of course they are just as capable as Michael. Michael and his clones can all be doing 

disparate tasks independently and simultaneously. 

 

There is one limitation however. If a task requires that two or more Michaels have to be using the car to travel in 

different directions then only one Michael can use the car and the other Michaels will have to wait until the car 



Chapter 5 

Page 20 

becomes free. Also, it is not advisable that any other Michaels should have ñaccessò to Michaelôs wife other than the 

original Michael. But Michaelôs wife and the other Michaels may have different opinions on that. 

 

Well, enough with Michael and his clones, letôs look at the Propeller. One of the amazing things about the Propeller 

chip is that it is in fact 8 microcontrollers in one chip (with a surprisingly reasonable price tag). Another remarkable 

thing about it is the Spin language. This high-level language is easy to learn and easy to use but more importantly it has 

all the tools you need to create real parallel processing with exceptional ease and elegance. 

 

As an example, consider what a non-trivial robot system has to accomplish: 

1. Control motors with PWM which require constant updating 

2. If wheel encoders are used then constant attention has to be given to the quadrature signals to calculate and 

keep fresh the current count. 

3. Attend to various sensors like Bumpers and Infrared or maybe line sensors. 

4. Other systems such as compasses or GPS etc. will also have to be interacted with. 

5. If the robot is doing any communications to a central command then this too will have to be performed. 

 

A single processor will be extremely tasked to accomplish the above and even interrupts and polling would not be 

adequate due to too many interruptions. For instance a wheel quadrature counter can never really be made to function 

in a system that has to do all the above and at the same time give proper interrupt or polling time slots to be able to not 

miss quadrature states. 

5.3.1 Using Helper Modules  

One solution is to use helper modules. For instance a motor controller module
21

 allows a microcontroller to employ 

set-it-and-leave-it approach to controlling a robotôs wheels. This in effect is parallel processing. Since the module 

allows the controller to specify the direction and speed of the motor and then go off to do whatever it needs to do 

without having to worry about maintaining the PWM signals required to keep the motors running.  

 

There are numerous helper modules like these that free up the microcontroller and allow it to manage other tasks. In 

fact with this methodology the microcontroller is nothing more than an overall manager of various other controllers. 

Most of these modules are in themselves microcontrollers dedicated to doing nothing but the task they are supposed to 

do (e.g. pulse the motors). If there are no available or affordable modules that can do a task you require and wish to 

accomplish in parallel then you can easily design your own helper module utilizing a microcontroller to do the task. 

 

Frequently the control of these modules is achieved with a communication between the main controller and the 

controller onboard the module. Often this control boils down to the main controller sending a byte or two of data 

(settings and parameters). The moduleôs controller then uses this data to set up its parameters then continues 

accordingly doing what it needs to do independently and in parallel with the other actions of the main controller. 

 

This strategy is in reality what makes it possible today to design effective robots that can be controlled with controllers 

of modest capabilities. Many projects on todayôs robots would be quite impossible if it were not for the employment of 

helper modules such as are available at www.Parallax.com and many other similar web sites. 

5.3.2 Using Multiple Microcontrollers  

Some disadvantages of the helper-modules strategy of achieving parallel processing and true multitasking is that the 

modules are not cheap and the variety of interfacing protocols required is bewildering and cumbersome.  

 

Imagine if you had the ability to utilize many microcontrollers with minimal wiring and cheaply and where all of them 

can communicate with each other via a shared memory rather than through a bit-banging serial protocol (slow). This 

would be ideal. We wonôt be limited to available modules, we wonôt incur prohibitive expenses, and we would have no 

bottleneck in communications.  

 

http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/64/Default.aspx
http://www.parallax.com/


Multitasking & Parallel Processing 

Page 21 

Well, that is exactly what the Propeller Chip is. It is 8 microcontrollers in one package that share 32KB of RAM. 

Moreover, the Propeller makes it possible to achieve parallelism with effectiveness that would be hard to achieve 

otherwise. 

5.4 Parallel Processing with the Propeller Chip  

We will now convert Program_03.Spin into a parallel processing program. In fact, you have been using the Propellerôs 

parallel processing ability ever since Chapter 3.4. You may not have realized that the FDS and SM serial drivers each 

use one of the 8 sub-microcontrollers in the Propeller Chip. Whenever we used these drivers we were in effect already 

utilizing parallel processing. The FDS (or SM) object runs in its own COG (the sub-microcontroller is called COG in 

the Propeller Chipôs parlance).  

 

If you think about what the FDS and the SM modules do you will realize the power of these objects. They, 

independently of your program, sit in the background listening to the RX Pin (receiver pin) to see if any data is coming 

and then if data comes in they do the Bit-Banging required to achieve the Asynchronous Serial Communications; they 

then store that data in a memory area in the shared RAM (receive buffer). Your module can then call methods to 

extract the data. Also when you use the Tx() or Dec() or Str() methods in the modules you are in fact sending the data 

to the shared RAM (send buffer) which the object will then send out on the TX pin while also checking if it is allowed 

to send and so on. 

 

All this is happening in parallel to other tasks you are doing in the main cog. Our programs so far have only utilized 

one cog (the start up one) and have not utilized any parallel processing save for the FDS and SM objects. So how do 

we do our own multiprocessing using our own parallel processes? Well, that is exactly what we are going to do from 

this point onwards. We will progressively build up to a complex and intricate (yet easy to understand and achieve) 

system that will be a major step towards creating a powerful hardware control system (e.g. a robot) using the Propeller 

and RobotBASIC as partners. 

 

We will start by gradually converting Program_03.Spin to be a parallel processing system and then add to it some more 

functionality. All this will serve the purpose of comparing how the program can be made infinitely more versatile and 

capable than its linear-flow counterpart. Armed with the knowledge and experience that the next few sections will 

provide, we will have the tools required to create the complex system needed to achieve our final overall objective of 

interfacing and controlling a complex hardware system using the PC. 

5.4.1 Modularization in Preparation  

[Cut Out] 

A Variableõs Address in Memory (Pointer) 

[Cut Out] 

Brief Note About Objects and Methods  

[Cut Out] 

5.4.2 Initial Multitasking With Polling  

[Cut Out] 

5.4.3 Achieving Initial Parallelism  

[Cut Out] 



Chapter 5 

Page 22 

The Relationship Between Cogs, Methods and Objects  

[Cut Out] 

Cogs and Stack Space 

[Cut Out] 

5.4.4 Systematic Debugging of Complex Programs  

[Cut Out] 

5.4.5 Sources For Obtaining Help With Difficult Problems  

[Cut Out] 

5.4.6 Parallel Processing Contention for Resources  

[Cut Out] 

5.5 Objects, Semaphores and Flags 

In Section 5.4 we achieved a major step forward towards our objective. We managed to create parallelism with three 

processes (5 really with the FDS and SM) running independently and truly simultaneously: 

1. The Main  cog doing the byte receiving and sending as well as blinking an LED on P23. 

2. The SetLEDs() cog setting the LEDs according to the byte received by Main. 

3. The ReadPins() cog reading the pushbuttons and setting the byte to be sent by Main . 

4. The FDS cog doing serial data bit banging to and from RB. 

5. The SM cog doing serial data bit banging to the PST. 

 

In fact though, we really do not get a full appreciation for the parallelism since cog 2 and 3 are not really doing much 

that truly requires the power of parallelism. Of course we are still in the process of advancing towards a useful and 

powerful system and we have to proceed gradually. Nevertheless, we did get a feel for this parallelism when we 

allowed cog 2 and 3 to output to the PST, albeit in an intermingled manner. 

 

In this section we are going to press forward, adding more complexity. We are still in the learning process, so donôt 

worry we will proceed in small surmountable steps. We will: 

ü Divide the project into objects, adding some more parallel actions. 

ü Solve the problem of jumbled output to the PST by using Semaphores 

ü Manage the Parallelism further with Flags 

5.5.1 Creating Objects 

[Cut Out] 

5.5.2 Utilizing Semaphores  

Recall how in Program_05_E.Spin (Section 5.4.4) we used output to the PST but when we let both cogs stream out to 

the PST we had a problem with the bytes from each being intermingled with the other and the output was a useless 

jumble of data from each shuffled up into an unreadable mess. 

 

In this improvement of our program we are going to use PST debugging and we will let both cogs as well as the Main 

cog output messages to the PST while also working the LEDs and pushbuttons and receiving and sending data to RB as 



Multitasking & Parallel Processing 

Page 23 

well as keeping the LEDs blinking. With all this action we will make decisive use of parallelism and multitasking. See 

Figure 5.4 for a conceptual schematic the system. 

 
Figure 5.4: A schematic of the various objects and cogs in the new system showing how they interact. Cog numbers 

are just for reference, they are not necessarily the actual order. 

 

Notice how Main , ReadPins() and SetLEDs() are all using the SerialMirror object. Because every object must 

instantiate its own version of any other objects it uses, we must instantiate the SM object in all the objects. However, 

only one of them must call the Start() method of the SM object. This should be done by the top-level-object (Main ).  

 

This is why we used SM for debugging with the PST instead FDS. It is because SM can handle multiple objects using 

it with only one cog, while the FDS has to have multiple cogs. So the FDS is wasteful of cogs. However, notice that 

SM will only do this for the same RX/TX pins for all the objects using it. Since we want different pins for sending to 

RB we use the FDS as the object for that. We cannot use SM with another call to its Start() method with different pins. 

 

Also notice that the FDS and SM objects do not share RAM with the other objects. They have their own RAM area that 

does not need to be accessed by outside objects because the objects provide getters and setters (for example the Tx(), 

Rx and Dec() method). Strictly speaking all the objects share the same RAM but in logical terms the RAM for the FDS 

and for SM are not accessible or visible to the other objects. 

 

Study Figure 5.4 well. It is a good way of understanding what we have achieved so far and for developing a feel for the 

way parallel processing is going on and appreciating how the shared RAM is a great way for connecting the Main  cog 

with the SetLEDs and ReadPins cogs. The next thing we need to do in Program_07.Spin is to create a mechanism 

where only one of the three independent and parallel cogs can send through the SM object at a time. 

What is a Semaphore?  

The word Semaphore means an apparatus for signaling, such as the arrangement of lights, flags, and mechanical 

arms on railroads.  

 

Imagine the three cogs are like trains trying to use a single crossing. You obviously need a signal to tell the trains to 

wait before they cross while another train is using the crossing. No train can attempt to move through the crossing until 

it has a green light to do so. Once it has acquired the green light it should then cross and once clear of the crossing it 

should release the green light. Other trains will then be able to attempt to turn the green light on. Only one train can 

have the green light at a time. 

 



Chapter 5 

Page 24 

The above mechanism of Semaphores is exactly what we will use to stop data jumbling when cogs are trying to send 

data simultaneously to the PST. Only the top-level object should create the semaphore (LockNew) and then it must 

pass the address of the signal to the other cogs so that they can try to lock it (LockSet). A cog will only send data 

through the PST if it has managed to acquire the lock. Once it finishes sending it should then release the lock 

(LockClr ). This way, the three cogs will be guaranteed a turn to send data through this one shared resource. 

 

The three Spin statements used to utilize semaphores are: 

 

LockNew(): to create the required semaphore and store its ID in a variable. This is only performed once for 

each semaphore (maximum of 8) by the top-level-object and then it makes the address of the ID variable 

available to all other cogs that need to manipulate the semaphore. 

 

LockSet(): to try to capture the semaphore. If the semaphore is in use by another cog then the function will 

return true, if it is not then it will return false, but that also means that it is now captured by the calling cog. 

There is no specific need to take any other action. If LockSet() returns false then it is now captured by the 

calling cog. If it returns true then it is not captured by the calling cog. Note the logic.  

 

LockClear():  to release the semaphore when it is no longer needed by the cog. A cog that acquires a semaphore 

must also release it. If it does not release it then other cogs that may require it will never be able to do their 

action. Even the cog that has the semaphore may not be able to do any more work again if it does not release the 

semaphore before it tries to lock it again (e.g. in a loop). 

 

Using a Semaphore 

[Cut Out] 

5.5.3 Tighter Control With Flags  

In the previous section we resolved the problem of intermingling bytes sent from the cogs simultaneously by using a 

very clever technique that the Propeller + Spin make extremely easy to implement. Another technique related to 

semaphores is flagging.  Using flagging, a process signals another to go ahead and do something that should only be 

performed when flagged and once itôs finished doing so it should clear the flag which also serves the purpose of telling 

the signaling process that the task is finished. 

 

A flag serves as a two way signal between two processes where one raises the flag and the other lowers it.  

 

With this mechanism even though the two processes might be running in parallel and at different speeds, the controller 

process can signal the other to tell it that some data is ready or that it is ok to do something. The other process can 

check for the flag state (polling) and if it is raised the process does what it is supposed to do and then lowers the flag. 

This indicates to the master process that the work is done. Sometimes, depending on the task, the process may lower 

the flag before it finishes doing the work if the action permits that kind of synchronization. This way the flag raiser can 

go on doing something else while the flagged process can be working at its pace processing the flagged action. 

 

In Progam_08.Spin (and its subordinate objects) we will use flags between the Main cog and the two other cogs (2 

flags). The flags are basically to let the other cogs know that Main  has output data to the PST and so the other cogs can 

output their data too. In this manner Main  can get in a word edge wise instead of being outspoken by the much more 

verbose other cogs. When you run Program_08.Spin and observe the output on the PST window you will see that now 

the Main  message is visible a lot more often and that the output from all the cogs is taking place in a lot more orderly 

manner. Also observe that the RB interaction is quite timely too and that the three Blinker LEDs are also blinking on 

time. 

[Cut Out] 
 



Multitasking & Parallel Processing 

Page 25 

Using Semaphores and Flags we managed to tame the chaos caused by unbridled parallel processing. We utilized the 

power and convenience of multiple microcontrollers doing their work in parallel but yet in orchestrated unison.  

 

Semaphores are also a great mechanism for coordinating memory access. Imagine if two processes share a buffer in 

RAM. One writes to it and the other reads from it. Imagine if the buffer is a few bytes long. If a process reads the 

buffer while another is still writing to it then it is possible that the reader would be reading jumbled data of old and new 

bytes. Semaphores should be used to synchronize this process. 

 

Notice in the program how we used a byte variable in the Dat section of the top-level-object. The individual flags are 

the Least Significant (first from the right) two bits of the byte variable. 

 

Rather than passing yet one more parameter to the other cogs we made use of the fact that the Flags variable in the Dat 

section comes directly after the Semaphore variable. And since we are already passing the address of the Semaphore 

variable to the other cogs, we obtain the Flags variable by reading the byte after the Semaphores variable. Thus the 

use of Byte[Semaphore][1] since Byte[Semaphore][0] would be the byte which is the Semaphore variable itself then 

[1] is the byte right after and therefore is the Flags variable 

 

When sharing RAM variables between cogs, we need to pass the addresses of these variables from the 

object that contains them to the cogs in the other objects. This can be achieved by passing an address for each 

variable, but this is wasteful. A better mechanism is to ensure that all the necessary variables are arranged in a 

contiguous block of RAM we will call a buffer. Then the address of the top of the buffer is passed to the other 

cogs. This buffer can then be used as an array of data. The cog using the buffer can index into the buffer as it 

needs to obtain the Longs, Word  or Bytes it needs.  Of course the arrangement has to be known so that the 

correct indexing can be used. However, not all the variables in the buffer have to be of the same type. But care 

has to be taken to ensure that they are aligned properly.  

 

Notice the use of the FlagMask constants. These are used to check if the flag is set in the respective cogs by masking 

out the appropriate bit from the byte that contains all the flags. Also the inverted mask is used to reset the flag. 

 

The flags are not set until Main  has actually sent some data to the PST. When the flags are set, the other cogs contend 

between each other for the semaphore to write to the PST. Also the cog does not clear its flag until after it has already 

written out to the PST. This assures that the cog will continue to contend for the Semaphore until it has written data out 

to the PST. Main  also needs to contend for the Semaphore because the two cogs might still be trying to write out and 

we do not want it to clash. 

 

Semaphore ensures that no two cogs can write out at the same time. The flags are a way for the less frequent writer 

(Main ) to not be swamped out and rarely be able to get hold of the Semaphore. 

5.6 Parallel-Parallel Processing 

The Propeller Chip has a mechanism to create even more parallelism. It is like parallel processing on top of parallel 

processing. This mechanism is called counters. Every cog has two of them. Each counter can do all sorts of actions 

that once configured can be left alone and they will continue to do their action while the cog is free to do other actions. 

So this is like two parallel processes going on within the cog and the cog is doing its work in parallel to the others; 

Parallel-Parallel processing. 

 

There are numerous things these counters can do. As a useful example we are going to modify the top-level-object 

(Program_08.Spin) instead of blinking the LED on P23 to slowly vary the brightness of the LED from off to full 

brightness and then gradually dimmer until off again. This will continue as long as the cog is active. 

 



Chapter 5 

Page 26 

We modified Program_08.Spin to make Program_09.Spin. However the sub-objects remain the same. This illustrates 

the use of making objects since the Program_08_Set.Spin and Program_08_Read.Spin will be used again with 

Program_09.Spin. 

 

The accompanying RB program remains to be Program_06.Bas since the new system is the same as far as the RB 

program is concerned. The only difference is that instead of blinking the P23 LED on/off Main  will use a counter in 

the duty mode to control the level of voltage on P23. This causes the LED to vary in brightness. We will set it so that 

the LED will repeatedly increase in brightness from off to fully bright in 255 steps over 1 second and then dim back to 

off in 255 steps over 1 second.  

 

The principle is something similar to Pulse Width Modulation (PWM). It is similar in effect but not the 

same in action. In action it is more aptly called Pulse Frequency Modulation (PFM). Rather than vary the duty 

of a constant frequency signal we vary the frequency of a constant duty signal. 

 

[Cut Out] 
 

5.7 Stack Overflow  

[Cut Out] 

5.8 A Musical Keyboard  

As you saw in Section 5.6 the counters in the Propeller Chip can be quite interesting. One of the modes for using the 

ctrA  or ctrB  counters in a cog is to generate a signal of a particular frequency.  In this section we will make use of this 

ability to make musical sounds on a Piezoelectric Speaker (Part#900-00001)
27

.  

 

 
Figure 5.5: Piezoelectric Speaker Connection Schematic. 

 

We will use RB and the Propeller Chip to allow a user to play music on a Piano Keyboard by clicking with the mouse 

on a graphical representation of the keyboard. Furthermore, there will be a button that when pushed will start playing a 

tune. The new program Piano.Spin is a modification of Program_09.Spin. We will still use Program_08_Read.Spin but 

we will not use Program_08_Set.Spin. Instead we will make a new object called Piano_Set.Spin. 

 

Piano.Spin is a major modification of the original object in that we now will receive 4 bytes not one as before. These 

bytes will be used to create a Long integer (32 bits) using the Little-Endian arrangement since that is what the Propeller 

uses to store its 32-bit integers. Other actions are as before in changing the brightness of the LED on P23 and 

everything else as in Section 5.6. 

http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/106/Default.aspx


Multitasking & Parallel Processing 

Page 27 

5.8.1 A Different Way of Sharing RAM  

Other changes from the old program are that we no longer need the ReceivedByte buffer area and also when we 

Set.Start() we no longer need to pass along the buffer address either. This is because we are using a new style of 

passing the value to the other object and thus to the other cog (see discussion about objects in Section 5.4.1). This is 

achieved with the Public PlayNote() method in the Piano_Set object. We use the method to pass the value of the 

frequency to the object. But this does not pass it to the cog; to make it available to the cog, the method has to store the 

value into a variable in the RAM to which the cog has access (Frequency). This variable is accessible to the cog since 

it is in the same object as the cogôs method. But the variable is not accessible to other objects. 

 

This new method of passing parameters to other objects and on to the cog in the object is effective because it achieves 

tighter encapsulation. Nevertheless, it is a bit wasteful in that there are function calls to be made and stacks to be 

pushed and popped and so forth. This can be wasteful in both stack size requirement and in speed. However, 

encapsulation and hiding of variables may be a desirable property in certain situations.  

 

In this case we will use this method just as an illustration of this option. It would have been more efficient to have 

given Main  access to the shared variable and let it set the variable and then the sub-object would see the change. 

Nonetheless, in certain situations using this methodology might be desirable for other than encapsulation. Sometimes 

calling methods provides sequencing control where some actions are only performed when the method is called as 

opposed to when the variable changes value which has to be monitored (polled) or by using flagging as we have been 

doing. 

 

The Propeller is a 32-bit processor and a Long in its memory is a 32-bit number (4 bytes). You can also 

access the 4 bytes as individual bytes. If you have a variable f declared as a Long you can access its individual 4 

bytes using f.Byte[n]  where n ranges from 0 to 3.  

 

The Propeller uses the Little-Endian format to store integers. So if we have an integer in memory that is 

$A3_12_BC_45 then in RAM it is actually stored as 4 bytes where the first byte (byte 0) is $45 and the next 

byte (byte 1) is $BC and so forth. So when we look at f.Byte[0] we will see $45 and so on. 

 

Piano.Spin will wait for 4 bytes to arrive from the RB program one by one. When the first one comes in it will be set in 

the f.Byte[0]. The next received will be saved in the next byte (1) and so on. When all 4 arrive the Long value would 

then be fully formed as a 32-bit integer and it will be passed to the Piano_Set object using the PlayNote() method 

which uses it to set the Frequency variable in its RAM space where the cog has access to it. 

 

We will still use the Program_08_Read object just as before to read the status of the pushbuttons. Main  will send that 

value back to RB to serve as a signal to proceed with sending the next 4 bytes and also the RB program may use the 

pushbuttonsô status if needed like before. 

 

The new Piano_Set object will not set the LEDs on P20..P16 any longer. Instead it will use the Frequency value to set 

the frqB  register of a counter as will be explained shortly. 

5.8.2 Creating Frequencies (Numerically Controlled Oscillator)  

The new object will setup the ctrB  counter to be in the NCO (Numerically Controlled Oscillator) mode. In this mode 

the counter will make a pin go high as long as the 32
nd

 bit (bit 31) on the phsB register is high and low when it is low. 

And since the counter will add the value of frqB  to phsB every clock tick then we need to set the frqB  value so that bit 

31 of the phsB register will go high and low to generate the right frequency. The formula is: 

 

frqB = Required Frequency * 2
32

 / clock-frequency. 

 

Since the clock-frequency we are using is 80_000_000 (80 MHz) then 2
32

/80_000_000 = 53.678 

 



Chapter 5 

Page 28 

To generate a frequency of say 1708 we need to set frqB  to the value round(1708*(2.0^32)/80e6). When we send this 

value to the Propeller, it assigns it to frqB  and also sets P4 to be an output pin. If P4 is connected to a Piezoelectric 

Speaker the right tone would be generated. 

 

The object will also blink an LED on P21 (as before). When Frequency is other than -1 it will be assigned to frqB  and 

P4 will be set as an output pin to allow the oscillations to start. It will also set Frequency to -1 to prevent replaying the 

same note for ever. When the PlayNote() method is invoked it will also start a stopwatch timer. This timer is used to 

stop the note playing if no new note (frequency value) is received before a certain timeout (5 secs)by makingP4 an 

input pin which will disable the oscillation, effectively stopping the signal. If a new value is received before the 

timeout then of course it will change the frqB  value which starts a new frequency and reset the timer. 

 

The new firmware is much like the old system but now RB will have to send the 32-bit (long Integer) frequency value 

as 4 bytes with the LSByte first and the firmware will receive those bytes and then send a byte back to RB (the 

pushbuttons status as before).  

5.8.3 Testing the Speaker Firmware 

The RB program needs to calculate the value to be sent to the Propeller using: 
N = (2.0^32)/80e6  

Fre qValue = round(ActualFreuency*N)  

 

FreqValue will then be sent using: 
Serialout BuffWrite("",0,FreqValue)  

 

The function BuffWrite()  is used to create a byte buffer with the 4-byte (32 bits) integer in it. RB also uses the Little-

Endian format and so byte 0 is also the LSByte. When SerialOut sends the byte buffer all 4 bytes would be sent to the 

send buffer and then RB would take care of sending these 4 bytes to the Propeller one at a time. 

 

Examine the program Speaker_Tester.Bas to see how this is implemented in the PlayNote() subroutine. Also notice 

how the main program generates random frequencies. The program will not do much else for the sake of simplicity. 

Notice all the bold code lines to see how the discussion above is implemented in code. 

 

The Propeller is a 3.3V chip, so the Speaker will not be very loud. You may have to be close to it to hear the 

sounds well. We will see how to increase the volume of the sound in Chapter 8. 

 

If you are running on an Me or XP machine you will be able to hear the sounds generated on the PC speaker 

if you set the variable Port to 0 and also uncomment the highlighted line. Do not do this if you have a Vista 

machine because it may give you an error. 

 

Another way we can send the 4 bytes of the Long Integer value is to use the GetByte() function in a loop: 
N = (2.0^32)/80e6 \  FreqValue = Round(ActualFrequency*N)  

For I=0 to 3  

   SerialOut GetByte(FreqValue,I)  

Next  

 

Speaker_Tester.Bas 
//Speaker_Tester.Bas  

//works with Piano.Spin  

Port = 8 //change this as per your system  

Main :  

   setcommport Port,br115200  



Multitasking & Parallel Processing 

Page 29 

   while true  

     call PlayNote(random(3000)+500,600)  

   wend 

End 

// ------------------------------------  

sub PlayNote(F,D,&B)  

   xystring 1,1,"Note = ",F;"Duration = ",D,spaces(10) //display data  

   B = 0 \  c = 1  

   if _Port  == 0                  //if not serial  

       //sound F,D                  //play on speaker...only XP machines  

   else                           //otherwise  

      N = round(F*2.0^32/80e6)    //convert to frqA values  

      SerialOut BuffWrite("",0,N) //sen d the 4 bytes of the Long LSByte first  

      /****this is another way to do the same thing but is commented out  

      for i = 0 to 3              //send the 4 bytes of the Long  

         serialout getbyte(N,i)   //LSByte first  

      next    

      ********** *****************/  

      delay D               //delay  

      serbytesin 1,m,c      //get the confirmation byte (buttons state)  

      if c then B = getstrbyte(m,1) //get the value  

   endif    

Return (c==1) //return true or false if there was a byte received  

//===============================================================     

 

[Cut Out] 

5.8.4 A Piano Keyboard Player  

Now that we tested the new firmware we will write an interesting program utilizing the new firmware to allow a user to 

interact with a graphical Piano Keyboard on the PC screen. The user can click on the key and will hear the notes 

playing on the Piezoelectric Speaker on the Propeller. Additionally, there will be a button on the screen that will allow 

the user to hear a tune playing repeatedly until the button is pushed again. The tune is ñJingle Bellsò. See Figure 5.6. 

 

The program is a complex one but it basically uses the PlayNote() subroutine we saw in Speaker_Tester.Bas to play 

the note that the user clicks the mouse over. The program will have to determine the following: 

1. Which key the user is pushing. This is determined by: 

a. The position of the mouse when clicked 

b. The color of the key under the mouse 

2. What the frequency of that key is. This is calculated from: 

c. The keyôs scale  

d. The Keyôs position within the scale (Note) 

 

Remember that there are seven normal notes and five sharps in each scale. Also there are 5 scales as drawn on the 

screen with the middle scale being the middle C-scale. Once the keyôs scale and note are determined, the actual 

frequency value is determined from an array of frequencies. 

 

All the code in the program is to draw the keyboard and to determine the key being pushed and its frequency. Once the 

frequency is determined, it is played by sending it to the Propeller. 

 

Another action the program provides is the ability to play a tune. This is similar to the RTTTL tunes on cell phones. 

The tune is defined as a series of notes and durations with also the ability to define the scale and pauses. The tempo and 

the code of the duration determine the actual time in milliseconds the note will play. Again, the noteôs frequency is 

determined from the scale and the noteôs position in the scale. These two as before determine the frequency value from 

the array of frequencies.  



Chapter 5 

Page 30 

 

Examine the listing below to see how all the above logic is implemented. 

 

 
Figure 5.6: Screenshot of Piano.Bas in action 

 

In Piano.Bas and many of the programs to come we use RBôs Call/Sub subroutines with variable 

parameters, by reference parameters, local variable scoping and global variables with the use of the _ operator. 

See RobotBASIC_Subroutines.PDF
72

 for a tutorial on this powerful feature of RB. 

 

Piano.Bas 
//Piano.Bas  

//Works with Pia no.Spin  

Port = 0 //set this as per your system  

Main:  

   GoSub Initialization  

   while true  

      call CheckMouse()    

      while PlayTune  

         call Play_Tune(Tempo)  

      wend 

   wend 

end  

//=======================================================  

Initi alization:  

   GoSub SetUpNotes  

   GoSub SetUp_Jingles  

   clearscr gray  

   WOffset = 50 \  WW=20 

   for i=0 to 7*5 - 1  //draw the normal keys  

      rectanglewh WOffset+WW*i,100,WW,100,rgb(0,0,50)  

   next  

   BW = 14 \  BOffset = 63  

   for i=0 to 7*5 - 1  //draw t he sharp keys  

      rectanglewh BOffset+WW*i,100,BW,50,black,black  

      if i#7 == 1 || i#7 == 5 then i++ //some sharps not allowed  

   next  

   data NoteMap; 0,2,4,5,7,9,11  

   data SharpMap; 1,3,0,6,8,10  

   setcommport Port,br115200  

   clearserbuffer  

   Pla yTune = false  

   AddButton "&Jingle Bells",500,20  

http://www.robotbasic.org/resources/RobotBASIC_Subroutines.pdf


Multitasking & Parallel Processing 

Page 31 

   onButton bHandler  

Return  

//===============================================================  

sub bHandler()  //button interrupt handler  

   lb = LastButton()  

   if left(lb,3) == "&Ji"  

      RenameButton lb, "&Stop"  

      _PlayTune = true  

   else  

      RenameButton lb,"&Jingle Bells"  

      _PlayTune = false  

   endif  

   onbutton bHandler  

return  

//===============================================================  

SetUpNotes: //frequencies array  

   data Notes;32.703 ,34.648,36.708,38.891,41.203,43.654  

   data Notes;46.249,48.999,51.913,55.0,58.27,61.735   

   data Notes;65.406,69.296,73.416,77.782,82.407,87.307  

   data Notes;92.499,97.999,103.83,110.0,116.54,123.47  

   data Notes;130.81,138.59,146.83,155.56,164.1,174.61  

   data Notes;185.0,196.0,207.65,220.0,233.08,246.94  

   data Notes;261.63,277.18,293.66,311.13,329.63,349.23    'middle C  

   data Notes;369.99,391.99,415.31,440.0,466.16,493.88  

   data Notes;523.25,554.37,587.33,622.25,659.26,698.46  

   data Notes;739.99,7 83.99,830.61,880.0,932.33,987.77  

   data Notes;1046.5,1108.7,1174.7,1244.5,1318.5,1396.9  

   data Notes;1480.0,1568.0,1661.2,1760.0,1864.7,1975.5  

   data Notes;2093.0,2217.5,2349.3,2489.0,2637.0,2793.8  

   data Notes;2960.0,3136.0,3322.4,3520.0,3729.3,3951.1  

   S=- 2 \  P=- 1\  C=0 \  CS=1 \  D=2 \  DS=3 \  E=4 

   F=5 \  FS=6 \  G=7 \  GS=8 \  A=9 \  AS=10 \  B=11 

Return  

//===============================================================  

SetUp_Jingles: //RTTTL codes for the tune  

   Tempo = 1500  

   data Song;S,5,E,8,E,8,P,32 ,E,4,P,32,E,8,E,8,P,32,E,4,P,32  

   data Song;E,8,G,8,P,32,C,4,D,16,P,32,E,2,P,16  

   data Song;F,8,F,8,P,32,F,8,F,16,P,32,F,8,E,8,P,32  

   data Song;E,8,E,16,P,32,G,8,G,8,F,8,D,8,P,32,C,2  

Return  

//============================================================= == 

sub Play_Tune(Tempo)  //play all the notes in the tune list  

  Scale = 4  

  FOR i = 0 TO MaxDim(Song,1) - 1 step 2  

     if Song[i] = _P  //if a pause  

       Frequency = 0  

       Duration = Tempo/Song[i+1]  

     elseif Song[i] = _S   //if scale change  

       Scale = Song[i+1]  

       continue  

     else  

       Frequency = Notes[Song[i]+12*Scale]  //determine freq from scale & note  

       Duration = Tempo/Song[i+1]           //determine duration from tempo  

     endif  

     call PlayNote(Frequency,Duration)  



Chapter 5 

Page 32 

     if  !_PlayTune || !PlayNote__Result then _PlayTune = false \  break  

  next  

Return  

//===============================================================  

sub PlayNote(F,D,&B)  

   xystring 1,1,"Note = ",F;"Duration = ",D,spaces(10) //display data  

   B = 0 \  c = 1  

   i f _Port == 0                  //if not serial  

       //sound F,D                  //play on PC speaker...only XP machines  

   else                          

      N = round(F*2.0^32/80e6)    //convert to frqA values  

      SerialOut BuffWrite("",0,N) //send t he 4 bytes of the Long LSByte first  

      delay D                     //delay  

      serbytesin 1,m,c            //get the confirmation byte (buttons state)  

      if c then B = getstrbyte(m,1) //get the value of the buttonsô states 

   endif    

Return (c==1)  //return true or false if there was a byte received  

//===============================================================  

sub CheckMouse() //determine which key is pushed  

     readmouse x,y,b                         //read mouse  

     if !b then call PlayNote( 0,1) \  return  //if no click then no sound  

     c = pixelclr(x,y)                       //get the color under the mouse  

     if c == white  

       x = (x - _WOffset)/_WW                  //convert x to key number  

       Scale = 1+x/7 \  Note = NoteMap[x#7]   / /convert to note number & scale  

     elseif c == black   

       x = (x - _BOffset)/_WW                  //convert to key number  

       Scale = 1+x/7 \  Note = SharpMap[x#7]  //convert to note number & scale  

     endif  

     if c == white || c == Black             //if there is a note  

         Frequency = Notes[Note+12*Scale]    //convert to frequency  

         call PlayNote(Frequency,100)        //play it  

     endif     

Return  

An Exercise 

In Piano.Bas above, when you press the button on the screen to start playing the tune you can stop the tune by pushing 

the button again. Is it possible to accomplish the same action with the hardware pushbuttons? The firmware returns the 

status of the pushbuttons on the hardware; therefore it is possible to have the tune start/stop by pushing a button on the 

hardware ï say the one on P5. If the tune is already playing, pushing the pushbutton on P5 should stop it, and if the 

tune is not already playing then it should be started; P5 will behave like the button on the RB screen. The tune can be 

started or stopped (toggled) by pushing either the RB screen button or the hardware P5 pushbutton. 

 

Can you implement the required software changes in the program Piano.Bas to apply the above improvements? What is 

needed is to use the byte returned by the Propeller with the status of the pushbuttons to decide whether to play the tune 

if it is not already playing or to stop it if it is already playing. Try to do so without reading the hints. The solution is 

given below. 

 

 

 

The above interaction illustrates how the software can be made to act as a surrogate for the hardware but 

also augment and enhance it (e.g. the piano GUI keyboard). Also imagine if you had a library of tunes and you 

wanted to allow the user to select one from a list of tunes. In the software it would be easy to do this (see 

AddListBox  command in RB). However, in the hardware you would need additional hardware. 



Multitasking & Parallel Processing 

Page 33 

 

 

Hint:  The buttons are active low 

Hint:  Remember that the RB pushbutton needs to be renamed to reflect the state. If the tune is playing it should say 

Stop and if the tune is not playing it should say Jingle Bells. This way the button will continue to work correctly 

in conjunction with the hardware button. 

Hint:  Look at the Main  section in the RB program and see what determines if a tune is to be played or not. 

Hint:  A few lines of code are needed in the subroutine PlayNote() just above the endif statement. These lines should 

check to see if the hardware button is pushed. But also to check what is the current condition of play. If playing 

then stop, if not then start. 

Solution  

In the PlayNote() subroutine just after the line: 
      if c then B = getstrbyte(m,1) //get the value of the buttonsô states 

 

Add the following lines: 
       if (~B) & 0%001  //the buttons are active  low and P5 is the LSBit  

          if _PlayTune  

             RenameButton "&Stop","&Jingle Bells"  

          else  

             RenameButton "&Jingle Bells","&Stop"  

          endif  

          _PlayTune = ! _PlayTune  

          delay 200  //delay to eliminate b utton bounce  

      endif  

5.8.5 Some Thoughts and Considerations  

Sections 5.8.3 and 5.8.4 highlight something very interesting. Consider what we did. In Section 5.8.3 we used a 

hardware setup with a firmware and a protocol to play some random notes by using simple software. The protocol 

allowed the software to send values which the firmware knew what to do with and that caused the hardware to generate 

an audible frequency on the speaker.  

 

In Section 5.8.4 we used the very same hardware, firmware and protocol; nothing changed.  The hardware does not 

know anything about how to play a tune. It does not have any user interface (only the pushbuttons). It has no means of 

organizing tempo or determining if the user wanted to play Jingle Bells or not. There was nothing in the hardware that 

even told it what to do if the user did push the pushbuttons. The hardware and firmware knew nothing except how to 

play a note of a particular specified frequency and read a pushbutton status. Yet, when we changed the software we 

had a sophisticated overall system. 

 

The PC did not have the means of generating the sound. It had no speaker and no frequency generator. However, when 

combined with the hardware it had the means to do so. The hardware had no means of effecting a user interface, yet 

when combined with the PC it had the means to do so. 

 

Later in the exercise we saw how powerful the cooperation between the software and firmware can be. The firmware 

had absolutely nothing to relate the press of a pushbutton to any action other than to send it on the serial port. It had no 

logic to make it into a toggle switch for playing a musical tune. As far as the hardware is concerned there is absolutely 

no relationship between the speaker and the pushbuttons. But, with the addition of a few lines of software we made it 

possible for the hardware to become an intelligent device. 

 

Think about this for a moment. If you are standing away from the PC and do not see the screen while the RB program 

is running, you can push the button on P5 and hear the song play. You push it again and it stops. The hardware is now 

doing something intelligent. It knows when you push the button whether to play a song or not. It knows whether a song 

is already playing to stop it and vice versa. How can it even know that? There is nothing in the firmware that tells it 

that. It has decision abilities that were not even programmed at all in the firmware. The firmware is doing something 



Chapter 5 

Page 34 

it was never specifically programmed to do.  This is a powerful concept. Three different version of software, using the 

very same hardware, accomplished different actions. The behavior of the very same hardware changed drastically only 

by changing the software. 

 

This is what we are trying to accomplish here. We want to be able to make hardware do different things but without 

having to reprogram the firmware on it. Without having to keep changing the low-level Operating System of the 

hardware we can add new software to make it do new actions. 

 

The hardware and firmware know how to do a low-level action. The software knows the when and why the 

hardware needs to do something without having to be hindered with the details of how. It is like a company. 

The boss knows why she needs a certain product and when it has to be created. The boss has the bigger picture 

in view; she knows what she wants done to be able to make the company successful. However, she does not 

know how to create the product. She has no idea how to use a lathe or how to weld. So she employs people who 

do. She knows the why and when. The employees know the how. Alone the boss could not accomplish her 

vision. Alone the employees do not have the drive. Together they form a successful endeavor beneficial to all 

(at least most of the time). 

5.9 Parallel Programming Can Create Puzzling Err ors 

Programming for parallel processing has many pitfalls that can cause quite a lot of puzzling bugs. Often the cause is a 

lack of appreciation for what can occur when parallel processes are interacting. Other times the cause can be 

misunderstanding what the mechanisms provided by a system such as the Propeller Chip can do. 

 

Coming from the traditional linear flow programs it is often hard to switch over to a mode of thinking that allows for 

the nuances of parallel processing. The Propeller Chip enables the creation of parallelism with ease, nonetheless, there 

are things the Propeller cannot do for you. You still have to consider carefully all the intricacies of interaction that are 

required to assure proper sequencing and orchestration of the various independent processes. 

 

You have to remember that despite the programs in each cog being linear programs, the overall system is not. Each cog 

can be in a totally undeterminable state in as far as another cog is concerned. We have already seen one type of this 

problem where parallelism can be puzzling. When we finally had the program working in Section 5.4 we had the 

problem of the PST output being a jumble of letters where the messages from all the cogs were shuffled together. The 

fact that the cogs were sending their messages simultaneously through the one serial port was the problem and we 

devised a mechanism for orchestrating them using semaphores in Section 5.5.  We also had to use flags to further 

control the output of the cogs to stop one swamping and obscuring the output of the others. 

5.9.1 An Example of a Parallel Processing Trap 

[Cut Out] 
 

5.9.2 An Example of a Propeller Specific Trap  

[Cut Out] 

5.10 Logistical Planning for Parallelism With the Propeller  

[Cut Out] 



Multitasking & Parallel Processing 

Page 35 

5.11 Summary 

In this chapter we: 

Ç Studied Multitasking using interrupts in RobotBASIC. 

Ç Created Parallelism using Polling in RobotBASIC and Spin. 

Ç Learned about timing in Spin. 

Ç Learned about variable addresses (pointers) in Spin. 

Ç Learned about some objet-based programming in Spin. 

Ç Learned how to start cogs working in Parallel. 

Ç Examined the relationship between cogs, methods and objects. 

Ç Learned how to debug puzzling problems. 

Ç Learned how to use Semaphores and Flags to avoid contentions. 

Ç Learned about Stack Space. 

Ç Learned about using counters in the Duty and NCO modes. 

Ç Utilized a counter to generate sound. 

Ç Seen how the PC and Propeller can create synergetic relationship through the protocol, firmware and 

software. 

Ç Learned about some possible traps in using the Propeller and parallelism. 

Ç Considered some aspects of the logistics of planning for parallel programs. 





 

Page 183 

Chapter 8 

 

More Advanced Hardware 

 

 

n Chapter 7 we added some interesting hardware. In this chapter we will add more hardware that despite being 

slightly more complicated than what we had so far, is nonetheless easy to integrate into our system due to the 

versatility and robustness of the protocol. The actual hardware used is immaterial and your requirements may dictate a 

different set of devices. What is important, are the principles involved in incorporating the hardware within the system. 

Section 8.2 will expound a procedural strategy that makes adding any hardware to the protocol a simple endeavor. The 

details will differ from one device to another, but the overarching principle for how the firmware makes the devices 

available to software by means of a protocol is what interests us here. We will add: 

ü A compass 

ü Ability to control the motors individually 

ü A turret for the ultrasound ranger 

ü A mechanism to save the systemôs  parameters to the EEPROM and to reset them to factory settings 

ü An accelerometer 

ü Three Infrared line sensors 

ü A speaker 

 

To keep track of all the modifications and hardware, see Appendix B for the complete details of the final 

setup of the system as it will be once we complete adding all the hardware in this chapter. See Figures B.1, B.2 

and Table B.1. Also see Figure 8.15.  

 

See Section 8.2 for a procedural strategy for adding hardware to a system that implements our protocol. 

8.1 Adding a Compass 

[Cut Out] 

8.1.1 Using the Compass  

[Cut Out] 

8.1.2 Inter-Cog Communications and Complex Object Interaction  

[Cut Out] 

I  



Chapter 8 

Page 184 

8.1.3 Using the Compass Calibration  

The HMC6352 compass module has a very good resolution. It is accurate to 1ę, which is as accurate as any robot may 

need. However, the readings can be affected by surrounding magnetic fields. One way to minimize this error is to 

calibrate the module in the environment it is to be used in. 

 

The compass has a very easy and effective inbuilt calibration. All you have to do is invoke the calibration process, 

which lasts 20 seconds. It is important to keep the module level and to turn it slowly through two complete turns. We 

have provided a method in our protocol to perform this calibration. There are two ways you can perform this; a manual 

calibration and an automatic calibration. 

Manual Compass Calibration  

In this method sending a command of 24 with a parameter of 2 causes the firmware to start the calibration process but 

in the background. It will also immediately return the 5 bytes without delay, allowing the RB program to continue 

processing and to issue other commands as needed.  
 

This mode does not cause a timeout since it returns immediately. Also remember that the compass needs to be turned 

around slowly preferably twice and on a level surface. This can be accomplished manually by hand, or the RB program 

can issue the turn command (12 or 13) in a loop for 20 seconds. Just do not try to issue further compass commands 

before 20 seconds are out; you will get 0 if you do. 

Automatic Compas s Calibration  

In this mode you will issue command 24 with a parameter other than 2. The firmware will then start the calibration 

process but it will automatically cause the motors to keep turning for a period of 20 seconds. 

 

This mode will  cause a timeout, unless you have modified the timeout parameters in both the firmware and RB using 

the commands to do so before performing the calibration. However, you do not really need to do so. Just take 

appropriate measures in your RB code to handle the time out. The best way to do that is to use a delay of 20 seconds in 

the code right after issuing the command. 

 

Do note that even though the firmware will time out and so will RB you still wonôt be able to do any further actions for 

20 seconds. During those 20 seconds the motors will be turning (i.e. rotating the robot). 

 

The manual method is better because you have more control and it does not cause timeouts. However, the automatic  

option is useful in that turning the motors is performed automatically. Also since you cannot issue any further 

commands until the 20 seconds are over it means you are not likely to try to use the compass before the calibration is 

completed. 

Complexity of Programming the Automatic Calibration:  

How does the automatic calibration achieve turning the motors? The way described in Section 8.1.2 (option4). The 

Others cog flags the Motors cog after specifying the command 12 in the command buffer with a parameter of 1. It 

then waits for 20 seconds repeating the flagging and commanding to keep turning the motors. When the 20 seconds are 

over it returns to Main . This is why the time out occurs. Because both Motors and Others are busy for the duration, 

you must not issue any more commands that require either of these two cogs. 

 

This procedure is a very good illustration of how the inter-cog interactions can be achieved. If you require 

this kind of control you now have an effective template to follow. 

8.1.4 A Simulated Compass Instrument  

We will now develop a program that displays the compass heading in a more interesting manner than just numbers on 

the screen. Compass_Animation.Bas is similar to Compass_Tester.Bas above but instead of printing out the heading as 

a text number it calls to subroutine called DisplayCompass().  However, you will notice that the subroutine is not 



More Advanced Hardware 

Page 185 

listed in the program. It is part of a library of subroutines called Instruments.Bas. The Compass_Animation.Bas 

program knows how to use the subroutine because the Instruments.Bas library has been included in the program. This 

is the purpose of the line: 
#include ".. \ Utilities&IncludeFiles \ Instruments.Bas"  

  

This line tells the program where to find the file that has the subroutine. When Compass_Animation.Bas runs it will 

look for the file Instruments.Bas in the directory called Utilities&IncludeFiles that is in the parent directory of the one 

in which Compass_Animation.Bas resides. That is the reason we had the ñ..\Utilities&IncludeFiles\ò before the name 

of the file. When Compass_Animation.Bas finds the library file, it incorporates it as if it were part of the program and 

when a call to DisplayCompass() is made it works. 

 

The advantage of placing subroutines in a library is that many programs can use the subroutines. We will do 

precisely this with many programs to come. You will notice that Instruments.Bas has another subroutine that we 

will use later, so ignore it for now. 

 

The DisplayCompass() subroutine implements an authentic looking Compass Instrument like ones found on boats or 

airplanes and it will behave very much like a real instrument. The subroutine is designed to be versatile and generic. 

You can pass optional parameters to it to configure where to place the instrument on the screen and how many 

gradations it will display. Additionally it will display the numeric value of the heading (not available on a real device). 

All the parameters are optional and if you do not specify any they will have default values. In the main program the 

subroutine is used in its default mode. We will use the same subroutine in Section 8.4.3 (see Figure 8.11), but by 

passing it different parameters, the instrument will be different in size and position.  

 

If you are not a pilot or navigator, the heading markings might look to you as if they are the wrong way around. We 

will not go into the details of this here since this is not a book on navigation ï but this is in fact how it is on a real 

compass instrument in real life.  
 

 The subroutine allows for a way to make the instrument display the markings in a more intuitive manner. 

The main program will provide a checkbox that you can uncheck to make the instrument have the graduations 

increase to the right. This illustrates how using a programming language like RobotBASIC can be a major 

advantage when creating GUI instrumentation. You can simulate authentic looking and behaving instruments or 

you can improve on the old mechanisms and increase the ergonomic effectiveness and create a more amenable 

human interface. 

 

The HMC6352 is in fact just like a real compass. It has to be level to read accurate headings. If you pitch and roll the 

heading will change even if you did not turn. Again, we will not discuss the reasons for this, but notice how the 

compass heading changes when you do any roll or pitch. Pickup the PPDB and keep the reference axis pointing in the 

same direction and keep it straight and level. Note the heading. Now tilt the PPDB to the right or left or downward and 

upward. Notice how the heading changes. The change is in fact a predictable value depending on the bank angle and 

direction as well as what latitude you are at and what heading you are facing. A gyroscopic device
29 

does not give 

different heading readings when you pitch and roll. 

 

In order to make the display flicker free, the subroutine uses RobotBASICôs back-buffered screen graphics (Flip on). 

Comment out the line in the main program that says Flip On  and observe what happens. 
 

The HMC6352 compass module is just like a real compass and is subject to all compass errors: Variation, 

Deviation, Dip, Acceleration/Deceleration and Pitch and Roll. 

 

http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/588/Default.aspx


Chapter 8 

Page 186 

 
Figure 8.4: Screenshot of Compass_Animation.BAS simulating an authentic looking GUI Compass Instrument. Notice 

the difference between the real mode (left) and enhanced mode (right). 

 

Compass_Animation.Bas 
//Compass_Animation.Bas  

//works with Firmware_Main.Spin  

Port = 8 //change this as per your system  

#include ".. \ Utilities&IncludeFiles \ Instruments.Ba s"  

Main:  

   setcommport Port,br115200  

   flip on  

   call SendCommand(24,1,s)  //see if there is a compass  

   if SendCommand__Result  

      if !getstrbyte(s,5) then print "no compass available" \ Terminate  

   endif  

   //uncomment the following three lines to invoke a manual calibration  

   //print "Calibration in progressérotate two turns while level" 

   //call SendCommand(24,2)  

   //delay 20000  

   AddCheckBox "Mode",430,230,"&Real Mode",1,0  

   while true  

     call SendCommand(24,0,s)  //read the compass  

     i f !SendCommand__Result then continue  

     x = (getstrbyte(s,4)<<8)+getstrbyte(s,5)  

     call DisplayCompass(!GetCheckBox("Mode"),x)  

     Flip  

   wend 

end  

// -----------------------------------------  

sub SendCommand(C,P,&s)  

  m = ""  

  serialout C,P  

  serbyte sin 5,s,x  

  if x < 5 then m= "Comms Error"  

  xystring 500,20,m,spaces(30)   

return (x == 5)  

 

Instruments.Bas (a library of reusable subroutines) 
//Instruments.Bas  

//to be used as an #include file in all programs  

//that need to display the instruments  

// --- -----------------------------------------------  

sub DisplayCompass(Mode,H,x,y,f,t)  

   fnt = "Times New Roman"  

   if !vType(Mode) then Mode = 0  

   Mode = Limit(Mode,0,1)*2 - 1 



More Advanced Hardware 

Page 187 

   if !vType(H) then H = 0  

   if !vType(x) then x = 400  

   if !vType(y) then y = 3 00 

   if !vType(f) then f = 2    

   if !vType(t) then t = 10  

   dim xx[2,t*2]  

   erectanglewh x - 20,y - 75,40,35,9,gray  

   rectanglewh x - 20,y - 75,40,35,gray,black  

   xyText x - 12,y - 65,Format(H,"000°"),fnt,10,fs_Bold,white,black  

   erectanglewh x - t*f*5 - t,y - 40,2* (t*f*5+t),60,9,gray  

   rectanglewh x - t*f*5 - t,y - 40,2*(t*f*5+t),60,gray,black  

   n= H # 5  

   for i=0 to t - 1 

      xx[0,i] = H - n- 5*i \  if xx[0,i] < 0 then xx[0,i] += 360  

      if xx[0,i] == 360 then xx[0,i] = 0  

      xx[1,i] = Mode*f*(n+i*5)  

      xx[0,i+t] =  H+5- n+5*i \  if xx[0,i+t] == 360 then xx[0,i+t] = 0  

      xx[1,i+t] = - Mode*f*(5 - n+i*5)  

   next  

   for i=0 to t*2 - 1 

     l = 5 \  hh = xx[0,i]  

     if !(hh#10) then l = 7  

     if !(hh #30)  

        hh /= 10  

        if hh == 0  

           hh = "N"  

        els eif hh == 9  

           hh = "E"  

        elseif hh == 27  

           hh = "W"  

        elseif hh == 18  

           hh = "S"  

        endif    

        xytext x - xx[1,i] - 5,y - 30,hh,fnt,8,fs_Bold,white,black  

        l = 10  

     endif  

     line x - xx[1,i],y - l,x - xx[ 1,i],y+l,2,white  

   next   

   line x,y - 36,x,y+15,1,red  

return  

// -------------------------------------------------  

sub DisplayAttitude(Pitch,Roll,Cx,Cy,r,LW,CW)  

  if !vType(Pitch) then Pitch = 0  

  if !vType(Roll) then Roll = 0  

  if !vType(r) then r = 100  

  if !vType(Cx) then Cx = 400  

  if !vType(Cy) then Cy = 300  

  if !vType(LW) then LW = 2  

  if !vType(CW) then CW = 10  

  //horizon  

  T = - Roll - Pitch \  TT = - Roll+Pitch+pi()  

  x1 = cartx(r,T) \  y1 = carty(r,T)  

  x2 = cartx(r,TT) \  y2 = carty(r,TT)  

  x3 = (x2+ x1)/2 \  y3 = (y2+y1)/2  

  Circle Cx - r,Cy - r,Cx+r, Cy+r  

  line x1+Cx,y1+Cy,x2+Cx,y2+Cy,LW,red  



Chapter 8 

Page 188 

  //ground and sky  

  for i= - 3 to 3 step 6  

    T1 = - Roll - Pitch+dtor(i) \  TT1 = - Roll+Pitch+pi() - dtor(i)  

    x1 = cartx(r,T1) \  y1 = carty(r,T1)  

    x2 = cartx(r,TT1 ) \  y2 = carty(r,TT1)  

    x4 = (x2+x1)/2 \  y4 = (y2+y1)/2  

    j = brown  

    if i < 0 then j= lightcyan  

    floodfill Cx+x4,Cy+y4,j  

  next   

  //ground texture arrays  

  if !vType(_DAI_Flag)  

    dim DAI_b[0]  

    data DAI_b;5,10,20,40,60  

    dim DAI_a[0]  

    data DAI_a;0,dtor(30), - dtor(180), - dtor(40),dtor(10), - dtor(140)  

    _DAI_Flag = true  

  endif   

  //horizontal ground texture  

  for i=0 to 4  

    T1 = - Roll - Pitch+dtor(DAI_b[i]) \  TT1 = - Roll+Pitch+pi() - dtor(DAI_b[i])  

    x1 = cartx(r,T1) \  y1 = carty(r,T1)  

    x2 = cartx(r,TT1) \  y2 = carty(r,TT1)  

    line x1+Cx,y1+Cy,x2+Cx,y2+Cy  

  next  

  //diagonal ground texture  

  j=dtor(20) \  i=T+j  

  repeat  

    x1 = cartx(r,i) \  y1 = carty(r,i)  

    line Cx+x3,Cy+y3,Cx+x1,Cy+y1  

    i += j  

  until abs(i) > abs(TT - j+.2)  

  Arc Cx - r,Cy - r,Cx+r, Cy+r,,,CW,gray  //instrument rim  

  //roll gradations  

  for k=0 to maxdim(DAI_a) - 1 step 3  

    i = - Roll+DAI_a[k] \  j=DAI_a[k+1]  

    TW = CW/2  

    if k >=3 then TW = 2  

    rr1 = r+TW \  rr2 = r - TW 

    repeat  

      x1 = cartx(rr1,i) \  y1 = carty(rr1,i)  

      x2 = cartx(rr2,i) \  y2 = carty(rr2,i)  

      line Cx+x1,Cy+y1,Cx+x2,Cy+y2,2,white  

      i - = j  

    until i < - Roll+DAI_a[k+2] - .2  

  next  

  //roll or bank indicator  

  for j= - 2 to 2 step 4  

    i = - dtor(90 - j)  

    x1 = cartx(r+CW/2,i) \  y1 = carty(r+CW/2,i)  

    x2 = cartx(r - CW/2,i) \  y2 = carty(r - CW/2,i)  

    line Cx+x1,Cy+y1,Cx+x2,Cy+y2,3,red  

  next   

  //small airplane  

  rr = r/10  

  circlewh Cx - 2,Cy - 2,4,4,white  



More Advanced Hardware 

Page 189 

  line Cx,Cy,Cx,Cy+rr - 1,2,white  

  Arc Cx - rr,Cy - rr,Cx+rr,Cy+rr,pi(),pi(),2,white  

  Line Cx - rr,Cy,Cx - 4*rr,Cy,2,white  

  Line Cx+rr,Cy,Cx+4*rr,Cy,2,white  

Return  

8.2 A Procedural Strategy for Adding Other Hardware  

As you have seen so far, because of the way the system is designed, adding hardware is extremely simple and routine. 

As a matter of fact, the hardware we added covers almost every category of hardware that you are likely to want to 

incorporate into your system.  

 

List 1:  Categories of Hardware  

a) Digital hardware with On/Off type I/O (Pushbuttons, LEDs) 

b) Digital to Analog output (Dimmer LED) 

c) Pulsating Frequency output (Blinking LEDs and Speaker) 

d) Analog To Digital input with RC-Time (Pots) 

e) Controlling Servomotors (Servomotors) 

f) Counting Time Intervals (Ping and RC-Time) 

g) I
2
C I/O (Compass) 

h) RS232 I/O  (FDS, SM) 

i) Using Counters (in Duty, NCO, and Edge Detector modes) 

 

List 2: Programming Techniques Required to Develop the Firmware 

j) Using Semaphores and Flags 

k) Using Parallelism 

l) Using Polling 

m) Sharing RAM 

n) Inter-Cog communications and control 

o) Creating objects and methods 

 

Just about any hardware that you are likely to want to add as well as the programming techniques required to add them 

to the firmware are most likely to belong to one of the above categories. Letôs have a look at some hardware that we 

may wish to add to a project: 

Table 8.1: Possible Hardware and its Category 

Hardware Category 

Bumper Switch
30

  a 

Infrared Proximity Sensors
31

 a or c 

QTI Line Sensors
14

 a or d 

PIR Movement Sensor
32

 a 

Turret
33

 e 

Accelerometer
34

 g 

GPS
35

 h or g 

DC motors
36

 e 

Thermometer
37

 G 

2-Axis Joystick
38

 D 

Sound Impact Sensor
39

 A 

5-Way button
40

 A 

Piezoelectric Speaker
27

 I 

Quadrature System
41

 H 

 

http://www.pololu.com/catalog/product/1403
http://www.pololu.com/catalog/product/1134
http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/100/Default.aspx
http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/ProductID/83/List/1/Default.aspx?SortField=UnitCost,ProductName
http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/248/List/0/Default.aspx?SortField=ProductName,ProductName
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/585/Default.aspx
http://www.parallax.com/Store/Sensors/CompassGPS/tabid/173/CategoryID/48/List/0/SortField/0/Level/a/ProductID/396/Default.aspx
http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/64/Default.aspx
http://www.parallax.com/Store/Sensors/TemperatureHumidity/tabid/174/CategoryID/49/List/0/SortField/0/Level/a/ProductID/94/Default.aspx
http://www.parallax.com/Store/Accessories/HumanInterfaceDevices/tabid/822/CategoryID/90/List/0/SortField/0/Level/a/ProductID/581/Default.aspx
http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/614/Default.aspx
http://www.parallax.com/Store/Accessories/HumanInterfaceDevices/tabid/822/CategoryID/90/List/0/SortField/0/Level/a/ProductID/615/Default.aspx
http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/106/Default.aspx
http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/665/Default.aspx


Chapter 8 

Page 190 

8.2.1 Commands in the Protocol So Far 

In our protocol so far we have allowed for many possible commands and Table 8.2 below is a good overview. 

  

Table 8.2: List of protocol command codes at this stage. 

Command Code Parameter 
Updates Critical 

Sensors 
Data Returned 

Stop Motors 0 0 Yes None 

Forward 6 Amount Yes None 

Backwards 7 Amount Yes None 

Turn right  12 Amount Yes None 

Turn Left  13 Amount Yes None 

Read the Compass 24 0 Yes Last two bytes 

Check if the compass is available 24 1 Yes 
4

th
 byte 0, 5

th
 byte is 

1 for yes or 0 for no 

Calibrate the Compass 24 
2=Manual 

3=Automatic 

Yes 

No 
None 

Read the Pots 66 0 No First 4 bytes 

Read the Ping))) 192 0 Yes Last two bytes 

Set P20..P18 LEDs 1 LED States Yes None 

Set P21 Frequency 2 Hz Value Yes None 

Reset the Propeller 255 0 No None 

Set P23 LED brightness 200 Level Yes None 

P22 LED Blink duration  201 Level Yes None 

Set 2nd byte receive Timeout1 202 N x 10ms Yes None 

Set operations Timeout2 203 N x 10ms Yes None 

Set L_Speed 240 Speed Yes None 

Set T_Speed 244 Speed Yes None 

Set L_Timeout 241 N X 10 ms Yes None 

Set T_Timeout 245 N X 10 ms Yes None 

Set StepTime 242 N X 10 ms Yes None 

Set TurnTime 243 N X 10 ms Yes None 

 

8.2.2 A Procedural Strategy For Extending the Hardware  

Much of the hardware you may wish to add is likely to be just a matter of deciding what category it is under (List 1 and 

List 2 and Table 8.1) and then looking at the commands in Table 8.2 to decide which command resembles it best. Once 

you have decided on this, use the command from Table 8.2 as a template for adding the new hardware. It is not just 

hardware that we might want to add. We may also want to add more housekeeping commands. 

 

List 3:  There are three types of commands: 

1. Ones that set/change system parameters (Main  object but can be any of the objects) 

2. Ones that do something in the background and do not need to be commanded (Reader object) 

3. Ones that carry out a task and then 

             a. Do not return data (Motors object but can be Others too) 

             b. Return data in the last two bytes of the primary send buffer (Others object) 

             c. Return data in all or some bytes of the secondary send buffer (Others object) 



More Advanced Hardware 

Page 191 

Procedure For Adding a New Hardware or Command  

To add a new command you need to 

i. Decide which category of hardware it is from Lists 1 and 2 and Table 8.1. 

ii.  Decide what type of command it will be from List 3. 

iii.  Select a template command from Table 8.2. 

iv. Modify the appropriate object to incorporate the methods needed to interact with the hardware and fill the 

send buffer if required. If you decide that you need a new object then use one of the existing objects as a 

template and modify it as needed. 

v. Add any constants in the CON section. 

vi. Add any variables in the Var  or Dat section. 

vii.  Instantiate any required supporting objects in the Obj  section and invoke their Start() methods in the 

Initialization  method. 

viii.  Decide on a code for the command (make sure there is no clashing) and what parameters it has to be passed. 

ix. Add the Case statement in the Case block to call the method. This should follow the template command. 

x. Add the Case Statement in the Main  object to allow for the new case statement in the subordinate object. This 

should follow the template command. 

 

To illustrate the process we will now add new commands to: 

Ç Allow for actuating the motors separately in any direction for a certain number of steps or to keep them on 

(Section 8.2.3) 

Ç Allow the Ping))) mounted on a turret to be turned by 90 degrees right and left before measuring the distance 

(Section 8.2.4). 

Ç Save all the system parameters to the EEPROM. We will also extend the system to read them from the 

EEPROM upon boot up if there are any valid saved ones (Section 8.3) and also allow for resetting them to 

factory settings. 

Ç Add an Accelerometer (Section 8.4). 

Ç Add three QTI infrared line sensors (Section 8.5). 

Ç Add a speaker similar to Chapter 5.8 (Section 8.6). 

8.2.3 Controlling Motors Separately  

If you have noticed with our commands for controlling the motors they can only be rotated together. This is what we 

need on a robot for example. However, it may be desirable to control the motors separately in certain occasions, such 

as if you wish to effect curved turns where the center of turning is not the center of the robotôs wheel axis. Also, if the 

motors are used in a process other than robotics, we may want to be able to control the motors as separate entities. 

 

In the process of implementing independent control, we want to illustrate how following the procedure outlined in 

Section 8.2.2 makes the process simple and quick. 

 

Step i: It is still a servomotor. 

Step ii:    It is like commands 6,7 in Table 8.2. 

Step iii: Commands 6 and 7, but allowance has to be made for different processing. 

Step iv: We will do them in the Motors object (see bold lines in the listing). 

Step v: Not required. 

Step vi: See Listings (added variables in Motors object) 

Step vii: Not required; but for Main  we changed the name of the Motors object to allow for the new version. 

Step viii: Codes 8/9 move the right motor forward/backward and Codes 10/11 for the left motor. We will have 

it so that parameter 0 means stop, parameter 255 means stay on. Any other number is for n-steps. But 

the command will not wait for the steps to be completed, it will always return immediately. 

Therefore, We will need to allow for timing and switching the motors off in the Process0 method. 

Step ix,x: See bold lines in the listings. 

 



Chapter 8 

Page 192 

Here are the listings of the new Firmware_Motors_B.Spin and Firmware_Main_B.Spin. Notice the bold code performs 

the steps above. We will only list areas where there are changes. The rest of the code is as before. The Others and 

Reader objects are not changed and we will use the same ones as before. 

 

[Cut Out] 
 

Testing the New Commands  

[Cut Out] 
 

8.2.4 Controlling a Ping))) on a Turret  

If we mount the Ping))) on a Servomotor turret
33

 like the one sold by Parallax, we can extend the utility of the ranger 

because we can then turn it left and right. The way we have previously implemented the ranger command (#192) the 

parameter is ignored. If we allow the parameter to specify the angle right of the straight ahead and if we add another 

command (#193) and allow the parameter to define left of the straight ahead then we would have full control over the 

turret and once the turret finishes the turn, a reading of the Ping can be taken and returned as before. 

 

 

 

Since now the Ping))) would be mounted on a turret the connection to it should now be made using a 3-wire 

cable (just like the one for the servomotors) to one of the 8 servomotor headers on the PPDB (see Figure B.3 in 

Appendix B). The - pin (black) on the header goes to the Pingôs Ground pin. The + (red line) goes to the 5V pin 

on the Ping))) and the S pin (white) goes to the Sig pin on the Ping. There is no longer a need for the 1Kɋ since 

the servos header has a 150ɋ resistor already and that should suffice. See Figure B.3 in Appendix B. 

 

As discussed in the strategy outlined in Section 8.1.2, we will have the Main  cog control the division of labor. Main  

will receive the command 192 or 193. It will then flag the Motors cog to turn the Servomotor of the turret (we will use 

a standard servomotor
42

 on P15) to move to the correct position. When the Motors flag is lowered Main  will then flag 

the Others cog as before to read the Ping))). 

 

To implement the required changes we will follow the steps in Section 8.2.2. The changes are only to Main and 

Motors. Another thing to note here is that due to the division of labor aspect the Others object needed no changes at 

all despite the new commands being all to do with the Ping))) which is read by the Others cog. We also added a 

constant in the Motors object so that we can data-map the value 0-90 into in a number that causes the turret to be truly 

turned 0 to 90 degrees, where 0 is straight ahead. Remember that servomotors have the 1500 microseconds pulse as the 

center. We want to limit the Max and Min values so that the motor will turn 90 degrees either way. Thus we can use 

the number 0 to 90 as 

ServoSignal := 1500+n*Max/90 ófor the left turns 

ServoSignal := 1500-n*Min/90 ófor the right turns 

 

We need to experiment to determine what Max and Min have to be. We can always of course add two more commands 

to set these values at run-time from RB. But we will leave this up to you. Use Servo_01.Spin to experiment with the 

servomotor to see what values set it to about 90 degrees either way and use these values. Remember we are using P15 

as the motorôs signal pin so change the Pin number to 15. We did this and for our motor the Max and Min are both 800 

(2300-1500 = 800 and 1500-700 = 800)  

 

[Cut Out] 

http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/248/List/0/Default.aspx?SortField=ProductName,ProductName
http://www.parallax.com/tabid/768/ProductID/101/Default.aspx


More Advanced Hardware 

Page 193 

A Radar Application  

To test the new firmware we made the interesting program Turret_Radar.Bas. What you should pay most attention to is 

the Ranger() subroutine. Notice in this subroutine how we check if the angle is negative or positive and send the 

appropriate command accordingly (192 or 193) with the angle made positive. The other two subroutines are what 

implements the RADAR simulation. Notice the SaveScr and RestoreScr commands and also the usage of cartx() and 

carty().  In Chapter 10 we will see a slightly different version of this program. 

 

Turret_Radar.Bas 
//T urret_Radar.Bas  

//works with Protocol_Main_C.Bas  

Port = 8  //set this as per your system  

Main:  

  setcommport Port,br115200  

  call RadarScreen()  

  call Radar()  

End 

// ----------------------------------------  

sub Ranger(Angle,&Value)  

  C = 192 \  Value= - 1 \  m= "Comms Error"  

  if Angle < 0 then C = 193  

  Angle = Limit(Abs(Angle),0,90)  

  serialout C,Angle  

  serbytesin 5,s,x  

  if x == 5  

    Value = (getstrbyte(s,4)<<8)+getstrbyte(s,5)  

    m = spaces(40)  

  endif  

  xyText 600,10,m,,10,,red  

return (x==5)  

// ---------- -----------------------------  

sub RadarScreen()  

  for i=1 to 400 step 50  

    arc i,i,800 - i,800 - i,0,pi(),2,gray  

  next  

  for i=0 to 180 step 20  

    th = dtor(i) \  r = 400  

    line r,r,r+cartx(r,th),r - carty(r,th),1,gray  

  next  

  savescr  

return  

// ------------ ----------------------------  

sub Radar()    

  j= - 90 \  i=1  

  while true  

    call Ranger(j,V)  

    if V < 0 then continue  

    V *= 400/23000.  \  th = dtor(j - 90)  

    x = cartx(V,th) \  y = carty(V,th)  

    circlewh 400+x - 5,400+y - 5,10,10,red,red    

    j += i \  i f abs(j)==90 then i= - i \  restorescr  

  wend 

return  

 



Chapter 8 

Page 194 

 
Figure 8.5: Screenshot of Turret_Radar.Bas in action. 

8.3 Saving The System Parameters to EEPROM 

As you have seen so far and as detailed in Table 8.3 below, we are able to change the values of the parameters shown 

in the table. As the system stands you can set the values but whenever the Propeller is rebooted the values will always 

revert to the ones assigned to them in the programs as shown in the listings. Some are operational, but most would be 

nice to retain so that whatever value you assigned to them last would be the value upon reboot. 

 

Table 8.3: List of changeable system parameters 

Parameter Purpose Cog 

L_Speed The speed for the motors in forward/backward travel Motors 

T_Speed The speed of the motors while turning Motors 

StepTime The time needed to accomplish a step of forward/backward travel Motors 

TurnTime The time needed to accomplish a degree of turning Motors 

L_TimeOut The time to leave motors on until a new command arrives in linear tavel Motors 

T_TimeOut The time to leave motors on until a new command arrives in turning Motors 

P22 Duration The on/off duration for the P22 LED in the Reader cog Main 

TimeOut1 The timeout period to wait for the parameter to arrive Main 

TimeOut2 The timeout period to wait for a command to finish Main 

P21 frequency The blinking frequency for the P21 pin in the Others cog  

P23 Level The voltage level for the dimmer LED in the Main  cog.  

 

8.3.1 EEPROM Limitations  

[Cut Out] 

8.3.2 Required Changes to The Firmware 

[Cut Out] 



More Advanced Hardware 

Page 195 

8.3.3 CRC and Validity Check  

[Cut Out] 

8.3.4 The New Commands & Firmware  

In addition to rearranging things so that the two parameters that are not already in the contiguous buffer are moved 

over to the buffer in Main , we will also use the Basic_I2C_Driver.Spin
68

 as the object that has all the necessary I
2
C 

protocols to communicate with the 24LC256 EEPROM and store/read data from it (included in the downloadable zip 

file too). 

 

We will provide two new commands 

Command code 5: 

If the parameter is 0 it will store the current system parameters as they are in RAM to the EEPROM. It will 

return in the 4
th
 and 5

th
 bytes of the primary send buffer a $01 if the operation succeeds or a $00 if not. 

 

If the parameter is 1 the system parameters will be restored in RAM only to the factory settings. This does 

not affect the EEPROM. If you want the factory settings to be in effect on the next boot up you must also 

issue another command 5 with parameter 0 to save the RAM parameters to the EEPORM. 

 

If the parameter is 2 the system parameters as they are in the EEPROM will be sent out to the PST as text 

numbers. The PST screen will then display the values. 

 

If the parameter is greater than 2 the system parameters that are in the RAM will be sent to the PST as text 

numbers. 

 

Command code 4: 

The system parameter (from RAM) is sent to RB using the secondary send buffer with the first 4 bytes 

being the system parameter in Little-Endian format. That is the 1st byte (byte 0) is the LSByte and the 2nd 

byte is the next byte and so on. The fifth byte is set to 0 to indicate that the requested parameter is a valid 

one. 

 

Which system parameter is sent depends on the parameter of the command.  If the requested parameter 

number is too large then all the returned 5 bytes will be 0xFF to indicate a wrong requested parameter 

number (i.e. -1). The order is from 0 to N (N=10 for now). See Table B.2 for the order and description of 

the parameters (or Table 8.4). 

 

Modifications are mostly to the Main  object, with two new methods in Motors to return a pointer to the buffer and to 

restore the factory settings. Rearrangement of Others implements the new setup for the parameters that are now stored 

as part of the buffer in Main  instead of as variables in Others. 

 

The new firmware suite is called Firmware_XXXX_D.Spin where XXXX is Main, Others, and Motors. Reader is not 

changed and is not renamed. All the changes are bold lines in the listings. Only changed areas are listed. 

 

Remember that command 5 with parameter 1 will restore the factory settings but only in RAM. If you wish 

to also reset the EEPROM so that the settings will be factory settings on the next reboot, you must also save the 

restored factory settings to the EEPROM (command 5 parameter 0). 

 

[Cut Out] 

http://obex.parallax.com/objects/26/


Chapter 8 

Page 196 

8.3.5 Testing the EEPROM Commands 

EEPROM_Tester.Bas exercises all the new commands. Compile the new Firmware_Main_D.Spin and save to 

EEPROM (F11) then run the RB program. You may want to also run the PST and have it so that it does not disable 

when it loses focus because we want to go to the RB program and interact with it 

 

The program will  

Ç Print all the EEPROM parameters (none to start with and they all should be 0) on the PST screen. 

Ç Print all the RAM parameters (should be as the constants in the program code) on the PST screen. 

Ç Print on the RB screen all the RAM parameters (same as 2). 

Ç Modify some of the parameters. 

Ç Save the parameters to the EEPROM and check if successful. 

Ç Reset the Propeller and wait for it to reboot. 

Ç Print all the EEPROM parameters (now they should be the same as set in 4) on the PST screen. 

Ç Print all the RAM parameters (should be the same as 7) on the PST screen. 

Ç Print all the RAM parameters (same as 8) on the RB screen. 

Ç Restore Factory Settings. 

Ç Save the parameters to the EEPROM. 

Ç Print all the RAM parameters (should be as the constants in the program code) on the PST screen. 

Ç Print all the EEPROM parameters (should be as in 12) on the PST screen. 

 

In the program when printing the parameters to the RB screen we will use an extra count (12 instead of just 

11) to see how reading an invalid parameter returns -1 (0xFFFFFFFF). 

 

EEPROM_Tester.Bas 
//EEPROM_Tester.Bas  

//works with Firmware_Main_D.Spin  

Port = 8 //change this is as per your system  

Main:  

  setcommport Port ,br115200  

  call SendCommand(5,2) 'print EEPROM params to PST  

  call SendCommand(5,3)  'print out RAM params to PST  

  for i=0 to 11  //using an extra to demo how it returns - 1 

     call SendCommand(4,i,s)  

     print BuffreadI(s,0)," "  

  next  

  call SendCom mand(200,250) 'set the P23 brightness  

  call SendCommand(201,0)   'no blinking on P22  

  call SendCommand(2,0)     'no blinking on P21  

  call SendCommand(5,0,s)   'save to EEPROM  

  m = "Saving to the EEPROM failed"  

  if SendCommand__Result  

     if getstrbyt e(s,5) then m = "Saving to the EEPROM succeeded"  

  endif  

  print m  

  print "resetting the propeller . . . wait 3 secs"  

  call SendCommand(255,0) 'reset the Propeller  

  delay 3000              'wait for Prop to finish reboot  

  print  

  call SendCommand(5,2)  'print EEPROM params to PST  

  call SendCommand(5,3) 'print out RAM params to PST  

  for i=0 to 11  

     call SendCommand(4,i,s)  

     print BuffreadI(s,0)," "  



More Advanced Hardware 

Page 197 

  next  

  print "Resetting factory settings and saving to the EEPROM"  

  call SendCommand(5,1) 'resto re factory settings  

  call SendCommand(5,0) 'save to EEPROM  

  call SendCommand(5,1) 'print RAM params to PST  

  call SendCommand(5,2) 'print EEPROM params to PST  

  print "all done"  

end  

// ------------------------------------------  

sub SendCommand(C,P,&s)  

   serialout C,P  

   serbytesin 5,s,x  

   if x != 5 then return false  

return (x==5)  

8.4 Adding an Accelerometer  

An accelerometer module is a very useful device in many robotic projects. To that end we will incorporate the H48C 

Tri-Axis Accelerometer module
34

 (see Figure 2.10). The connection schematic is shown in Figure 8.7 below.  

 

 
Figure 8.7: H48C Connection Schematic 

 

8.4.1 Adding the Accelerometer Commands to the Protocol  

The accelerometer provides acceleration values for the threes axes (x,y,z). From these values we can also calculate the 

tilts of these axes using math functions in RB. We need to obtain 3 parameters from the device; all will be 16 bit 

numbers (actually 12 see later). We can make our protocol return these values in the 4
th
 and 5

th
 bytes of the primary 

send buffer. This would then require RB to send a command to request each axis one at a time. This might not be quite 

good enough especially if you consider that the acceleration values are usually needed to control a robot in a very 

dynamic situation where we would need these values as quickly as possible. Algorithms that need acceleration values 

are for controlling a walking robot or a balancing robot for instance. In such situations any delay in obtaining the 

readings may cause algorithms to be sluggish or even fail altogether. 

 

A better alternative is to use the secondary buffer. However, there is a snag. Since the data is 16 bits that means we 

need 2 bytes for each value and since there are 3 we would need 6 bytes. However, our protocol only allows 5 bytes 

http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/97/Default.aspx
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/97/Default.aspx


Chapter 8 

Page 198 

and it is not possible to return all three values in one go. We would require two commands to get all three values. This 

may be acceptable if we are working in two dimensions and we mount the device to give us the most advantageous 

orientation of the x-y-plane. After all many robots have been designed with only 2-axis accelerometers and the 

algorithms worked quite well. If we want to use all three axes then the application should not be a very dynamic where 

acceleration values change too rapidly for the softwareôs sampling rate since reading the z-axis as a separate command 

requires another command cycle. 

 

There is a way to return all three readings in 5 bytes; all three values can be obtained with one command and one 

communications cycle and therefore as fast as our protocol allows.  The data from the H48C does not quite need 16 bits 

since the maximum value can only be 4095 (0xFFF). So the maximum value is 3 nibbles. To transmit all three values 

we need 9 nibbles, which fit quite easily within our 5 bytes (10 nibbles) with 1 nibble to spare.  

 

The 48HC values for the axes are actually voltage DAC values in reference to a reference voltage value. We will need 

to read this value for maximum accuracy. However this needs to be performed once upon startup since it is not going to 

vary during the operations of the device. It should almost always be (4095/2) ± 2, which is between 2045 and 2049 

with it almost always being 2047. Of course you can always read the reference voltage every time before reading the 

axesô values but this will slow the whole operation a little and for a very dynamic system you can dispense with 

reading the reference voltage except for the first time. The gained accuracy is inconsequential as compared to the loss 

in speed. 

 

The command to interrogate the H48C will have two modes depending on the parameter passed to it. If the parameter 

is other than 1 then the values of the axesô acceleration are returned in the secondary send buffer as 5 bytes. If the 

parameter is 1 the command will return the value of the reference voltage in the 4
th
 and 5

th
 bytes of the primary send 

buffer. 

 

The procedure is as follows: 

Ç Before using the H48C commands for the first time issue command 70 with parameter 1 and reconstitute the 

reference voltage value from the 4
th
 and 5

th
 bytes (MSByte first) and store the value (vRef). 

Ç Whenever you need the acceleration value issue command 70 with a parameter of 0 (or any number other than 

1) and reconstitute the values for the x-axis from the first three nibbles (xRef), the y-axis from the next three 

nibbles (yRef) and the z-axis from the last three nibbles (zRef).  

Ç Once you have the raw values for the axis readings you can calculate the actual acceleration in reference to 1g 

using the formula (replace x with y and z for the other axis): 

xG = (xRef-vRef) * 0.0022 

Ç To obtain tilt angles you can either calculate them from the raw data after subtracting vRef or from the 

calculated g values (xG above) using the aTan2() function in RB. So for example to get the tilt of the x-Axis 

you would do 

aTan2(xRef-vRef , zRef-vRef)  
to get the angle in radians or 

rTod(aTan(xRef-vRef , zRef-vRef)  
to get the angle in degrees. 

 

To reconstitute the axesô values from the 5 bytes (see Figure 8.8): 

Ç First byte and the MS-Nibble of the second byte constitute the xRef value. 

Ç LS-Nibble of the second byte and the third byte constitute the yRef value. 

Ç The fourth byte and the MS-Nibble of the fifth byte constitute the zRef value. 



More Advanced Hardware 

Page 199 

 
Figure 8.8: Order of the Acceleration Reference Values In the buffer. 

  

You will see all this in the code listings in the Spin program and in the RB program. 

 

The orientation of the device on the PPDB itself has to be taken in consideration if you need the readings to 

be in reference to the PPDB axes. See Figure 8.7 for how the positive x-axis and y-axis are oriented and also the 

z-axis is pointing upwards from the plane of the figure. Also see Figure 8.10. 

 

8.4.2 Incorporating the H48C in the Protocol  

[Cut Out] 

8.4.3 Testing the New Command  

In the previous section you saw how the values of the three axes were placed in the 5-byte buffer. On the RB side the 5 

bytes have to be broken up and the nibbles extracted to reconstitute the numbers. You can see all this in the listing of 

H48C_Tester.Bas in the Read_H48c() user defined subroutine. The subroutine will read the vRef and the axes values 

if the passed parameter vRef is 0 and if it is not 0 then only the axesô values will be read. The subroutine is a useful one 

you can use in other programs to read the H48C values. 

 

Also notice in the main program how the tilt angles are calculated using the aTan2() and rToD()  functions to get the 

angle in degrees. 

 

For later programs that require the use of the H48C we will put the subroutine Read_H48C() in the 

Instruments.Bas include file we used previously in Section 8.1.4. 

 

H48C_Tester.Bas 
//H48C_Tester.Bas  

//Works with Firmware_E.Spin  

Port =8  //change as per your system  

Main:  

  fmta = "#0.0000   " \  fmtb = "  #00     "  

  setcommport Port,br115200  

  v=0  

  while true  

     call Read_H48C(v,x,y,z,gX,gY,gZ)  

     xystring 10,10,v;x - v;y - v;z - v;spaces(20)  

     xystring 50,30,Format(gX,fmta),Format(g Y,fmta),Format(gZ,fmta)  

     xystring 50,50,Format(rtod(atan2(gX,gZ)) - 90,fmtb)  

     xystring - 1, - 1,Format(rtod(atan2(gY,gZ)) - 90,fmtb)  

     xystring - 1, - 1,Format(rtod(atan2(gZ,gY)),fmtb)   



Chapter 8 

Page 200 

     //v = 0    //uncomment this to refresh the vRef all the time  

  wend 

End 

//=================================  

sub SendCommand(C,P,&s)  

  m = ""  

  serialout C,P  

  serbytesin 5,s,x  

  if x < 5 then m= "Comms Error"  

  xystring 500,20,m,spaces(30)   

return (x == 5)  

//=================================  

sub Read_H48C(&vRef,&xRef ,&yRef,&zRef,&xG,&yG,&zG)  

  xRef = 0 \  yRef = 0 \  zRef = 0  

  xG =0 \  yG = 0 \  zG = 0  

  if vRef == 0  

     call SendCommand(70,1,s) //read vRef  

     if !SendCommand__Result then return false  

     vRef = (getstrbyte(s,4)<<8)+getstrbyte(s,5)  

  endif  

  call Se ndCommand(70,0,s) //read the axes  

  if !SendCommand__Result then return false  

  xRef = (getstrbyte(s,1) << 4) + (getstrbyte(s,2) >>4)  

  yRef = ((getstrbyte(s,2)&0x0F) << 8) + getstrbyte(s,3)  

  zRef = (getstrbyte(s,4) << 4) + (getstrbyte(s,5) >> 4)  

  xG = ( xRef - vRef)*.0022  //convert to g - forces  

  yG = (yRef - vRef)*.0022  

  zG = (zRef - vRef)*.0022  

return true  

8.4.4 Three Dimensional Animation of Airplane Pitch, Roll & Heading  

Using acceleration data has numerous uses in the field of engineering. Combined with heading data from a compass 

you can control cars, airplanes, ships, submarines and robots. You can create balancing and walking robots. You can 

control a robot arm with accurate positioning. 

 

Using acceleration data (with a gyroscopic unit) you can create a very viable Inertial Navigation System. An INS uses 

acceleration data to calculate speeds and translations (distances) from a start point. With an INS you do not even need a 

compass to know where you are. Using the translations in the three axes you can calculate how high and where you are 

quite accurately. The math is quite complex; it is not just straightforward integration. There are nuances to things like 

using filtering to filter out noisy data and combining data from other sources like gyroscopes and compasses. See 

Chapter 10 for an implementation of a very simplistic but entertaining INS of sorts. 

 

Another use for acceleration data is calculation of Pitch and Roll. Pitch is the angle between the longitudinal axis 

(body) of an airplane (for instance) and the horizontal. Roll is the angle between the lateral axis (wings) and the 

horizontal. For full control of an airplane one also needs the Heading, which is the angle between the x-axis and the 

magnetic north pole. This is obtained from a compass. 

 

If our PPDB were to be placed on an airplane with the HMC6352 and H48C we would be able to acquire information 

on the attitude of the airplane in 3D-Space. To calculate the pitch and roll we assign the longitudinal axis as the x-axis 

and the lateral axis as the y-axis. Heading will be a rotation around the z-axis.  

 

To calculate pitch we will need to find the tilt angle the longitudinal (x-axis) is making with the vertical (z-axis). This 

is aTan(gX , gZ). Likewise the roll is the angle of the y-axis with the vertical. This is aTan(gY,gZ). For the heading 

we will use the compass reading. 

 



More Advanced Hardware 

Page 201 

 
Figure 8.9: Pitch, Roll and Heading 

 

When we calculate the tilt of the x-axis or y-axis we are actually calculating the angle it makes with the 

vertical using aTan2(gX,gZ). If the plane is level this angle will be 90Ü (ˊ/2). We need to subtract ˊ/2 from the 

calculated tilts to have the correct pitch and roll values. 

 

In RobotBASIC the aTan(x,y) function requires the first parameter to be the x-value (cosɗ) and the second 

the y-value (sinɗ). In other languages (e.g. C++) it might be the other way round. 

 

The tilt calculations require that the device not be experiencing any forces other than gravity. Any additional 

forces would introduce additional acceleration, which would render the tilt calculations incorrect due to the 

additional component accelerations. A better way to obtain pitch and roll is to use a gyroscopic device. 

 

The program H48C_Plane.Bas will use the power of RB and the power of our protocol and firmware to display a 3D-

Animation of the orientation in 3D space of a simple airplane representation. We will keep the program as simple as 

possible so not to cloud the issues with too much detail. Nevertheless, you will be quite impressed. You will be able to 

pitch and roll and turn the PPDB and you will see the airplane figure respond according to your movements. Moreover, 

there will also be a Compass instrument and Attitude Indicator (AI) instrument. The response is instantaneous. When 

you consider what is going on you will be quite surprised at how responsive and dynamic the display is. The system 

will:  

Ç Send a command over the serial link to ask for the H48C data 

Ç Receive the 5 bytes 

Ç Reconstitute the 3-axis raw data 

Ç Calculate the g-forces 

Ç Calculate the tilt angles of the x and y axes 

Ç Send a command to get the HMC6352 heading 

Ç Reconstitute the heading 

Ç Use these angles to calculate the transformation of the airplaneôs body coordinates  

Ç Use RBôs graphics engine to transform the body coordinates using matrix transformations 



Chapter 8 

Page 202 

Ç Use RBôs graphics engine to transform the 3D body coordinates into 2D coordinates 

Ç Draw the airplane representation on the 2D screen 

Ç Draw the Compass instrument including its required calculations 

Ç Draw the Attitude Indicator (Artificial Horizon Indicator) and its required calculations 

 

All the above has to be performed continuously and rapidly enough to be able to display a faithful representation of the 

plane and the two instruments in response to moving the PPDB in 3D-space in a convincing animation. 

 

H48C_Plane.Bas uses RBôs 3D graphics engine to transform the airplaneôs body coordinates (3D) and to calculate the 

screen coordinates (2D) of these transformed points so as to draw the plane on the screen. The program also uses some 

of the math functions in RB to calculate geometric properties of the AI instrument and to plot it and the compass 

instrument in 2D. 

 

The transformations are rotations around the x,y and z axes. Heading is a rotation around the z-axis. Pitch is a rotation 

around the y-axis. Notice, it is the y-axis since pitch is a tilt of the x-axis as if the plane is hinged by its lateral (y) axis. 

Likewise Roll is a rotation around the x-axis. See Figure 8.9. The origin of the axes is at the center of gravity of the 

plane. 

 
Figure 8.10: Compass and Accelerometer orientation and axes setup. 

 

In the program we use the Read_48HC() subroutine that we used in the H48C_Tester.Bas program. Also notice the 

PlotPlane() subroutine. You are of course already familiar with the SendCommand() routine. Additionally, notice 

how the Initialization  routine creates the body coordinates of the airplane. The airplane is not an elaborate image, all 

we want is to see the principle in action and complicating the program would not serve that purpose.  

 

The H48C was placed on the PPDB so that the positive x-axis is pointing in the same direction as the heading reference 

on the HMC6352 compass (Figure 8.10). 

 

The RobotBASIC 3D-graphics engine follows the right-handed coordinate system standard. The H48C Axis system 

obeys the right-handed standard too (see Figure 8.10). However, when tilt angles are calculated the positive Y-axis 

tilting down to the left (Figure 8.10) is a positive angle. This is opposite to the right-handed standard where a rotation 

around the x-axis as shown in Figure 8.10 is to the right. Thus we will need to make the tilt angle negative before we 

use it to calculate the rotation transformation around the x-axis (see bold lines in the listing below). The same for the 

Heading; the right-handed standard dictates that a turn to the left (Figure 8.10) is positive while compass turns are 



More Advanced Hardware 

Page 203 

positive to the right. Therefore we also need to negate the compass heading before using it in the rotation 

transformation around the Z-axis (see highlighted lines in the listing below). 

 

In the listing you will notice that the line of code to transform the body coordinate points for the heading is commented 

out. This is because to control the plane you want the picture to be oriented as if you are looking at the plane from 

behind. If the line is uncommented the plane will be rotated in 3D-space and you will not be able to orientate yourself 

for the picture correctly. Try to uncomment the line and see how this affects your perspective.  

 

Notice the use of the include file Instruments.Bas we used in Section 8.1.4. You already saw how we used the 

DisplayCompass () subroutine. We will use the routine in this program too, with some parameters to force the 

instrument to be of a certain size and position on the screen. The subroutine DisplayAttitude()  is a similarly versatile 

and generic subroutine to draw an Attitude Indicator (AI) instrument for pitch and roll. The AI is a simple one but quite 

functional and gives an excellent feedback in addition to the 3D airplane representation of the roll (bank) and pitch. 

The subroutine PlotPlane() takes care of all the calculations and plotting of the 3D plane on the 2D computer screen. 

Also now the subroutine Read_H48C() from the program H48C_Tester.Bas in Section 8.4.3 has been moved to the 

include file, so there is no listing of it in the program below. 

 

The 3D airplane and both the Compass and AI instruments are animations using RBôs easy and intuitive graphics 

commands with a few mathematical functions. We will not explain the details. You should find it easy to figure out the 

program by just reading the code (also read the code of Instruments.Bas in Section 8.1.4). If there are commands and 

functions in the program with which you are not familiar, look them up in the RobotBASIC Help file. All the 

commands that start with ge are the graphics engine commands. RBôs matrix manipulation commands are another 

powerful feature that enables the program to be so small yet so powerful.  

 

 
Figure 8.11: Screenshot of H48C_Plane.Bas 

 

H48C_Plane.Bas 
//H48C_Plane.B as  

//works with Firmware_Main_E.Spin  

Port = 8 //change this as per your system  

#include ".. \ Utilities&IncludeFiles \ Instruments.Bas"  

Main:  



Chapter 8 

Page 204 

  gosub Initialization  

  while true  

     call Read_H48C(v,x,y,z,gX,gY,gZ)  

     xystring 10,10,v;x - v;y - v;z - v;spaces(20)  

     xystring 50,30,Format(gX,fmta),Format(gY,fmta),Format(gZ,fmta)  

     xystring 50,50,Format(rtod(atan2(gX,gZ)) - 90,fmtb)  

     xystring - 1, - 1,Format(rtod(atan2(gY,gZ)) - 90,fmtb)  

     xystring - 1, - 1,Format(rtod(atan2(gZ,gY)),fmtb)   

     //v = 0    //uncom ment this to refresh the vRef all the time  

     call SendCommand(24,0,s)  

     H = 0  

     if SendCommand__Result then H = (getstrbyte(s,4)<<8)+getstrbyte(s,5)  

     call PlotPlane(gX,gY,gZ,H)  

  wend 

End 

//=================================  

Initialization:  

  f mta = "#0.0000   " \  fmtb = "  #00     "  

  setcommport Port,br115200  

  v = 0  

  data plane;9,.5,6,1.5,4,1.5  

  data plane;0,8.5, - 1,8.5, - 1,1.5, - 4,.5, - 5,3.5, - 6,3.5  

  data plane; - 6, - 3.5, - 5, - 3.5, - 4, - 0.5, - 1, - 1.5, - 1, - 8.5,0, - 8.5  

  data plane;4, - 1.5,6, - 1.5,9, - 0.5,9, .5  

   

  data Eye;170,pi(),pi(.30),1550,400,350 //rho,theta,phi,d,Cx,Cy  

  dim Plane[maxdim(plane)/2,5]  

  mconstant Plane,0  

  for i=0 to maxdim(plane)/2 - 1 

    Plane[i,0] = plane[i*2]  

    Plane[i,1] = plane[i*2+1]  

  next  

  flip on  

  AddCheckBox "Mode",630,13 0,"&Real Mode",1,0  

return  

//=================================  

sub SendCommand(C,P,&s)  

  m = ""  

  serialout C,P  

  serbytesin 5,s,x  

  if x < 5 then m= "Comms Error"  

  xystring 500,20,m,spaces(30)   

return (x == 5)  

//=================================  

sub Plot Plane(gX,gY,gZ,H)  

  thX = atan2(gX,gZ) - pi(.5) //x - tilt  

  thY = atan2(gY,gZ) - Pi(.5) //y - tilt  

  mcopy Plane,K  //refresh body coordinates array  

  geRotateA K, - thY,1 //rotate around x - axis i.e. Roll  

                     //negative to orientate for Right - Handed Standard  

  geRotateA K,thX,2  //rotate around y - axis i.e. Pitch  

  //geRotateA K,dtor( - H),3  //rotate around z - axis i.e. Heading  

                            //negative to orientate for Right - Handed Standard  

  ge3dto2da K,Eye    //calculated screen coordin ates  

  for i=1 to maxdim(K) - 1  //plot the plane  

    line K[i - 1,3],K[i - 1,4],K[i,3],K[i,4]  



More Advanced Hardware 

Page 205 

  next  

  call DisplayCompass(!GetCheckBox("Mode"),H,600,200)  

  call DisplayAttitude(thX, - thY,200,200)  

  flip  

  clearscr  

return  

 

 

8.5 Using the QTI Infrared Line Senso rs 

[Cut Out] 

8.5.1 The New Firmware  

[Cut Out] 

8.5.2 Testing the QTI  

[Cut Out] 

8.6 Adding Sound  

[Cut Out] 

8.6.1 The New Firmware  

[Cut Out] 

8.6.2 Testing the Speaker 

[Cut Out] 

8.6.3 An Exercise 

[Cut Out] 

8.7 The Final System Firmware  

Our firmware is now complete. We will change the hardware to be wireless in the next chapter, but that requires no 

firmware changes and just a minor hardware change (also see Chapter 11). In the zip file with all the source code there 

is a folder called Final_Protocol. In it you will find all the files needed to compile and upload the firmware to the 

Propellerôs EEPROM (F11). Now that the firmware is complete you should write it to the EEPROM so you can use the 

PPDB with any programs you develop. You would not have to change the firmware again ï unless you want to add 

new hardware. We have renamed all the four objects to Protocol_XXXX.Spin where the XXXX is Main, Reader, 

Others, or Motors. The top-level object is Protocol_Main.Spin. 

 

In the subfolder are also copies of all the third-party objects that we used. You will also find all the RB programs that 

work with the new firmware. They are mostly copies of the programs we have seen so far placed there for your 



Chapter 8 

Page 206 

convenience. There is one new program called Complete_System_Tester.Bas (See Figure 8.15 below). This program 

incorporates all the generic and versatile subroutines from all the other programs that we developed during the 

progression through Chapters 7 and 8. The program performs a dazzling number of tasks all going on simultaneously 

and yet in real time. It is a testament to the power of our protocol, the Propeller Chip and RobotBASIC. 

 

See Appendix B for the following: 

ü A tree of objects hierarchy for the Final Protocol 

ü A tree of objects hierarchy for the Extended Protocol (from Chapter 11) 

ü Figure B.1: The Systemôs Conceptual Schematic 

ü Figure B.2: Propeller Pin Utilization 

ü Figure B.3: Hardware Connections Schematics. 

ü Figure B.4: Picture of the final PPDB setup 

ü Table B.1: List of Protocol Command Codes for the Final Protocol 

ü Table B.2: System Parameters Value Mapping when using the Final Protocol 

ü Table B.3: List of Extended Protocol Command Codes (as in Chapter 11), in addition to Table B.1 

ü Figure B.5: Protocol State Diagrams. 

 

Here is a list of all programs that work with the Final or Extended Protocols  

ü Complete_System_Tester.Bas (a new program for the final firmware) 

ü Compass_Tester.Bas 

ü Compass_Animation.Bas 

ü EEPROM_Tester.Bas 

ü H48C_Plane.Bas 

ü H48C_Tester.Bas 

ü Individual_Motors.Bas 

ü Piano_2.Bas 

ü Ping_03.Bas 

ü Pots_03.Bas 

ü Program_12_ReallySimple.Bas  

ü QTI_Tester.Bas 

ü RobotMoves_12.Bas 

ü Servomotor_12.Bas 

ü Speaker_Tester_2.Bas 

ü Turret_Tester.Bas 

 

 Complete_System_Tester.Bas (Figure 8.15) is a variation on Program_12_Advanced.Bas to incorporate all 

the new hardware from Chapter 8. It is an interesting and comprehensive GUI system for testing the firmware 

and hardware. Also, it has numerous reusable and versatile subroutines that you may want to use or emulate in 

your software. Notice how the Compass and AI instruments are now smaller and repositioned. The same 

include file was used to draw them as before. You may want to migrate some of the subroutines in the program 

to another include file so that you can use them in your own programs. Read_48HC() for example and 

mmDistance() have already been moved to the Instruments.Bas include file. 

 



More Advanced Hardware 

Page 207 

 
Figure 8.15: Complete_System_Tester.Bas Screenshot. Pots calibration is in progress. 



Chapter 8 

Page 208 

8.8 Summary 

In this chapter we: 

Ç Added an HMC6352 compass unit. 

Ç Learnt about inter-cog interactions. 

Ç Learnt about a procedural strategy for adding other hardware in a systematic manner. 

Ç Added a turret for the Ping))). 

Ç Added the ability to control the motors individually. 

Ç Added the mechanisms to save/retrieve the system parameters to/from EEPROM. 

Ç Added an H48C accelerometer unit. 

Ç Developed authentic looking simulated Compass and Attitude Indicator instruments. 

Ç Utilized the #Include command in RB to include a library of routines into our program so that we wonôt have 

to rewrite these useful subroutines. 

Ç Utilized RBôs 3D graphics engine. 

Ç Added 3 QTIs. 

Ç Added a Piezoelectric Speaker with the ability to play RTTTL like musical tunes. 

 




