A Hardware Interfacing

And Control Protocol

Using RobotBASIC
And The Propeller Chip

John Blankenship & Samuel Mishal

[Soltware Layer]

licraprocessnre

S
User Intertace Operating System
L Le IV arsoem

[Contrnl Algorithuny

Microcontraller
Iiriware

Simualted System) licraconeroller

Algorithms Firmware

(Real Hardware

A Hardware Interfacing
And Control Protocol

Using RobotBASIC
And The Propeller Chip

John Blankenship & Samuel Mishal

Copyright © 2011 by
John Blankenship & Samuel Mishal

ISBN-13: 9781438272849 ISBMO: 1438272847

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system without the prior
written permission of the @yright owner.

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringenent of the trademark.

Images of proprietary devices and sensors are reproduced with the permission of the manufacturing companies.

The information and projects in this book are provided for educational purposes without warranty. Although care has
been takn in the preparation of this book, neither the authors or publishers shall have any liability to any person or
entity with respect to any special, incidental or consequential loss of profit, downtime, goodwill, or damage to or
replacement of equipment property, or damage to persons, health or life, or any costs of recovering, reprogramming,
or reproducing any data, caused or alleged to be caused directly or indirectly by the information contained in this book
or its associated web site.

The source codfr the program listings in this book (and much more) is available to the readers at
http://www.RobotBASIC.com

http://www.robotbasic.com/

Table Of Contents i

Foreword IX
Preface Xi
Acknowledgement Xili
1- Introduction 1
2- Hardware & Software Setup 15
3- Testing the Hardware and Serial Communications 25
4- Basic Communications and 1/Q 37
5- Multitasking & Parallel Processing 49
6- A Communications Protocol 103
7- Adding More Hardware 123
8- More Advanced Hardware 183
9- Severing the Tether 239
10Robot BASI CO0s I nbuilt Prot o5l
11- Further Improvements 289
Appendix A: Web Links 301
Appendix B: Tables & Schematics 305

Index 317

Foreword IX

Preface Xi
Acknowledgement Xiii
1- Introduction 1
1.1 Why Do We Need the PC? 1
1.1.1 Advantages of Using a PC 4
Effective Operator Interfacing 4
Processing Power 4
Algorithmic and Data Processing Power 4
Utilizing Simulations 4
Access to the Internet @AN 5
1.1.2 Versatility and Reusability 5
1.2 A Paradigm Shift 7
1.2.1 The RobotBASIC Advantage 8
1.2.2 Various Arrangements 9
1.3 Distributed Parallel Processing 9
1.3.1 A Remote Computational Platform (RCP) 9
1.4 What Will You Learn? 11
1.5 What Do You Need To Know? 11
1.6 An Overview of the Chapters 12
1.7 Icons Used In This Book 13
1.8 Webpage Reference Links in This Book 14
1.9 Downloading the Source Code of the Book 14
2- Hardware & Software Setup 15
2.1 Hardware Setup 15
2.2 Softwae Setup 20
2.2.1 Ensuring the Propeller Chip is Blank 23
2.3 Summary 23
3- Testing the Hardware and Serial Communications 25
3.1 Testing the LEDs 25
3.2 Testing the Pushbuttons 26
3.3 Asynchronous Serial Communication 27
3.4 Testing Communicationwith the PST 28
3.4.1 Floating Input Pins 29
3.5 Communicating RB Through the Programming Port 30
3.5.1 A Note About String and Byte Buffers 31

Pagei

Table Of Contents

3.5.2 Problem with Resetting the Propeller (use F11 not F10)

33

3.6 Communicating RB Through the Propédker Plug (PP)

33

3.7 Communicating With the PST and RB Simultaneously

35

3.8 Summary

36

4- Basic Communications and 1/0O

37

4.1 Sending Data From RB to the Propeller

38

4.1.1 Sending Characters, Bytes, Words, Longs and Floats with RB

4.1.2 Extrating Numbers from a Received Buffer

39
40

4.2 Receiving Data with a GUI Display

41

4.2.1 Serial Streaming Speeds and Buffering

41

4.2.2 Hand Shaking

42

4.2.3 Data Remapping

43

4.2.4 An Example of Data Remapping

43

4.3 Sending and Receiving Data whita GUI Display

44

4.3.1 An Exercise

45

The Solution

46

4.3.2 An Exercise in Troubleshooting Weird Problems

46

4.4 Summary

47

5- Multitasking & Parallel Processing

49

5.1 Multitasking Using Interrupts

50

5.1.1 RobotBASIC Simulation of a Microntroller

50

5.1.2 Using Interrupts in RobotBASIC

51

5.2 Multitasking Using Polling

52

5.2.1 Polling in RobotBASIC

53

5.2.2 Polling on the Propeller Chip

53

5.2.3 Counting Time in Spin

54

Integer Multiplication Overflow

55

Determining the Qick Frequency

55

5.3 True Multitasking with Parallel Processing

55

5.3.1 Using Helper Modules

56

5.3.2 Using Multiple Microcontrollers

56

5.4 Parallel Processing with the Propeller Chip

57

5.4.1 Modularization in Preparation

57

A Var i a bebsenGvemotydRbinter)

58

A Brief Note About Objects and Methods

59

5.4.2 Initial Multitasking With Polling

59

5.4.3 Achieving Initial Parallelism

61

The Relationship Between Cogs, Methods and Objects

62

Cogs and Stack Space

63

5.4.4 Systemtic Debugging of Complex Programs

63

5.4.5 Sources For Obtaining Help With Difficult Problems

69

5.4.6 Parallel Processing Contention for Resources

72

5.5 Objects, Semaphores and Flags

72

5.5.1 Creating Objects

72

Pageii

Table Of Contents

5.5.2 Utilizing Semaphores 77

What is a Semaphore? 78

Using a Semaphore 79

5.5.3 Tighter Control With Flags 81

5.6 ParalletParallel Processing 84
5.7 Stack Overflow 86
5.8 A Musical Keyboard 87
5.8.1 A Different Way of Sharing RAM 87

5.8.2 Creating Frequencies (Numerigallontrolled Oscillator) 88

5.8.3 Testing the Speaker Firmware 89

5.8.4 A Piano Keyboard Player 92

An Exercise 95

Solution 96

5.8.5 Some Thoughts and Considerations 96

5.9 Parallel Programming Can Create Puzzling Errors 97
5.9.1 An Example foa Parallel Processing Trap 97

The Problem 98

The Solution 99

5.9.2 An Example of a Propeller Specific Trap 99

The Problem 100

The Solution 100

5.10 Logistical Planning for Parallelism With the Propeller 101
5.11 Summary 101
6- A Communications Protocol 103
6.1 A Better Protocol? 103
6.1.1 A Protocol Enables More Control 104

6.1.2 Specifying the protocol 104

6.1.3 Implementing the Protocol 106

6.2 Fault Tolerance With Recovery 115
6.3 GUI Instrumentations 116
6.4 Versatility of the Protocol 120
6.4.1 A Thought Exercise 120

6.4.2 Another Exercise 121

The solution 122

6.5 Summary 122
7- Adding More Hardware 123
7.1 Utilizing the PPDB 124
7.2 Controlling Servomotors 126
7.2.1 A Simplistic Method For Driving a Servompto 128

The Limitation of This Methodology 129

Using Helper Modules 129

7.2.2 The Propeller Advantage 129

7.2.3 Control With RobotBASIC 130

7.2.4 Using Servo32V7.Spin 133

Pageiii

Table Of Contents

7.3 Using an Ultrasonic Ranger

7.3.1 Showing the Ping))) Values dretPST

7.3.2 Using the Ping))) With an RB Program

7.4 Using Two Potentiometers

7.4.1 Testing the Pots

7.4.2 Using the Pots With an RB Program
7.5 Putting It All Together

7.5.1 Modifying the Others Object

7.5.2 Modifying the Reader Object

7.5.3 Checking the New Hardware + Firmware + System So Far
A Simple Test RB Program

Using Program_10_B.Bas

An Exercise in Versatility

7.6 Adding the Motors Object

7.6.1 Further Modifications of éhMain Object

7.6.2 Verifying the Motors Object

Simple Test For The Motors

Another Exercise In Versatility

7.7 RB Programs to Exercise the Entire System

7.7.1 Flexibility, Facility and Simplicity

7.7.2 A Really Simple fdgram

7.8 Improving the Motors Object

7.8.1 Allowing For Distance and Angle

7.8.2 Eliminating Jitter

Determining the Command Turnaround Frequency

7.8.3 Modifying the System Parameters

7.8.4 Timeout Range Remapping

7.8.5 Avoiding Serial Communications Timeout

7.8.6 The Modified Firmware

7.8.7 Testing the New Firmware

7.8.8 Robot Moves

7.9 An Exercise

7.9.1 The Solution

7.10 Summary

8- More Advanced Hardware

8.1 Adding a Canpass

8.1.1 Using the Compass
8.1.2 InterCog Communications and Complex Object Interaction
8.1.3 Using the Compass Calibration

Manual Compass Calibration

Automatic Compass Calibration

Complexity of Programming the Aamatic Calibration:
8.1.4 A Simulated Compass Instrument

8.2 A Procedural Strategy for Adding Other Hardware

8.2.1 Commands in the Protocol So Far

135
136
137
140
142
143
146
148
150
150
151
152
152
153
155
157
158
158
160
167
167
168
169
169
170
171
171
172
173
177
178
180
180
181

183
183
190
191
192
193
193
193
193
198
199

Pageiv

Table Of Contents

8.2.2 A Procedural Strategy For Extending the Hardware

Procedure For Addingldew Hardware or Command

8.2.3 Controlling Motors Separately

Testing the New Commands

8.2.4 Controlling a Ping))) on a Turret

A Radar Application
8.3 Saving The System Parameters to EEPROM

8.3.1 EEPROM Limitations

8.3.2 Required Changes to The Firmware

8.3.3 CRC and Validity Check

8.3.4 The New Commands & Firmware

8.3.5 Testing the EEPROM Commands

8.4 Adding an Accelerometer

8.4.1 Adding the Accelerometer Commands to the Protocol

8.4.2 Incorporating the H48C in the Protocol

8.4.3 Testing the New Command

199
200
200
204
204
207
209
209
211
211
212
217
219
219
221
224

8.4.4 Three Dimensional Animation of Airplane Pitch, Roll & Heading 225

8.5 Using the QTI Infrared Line Sensors

8.5.1 The New Firmware

8.5.2 Testing the QTI

8.6 Adding Sound

8.6.1 The New Firmware

8.6.2 Testing the Speaker

8.6.3 An Exercise

8.7 The Final System Firmware

8.8 Summary

9- Severing the Tether

9.1 Wireless With RF, Bluetooth or XBee

9.1.1 XBee

The XBee Advantage

The XBee Disadvantage

9.1.2 Bluetooth

The Bluetooth Advantage

The Bluetooth Disadvantage

9.1.3 Pure Radio Frequency

The RF Advantage

The RF Disadvantage

9.1.4 Summary of the Wirele§ptions

9.2 Wi-Fi & Internet

9.2.1 TCP and UDP Networking Protocols

9.2.2 The Topology

The Software Side

The Hardware Side

The Client and the Server

The Required Modifications

230
230
231
232
233
235
235
236
238

239
239
240
241
241
242
243
243
243
244
244
245
245
245
247
248
248
248
249

Pagev

Table Of Contents

An Example Topology 249

A Testing Topology 249

9.2.3 IP Address and Port 250

9.2.4 The Server Program 251

9.2.5 The Client Program 252

The Serial Link Program 252

The LAN Program 252

9.2.6 Running the LAN System 254

9.2.7 Converting a More Complex Program 254

9.3Summary 256

10Robot BASI C6s I nbuilt Protocol 257

10.1 The RobotBASIC Simulator 259

10.2 How Does RBOs Protocol Work? 260

10.3 The PPDB Hardware as a Robot Emulator 262

10.3.1 Ranger and Turret 264

10.3.2 Reading the Compass 266

10.3.3 Readinghe QTI Line Sensors 267

10.3.4 Other Devices 268

10.3.5 Handling Errors With the RB Simulator Protocol 269

10.3.6 Your Turn to Have a Go 271

10.4 The RobotBASIC Simulator Protocol Advantage 271

10.4.1 A Case Study 273

The Design Advantage 273

The Debugging Advantage 274

The Exhaustive Testing Advantage 275

10.4.2 Implementation Onto the Real Robot 276
Sensory Data Mapping To RB6&és 2Requirel

10.4.3 An Exercise 279

A Comment About Feedback Control 279

10.5 A Simplistic Inertial Navigation System 280

10.5.1 The Experiment 280

10.5.2 The Results 281

10.5.3 The Programdés Details 282

10.5.4 A Brief Note About Sampling Rates and the Nyquist Limit 286

10.6 Summary 287

11- Further Improvements 289

11.1 Extending Our Probcol 289

11.1.1 Example of an Extended Protocol 290

The Extended Firmware 291

Software for Testing the Extended Firmware 296

Table of Extended Protocol Commands 297

11.1.2 Working the Extended Protocol Over the TCP Link 297

11.2 ImprovementsFor the Robotic Control Protocol 297

11.3 A RobotBASIC Robotic Operating System (RROS) 299

Pagevi

Table Of Contents

11.4 Summary 300
Appendix A: Web Links 301
Appendix B: Tables & Schematics 305

Final Protocol Objects Hierarchy Map 305

Extended Protocol Objects Hierarchy Map 306

Figure B.1l: Systembés Conceptual Sch37/mati c

Figure B.2: Propeller Pin Utilization 308

Figure B.3: Hardware Connection Schematics 309

Figure B.4: Photograph of the Final PPDB Hardware Arrangement 310

Table B.1: Final Firmware Protocol Commanod@és 311

Table B.2: System Parameters Mapping Formulas 312

Table B.3: Extended Firmware Command Codes 313

Table B.4: RobotBASIC Inbuilt Protocol Command Codes 314

Figure B.5: Protocol State Diagrams 315
Index 317

Pagevii

Pageviii

Preface

he objective bthis book is to provide an attainable solution for effecting communications between a PC and
electronic hardware. You might wish to have an electronic device do some tasks like switching relays or actuating

some motors and reading some transducers, Wigl®C does the Atrtificial Intelligence (Al). You might have a

system that carries out some complicated tasks and you wish to use the PC to display data and control instrumentatior

using an effective and ergonomic GUI. Perhaps you have distributed rfedasors collecting data over a wide area

and you want to use the PC as the central controller for data collection, storage and analysis (see Chapter 10) with the

nodes communicating with the PC over wireless links or even across a LAN, WAN or thetlgeen€hapter 9).

Until now, anyone creating a control application had to make a choice; use the microcontroller or the PC for their
projects. As a student, hobbyist, or engineer you mo:¢
projeds - keyboard, data storage, Internet connectivity, arrays, floating point math, graphical user interface (GUI), 2D
and 3D graphics and more. While some of the more powerful microcontrollers (e.g. the Parallapmaittiopeller

Chip) can actually do nmy of these things, it can be complex to implement any one of them, let alone several at the
same time. In contrast, these features are already available and readily usable on a PC.

In the past, using a PC in electronic control projects was common praaticquite easy to do. The PC used to have

I/0 ports that were easily usable to interface with electronics projects and it was easily programmable to do
deterministic timing without being unpredictably preempted by a complex multitasking operating pgei@ming a

myriad of other jobs. The PC grew progressively more complex, powerful and sophisticated with GUI, multitasking,

3D graphics, virtual memory management, and much more. But it also became extremely convoluted to program while
also prohibiting ay access to lovevel I/0 systems; as a result most are nowadays only using the PC as a cross
compiler to upload programs to a microcontroller.

I n the meanti me, mi crocontrollers (egCs) have been st
easier to program and much less costly. Naturally, engineers and hobbyists are opting to use them for their projects
instead of the PC. Howewve, most €eCs | ack the data storage and proc
facilities of the PC and many engineers and hobbyi st s
are preferred for controlling electronics hardware famdobotics projects, it is evident that microcontrebersed

applications can benefit greatly from the PC's capabilities.

This book wild.l detail a new conceptual model as a des
that youno longer have to choose between the two (see Chapter 1). We aim tteshnigues and strategidhat can

be i mplemented with many eC and mpowdlforirtrfgcingeagdr a mmi ng |
combining the PC an droller§ wier the sharttomings bf eachmaremvewame hy the

capabilities of the other. We will expountethodologiegor implementing dirmware layeron top of any

amalgamation of hardware to act as a conduit &ofawvare layetto carry outreal time @ntrol of the overall

integrated system. The details and particulars of the hardware and software are incidental. Rather, what is of primary
significance is how the combination implementoanmunications protoco{Chapter 6).

Pageix

Preface

Although we utilize a spedif microcontroller Parallax multicore Propeller Chf) and a specific PC programming
language RobotBASIC), you should be able to utilize the strategy and methodology developed heesrgeadeto

create youown system of any combination of hardware controlled by a PC software of your design through a protocol
of yourdevising implemented by a firmware layer applicable to your system.

The Propeller Chifp a multicored processor in a single chip with eightl82processors running in parallel and
sharing a common RAM with its powerful programming language (Spinyifaates implementingnultitasking and
parallel processingwyhi ch are the crux of the bookés outlined tecl

RobotBASIC is used as the PC programming language (interpreter/compiler) for its powerful readily usable tools that
enablea programmer of any expertise to create GUI programs and to effect hardware communications that would need
a high level of programming proficiency in other languages. Another advantage of RB is its suite of commands and
functions that can be used with grease to carry out communications over a LAN, WAN or the Internet. As we will

see in Chapter 9, the ease with which we accomplish control over the network of the complex system developed here
would have required a book on its own to explain had it beptemented in another language.

To illustrate the strategy with concrete examples we use a variety of hardware modules that are typical of most devices
you are likely to require in a electronics projects (see Chapters 7 and 8). Despite the fact #rdirmaeehis most

often used for robotic projects, it is sufficiently general to be of utility in numerous systems because the devices typify
most of what may be utilized with a microcontroller.

Pwe hope this book will give you a running start on the wagctueving your own system using a PC and
microcontrollers to create complex electronics control projects. Whethewaiuto build a Robot (Chapter 1

or an RUV (Remote Underwater Vehicle) using parallel processing (Chapter 5), with GUI Instrumersis a@ich
Compass and Accelerometer and SONAR (Chapters 7 and 8), or you wish to collect data from distribut
loggers over the Internet (Chapter 9) and want to store the data on a central PC to graph and analyze t
collected information (Chapter 10), we homi will find the techniques and projects in this book helpful in
accomplishing your own projects.

Pagex

http://www.parallax.com/Store/Microcontrollers/PropellerChips/tabid/142/List/0/CategoryID/18/Level/a/SortField/0/Default.aspx
http://www.robotbasic.com/

Introduction

While back, the PC, with its parallel port, ISA and PCI buses, and serial port provided a viable and powerful as
ell as malerately easy to program controller for electronic hardware projects. The PC had easily expandable 1/0
buses and with the microprocessors of the time it was easy to implement Assembly or higher level programs that
utilized theinterrupts ability of the pr@essor to achieve multitasking atieterministic real time contrglwhere you
could create accurate and repeatable signals. With the support of the Operating System (OS), resources such as File
I/O, Graphics, Mouse, Speaker, and so forth were easily d@aeessd of major utility to an electronics hardware
control project.

With the evetincreasing tighter control by the OS over the facilities of PC and its processor, programming hardware

I/O on the PC became progressively more convoluted with each msigrvef the Windows OS. Furthermore, the fact

that the operating systems these days are continuously performing tasks in the background makes it extremely hard to
implementdeterministicreal timecontrol To aggravate the situation even further, the aijrgg system now prohibits

and denies the use of the PCbs hardware through progr
Devel opment Kits). And to add further difficul totses, F
and the bus is almost impossible to use.

All this means that engineers desiring to use a PC to control electronics systems have to resort to using specialized
hardware and software designed by companies that have the inside knowledge of howstthieyp&sobstacles. For
example, LabVIEW" pr ovi des hardware products that can be used
specialized programming interface to utilize these devices. Such systems lack the versatility and flexibility desired by
mary engineers, and are usually overly costly. You, of course, can still use the PC to do hardware interfacing if you
have the appropriate SDKs and are versed with Visual C++ and the COM model and know how to use DLLs and .NET
programming and have a degree@mputer science with many years of experience and so on and so forth.

Due to the tremendous difficulty in bypassing the OS
exceedingly prohibitive in time and cost to program a PC forfatgrg with external electronics. With the availability

of powerful and easto-use microcontrollers, many hobbyists find it a lot easier and cheaper to use them for their
projects and nowadays are mostly using the PC only as acoyogsler to program#é € Cs t hr ough | DEs
Devel opment Environments) provided by €C manufacturer
an extremely important and utilitarian component in a hardware control project for numerous compelling reasons

1.1 Why Do We Need the PC?

Consider the following program and its resulting output shown in Figure 1.1.
Inlineinputmode

Input "Enter your name:",Name

Input "Enter the year you were born:",BYear

Age = round(year(now()) - ToNumber(BYear,0))

Print "hello ",N ame," you are ",Age," years old"

Pagel

Chapter 1

» RobotBASIC IDE ¥4.2.1 [Editor Screen] =13
File Edit Run Help
L
wm Dz e a8 v Ba)v aFm v 4 83 2 @
*NoName.BAS
1 Inlineinputmode A~
jﬁInput "Enter your name:", Name

%Input "Enter the year you were born:",BYear
4 age = round{year(now())-ToNumber(BEYear, 0))

"

?Print "hello ",Name," you are ",Age,"” years oldﬂ

“ RobotBASIC Interactive Terminal Screen [NoName.BAS]

Enter your name:Rany
Enter the year you were born:1995
hello Rany you are 16 years old

W

e |5
y
[%

Q

Figure 1.1: A simple user interface program

Despite the fact that this program is only 5 lines of code, and despite its simple actions, you would be extremely hard
pressed to produce an equivalent process using a mitrotter alone. What most people take for granted about using

a PC system with an appropriate program such as the above, are the numerous support systems that underlie the
resulting overall interaction. The program may seem simple at face value butitndam extremely complex one. As

a user of the programming language (e.g. RobotBASIC) you did not have to concern yourself with a plethora of details.
These details are neither trivial nor simple. If in reality you had to implement all the processesatile the above

program to work you might have to spend months and you would have to be a software engineer of the highest caliber.

Letds examine what the 5 |lines of code accomplish. The
each carry out two actions. They display a message on the screen and then wait for an input from the user. In order to
do these two deceptively simple actions, numerous calls to underlying OS facilities have to be performed. The program
has to request froitihe OS permission to output to the screen. It has to also tell the OS which window it is outputting to
and what coordinates. It has to tell the OS what font and what color to output to the screen. All this on top of what the
content of the output string.i This content itself had to be retrieved from its location in the RAM of the PC. This

action of acquiring the text from some memory area in itself requires numerous calls to OS facilities. Waiting for a user
input, again, necessitates countless caltkedOS to be able to interact with the keyboard and interpret its input. More
memory actions have to be performed in order to store the user key presses and collate them into a string.

The code in the fourth line performs a staggering amount of worlaytmat seem so when you look at it. At the
l ogi cal l evel the code converts the usero6s birth year,
invalid value. It then obtains the current year and subtracts the given year anchstoessiit in a memory variable.

On the hardware level it is prohibitive to list here what actions are needed. However, consider the facilities made
available in this line. We had to determine the current date. We had to figure out the year from tWié& dége.had

to perform the action of converting the userds input f
very involved algorithm in and of itself. You would need a program bigger than the original one just to perform this

adion. To be able to do the mathematical calculations, again, the program has to make many calls to the OS. This

fourth line of code alone requires a program of thousands of lines if you were to implement all the necedsaey low
functions it performs. fie code in the fifth line is similar to the second and third in that it outputs to the screen and it

also needs a lot of background processing to be able to concatenate all the required output strings and number.

Page2

Introduction

The above description does not even stréte surface of what the RobotBASIC language is in fact performing for
you when you type and run the simple 5 lines of code above. This is precisely the power and utility of the PC when
used with an appropriately simple to use yet powerful languageu lfigd to program the above on a microcontroller,
you as the programmer would have to take caedldhe necessary stdystems to be able to accomplish the
transaction with the user, the keyboard, the screen, the real time clock and the math processor.

Notwithstanding all the complexity, the above program can still be achieved on a capable microcontroller. This is
because the input and output mechanisms are relativel
shown in Figure 1.2 (atssee Figures 8.11, 8.15 or 10.2). The GUI (Graphical User Interface) alone would be
impossible to achieve on almost all the microcontrollers available nowadays. Even if you did achieve a modicum of
what can be accomplished on the PC, the amount of woudkdWe prohibitive and then there will be hardly any

memory or I/O lines left over to do anything else. And the final outcome will not even begin to approach the quality
attainable on a PC.

RobotBASIC Interactive Terminal Screen [D:\RobotBASIC\Articles\S atellite Control\Programs\S ontroller.B x|

Firing Kg/s o Auto Control IManual Control' Instructions I Quit |

-0.0073289

330,

xp| 3.0000'xi| 0.0100] l(d| 4.3000|

T secs 0.0150 VYCOF m/s 0.0050
J](gmAQ 0.00z0 Radius m 0.2300

Desired Theta¢ degrees
Actual Theta |181.000000 |degrees

omega radfs |2.38076253e-03 | velocity

Alpha rad/s/s|‘4-214118073—03 l Accel.

ITAE Index |5.03028399e+00 |

Accumulated Manual Firings lj]

180 Simulation
360
¢ 300
h 240
€ 180
t
120
a
60
1]
0 1 2 3 4 s [7 8] 10 11 12 13 14 15

Time (secs)

|
I

IF=TERES | J

Figure 1.2: An example of a GUI program in action

_ISMany of the limitations of microcontrollers discussed below do not apply to the PropelleraorétiChip,

as you will see throughout this book. You can do things with the Propeller never thought possible with
microcontroller. It has eight processors (cogs) inamip that can operate simultaneously, either independeftly

or cooperatively, sharing common resources through a central hub. In fact the PPDB (Figure 2.2) used g later
chapters can be made into a PC more powerful than some of the PCs of not too long ago.

Page3

Chapter 1

_!SMany modern microcontrollers are also very powerful and all the work we do in this book with the Pr@peller
is very much applicable to these microcontrollers. The techniques we will elaborate in the next ten chapers are
just as achievable with these afje microcontrollers as they are with the Propeller.

1.1.1 Advantages of Using a PC

What is not widely appreciated is that even though mic
to do just about anything, in fact they are verylilid when compared to microprocess
not usually be hindered by the | imitations since their

sufficient for most projects.

Effective Operator Interfacing

A ¢ Custithafi gcontroller. I't is designed with the express purpose
controlling digital I/O and even in certain cases some analog I/O as well. If a project requires hardware control without

much user interactionthe a € C i s the best possible choi c operatbro wever,
interfacing and data processinphen you need to use a ¢€P, whiprocessings a | o

Using a PC with its graphics capabilitiesa control project you can createergonomic operator interfaceYou can
use GUI components and 2D and 3D graphics to provide the usantuitive and effectivefeedbackandcontrol
over the system (see Figures 1.2, 8.11 and 8.15).

Processing Power

AgC is | imited in the amount of RAM and ROM avail abl e
does not make available itsemory buseand has a fixed memory. This means that there is no way to expand the

memory available to it excepylusing some of its I/O lines. Indeed, you can, with ingenuity and sufficient finagling,

make a microcontroller achieve some i mpressive acts. E
AHor ses F ocome€to mindsheres Of coursewcan use a screwdriver as a hammer, but think how much

better it would be to use an actual hammer.

Algorithmic and Data Processing Power

Most €Cs are | i mited afraysandiperformfloating-pdinias well as othentdglevelpmaH at e
operations. Even simplaultiplication anddivision are limited or in some cases hard to implement. Simple projects

may not require many mathematical calculations, but more complex projects will usually require the processing power
ofa PC.

To accompkh mostAtrtificial Intelligence (Al) algorithms, structures such adulti -Dimensional Arrays Files,

Databases, Queues, Lists, Binary trees, Graphs, Stacks, Searching, Sdrast Fourier Transformsand much

more are necessary. There are not many €Cs that can be
even simple Al projects. Consider for instance the cas
approach adequacyrfeome of the number crunching required to calculate the forward and reverse kinematics of a 5
degrees of freedom arm. Calculating the Jacobian al one

Utilizing Simulations

An effective and powerful design methdogy in engineering is to usgmulations.Simulations provide an extremely
effective method for testing a system before spending much time and money building the real hardware. A simulated
system allows engineers to try out various algorithms and ideagatmine whaif situations and to hone the control
algorithms. All this can be accomplished with safety and minimal expenditure.

Once a simulation is perfected it can be used to train operators while the physical system is being built. A simulation
enalles catastrophic training scenarios to be thrown at the operator with none of the obvious ramifications. Think of a
flight simulator where a pilot can fail and crash and still go back home that evening to his family unscathed.

Page4

Introduction

Once the hardware systenaigailable the very same programs that controlled the simulations can be used to control

the real hardware instead of the software simulation algorithms that emulated the hardware. The time spent developing
the simulation would have been efficiently used Arcomes an integral part of the overall design process. Operators

do not need to be retrained and there is no need to translate the control algorithms to the native language of the
hardware microcontroller. Moreover, the control algorithms can be aseoagpneeded without being hindered by
limitations in the processing ability of the microcontroller. No new equipment is required to effect theeriace

since the same PC systems used for the simulation are used with the real hardware.

An example bsuch a system is shown in Figure 1.2 above; also see Chapter 10 for more examples. Figure 1.3 below i
a schematic layout of how this can be conceptually achieved. If you look at Figure 1.2 on the middle right hand part of
the image, just above the gramtea, you would see a box labelgichulation If this box is set to N (no) then a user
interacting with the system would be in fact interacting with the real hardware being driven by the program. If the box
is setto Y (yes) then the interaction wouldvath the algorithms that simulate the hardware. Notice that the very same
user interface is used for both the real and simulated interaction.

User Interface
3

Softwaﬁ

Control Algorithms

Switc

Simualted System Microcontroller
Algorithms Firmiware

i

Real Hardware

Figure 1.3: Simulation/Real Hardware Control Conceptual Schematic

Access to the Internet or LAN

Mo st ¢ Q@ bavedhe caparity to provide a TCP or UDP stack. To enable a microcontroller to communicate over
the Internet one has to use a specialized module. This adds extra expense to the project and may not be a versatile
option. If we use a PC in the projectthiae PC can also act as the conduit for achieving Internet communications
using a wired or wireless link (\Wri). Additionally if the link between the PC and the hardware is also wireless
(XBee), then the hardware would be able to communicate throudhténeet or LAN completely wirelessly. See

Chapter 9 for how to implement such a system and see Figure 9.7 for various layouts.

1.1.2 Versatility and Reusability

What makes the PC such a versatile device? A PC is a Rolodex, a diary, a personal plaokeg typewriter, a CD

player, a DVR the list is endless. However, when you first start the machine it is none of that. What makes it become
all these things is its ability to run programs that make it accomplish the tasks necessary for actingpaspthatap
analogue.

Whatisa PC? Itisa setbardwarewi t h a capabl e e€P appropriately progr:
(firmware). When you want to make the PC perform a particular task you give it a series of instrisctftvaare that

Page5

Chapter 1

it can understand. This software tells the PC what hardware to use as well as how and when in order to be able to
emulate the analogous tasks. See Figure 1.4.

Operator

I

Software Layer

1

Firmware Layer

t

Hardware

Figure 1.4: Conceptual model of a PC system

This conceptual model is the secret of the powdrvansatility of a PC system. Imagine if every time you wanted to
make the PC perform a different task to what it is currently doing you had to:

Fire up another machine.

Load a program on the machine.

Connect the PC to the machine.

Write a program in the athine that haall the firmware as well the software required.

Compile them.

Upload the compiled result to the PC.

Unplug the PC.

Run the PC.

Test if the new software is working.

If it is not repeat the above steps after having first used the other macHir the problem.

If you need to do a new action on the PC, repeat the above steps having first devised the necessary new
software for the action.

O 0000000000

You can imagine that not many people would be using computers. The above process would soon getriksdmeo

to say the least. Yet, if you have not noticed, that is exactly what we do every time we want to run a new program on a

e C. Notice too, that it is not just the software that
We dondt normally think of it that way. We think of tnh
things like LCDs, Key Pads, Serial Ports and so forth, then every program you do has a common set of basic

underlying subroutines that makesie devices function. Most often you just cut and paste or #include these routines

into your program. But these subroutines in fact constitute a firmware. Your new code would be the software.

We also tend to think of the €C as being independent
we did not have the PC. We would not be able to quickly and easily change its action (load it with new software). So in

fact,the PCi s a cruci al and i ntegr al.Repadthd previdus stateraentlagain.eéMullc y c | e

over it for a few minutes. What makes the €C versatil e
aggravating and perhaps impo$sib

I f what you need is to make a €C based system be a ver
method of usinga PC justasacrose mpi | er and | DE platform to pimgigtram t h
function ofthef i nal resulting system once the €C is carrying

Page6

Introduction

Ybonoét think of the Eolplex sombination of systeatidat are The eulma@ioniof: a
over 60 years of engineering expertise by thousands of innovators. Everytimou use a PC ou a
the shoul ders of giantso. By opting to incorpofate
position instead of from scratch.

1.2 A Paradigm Shift

What we are proposing in this book is a rgavadigm What wewant is tomake the microcontroller arexplicitly
integral component of an overall PC system

On a PC when we want to load new software we do not need another machine to do so. We even can use a
programming language on the PC itself, to write anew softea i f a commer ci al one i s nc
system in the traditional way we use it, this would not be possible. Nevertheless, if we expaomteptual

perceptonof what a €C system is and r eg a remthdnindact Re€caravgite a n i
software and run it on the €C without relying on an e

This new paradigm is not as simple as {hatking of the PC as important. Rather, it is a concrete anige@ction

that has to be taken to realize the benef-systamobtie PEuc h
as an overall wunit. Just |ike the PC has a hard disk
hardvaresubs y st em i n the PCO6s repertoire of peripheral dev

What you may not have actually realized about devices that constitute a PC system is that in fact many of them have
t heir own ¢ Cs kothebeadays ate almbdsh staddalénie devices. In actuality, PC peripheral devices
communi cate with the €P using a SATADb(sdiresUSB morsaranothify) o f
more than another kind buslinet o t he PCbés ¢ P.

Inconc ete terms, the €C + firmware become a substitutic
the right programming language and you can successfully make the PC an electronics hardware control and
experimentations platform just like the old days, but with even more power and versatility as well as functional

utility. See Figure 1.5.

Operator
4
Software Layer

-

Micropfocessor
Operating System
i.e. PC system

SATA Bus USB Bus

e . i e

PC Hardware Microcontroller
e.g. Hard Drive Firware

1

Hardware

Figure 1.5: Conceptual model of the new paradigm

Page7

Chapter 1

MYThe PC alone is no | onger a vVviabl e har dwaatae ontrol
processing platform. However, with onew paradigmand using RobotBASIC to be able to communicate

through the USB ports with the appropr i adgethermtoffg war e
a very powerful, efficient, and versatile Hamare control and experimentation platform with ergonomic and
effective user interfaces. The next ten chapteffs of
firmware to make it an integral subsystem of the PC. This way you can carry troi odelectronic hardware

as easily as using a PC.

1.2.1 The RobotBASIC Advantage

As you saw above, all you need to implement the new paradigm is a programming language that makes it easy to
communicate with the microcontroller. There are a plethorarafuages out there that caventuallyachieve this.

Many of them however are complex and have very steep learning curves. Many of them also require a lot of resources
on the PC and cannot be used on the fly. They need installation and cannot be usedtirdavices as a flash drive

or a CD. All of them are quite powerful; however, you would need lots of experience to be able to use them at a
functional level.

What is desirable is a language that can be used at any level of expertise and yet progiasas pt@ level a
professional in other languages would prodiehotBASIC (RB) is one such language. There are numerous
advantages to using RB listed on its web site. The ones of immediate import to oigmantsiét are the ability to:

U Communicate with devices on the USB ports such as a microcontroller or XBee transceiver.

U Communicate with Bluetooth devices.

0 Communicate Over the Internet or LAN using TCP or UDP.

i Fully Control the U4x1 family of devices frobiSBmicrd (see later).

With RB6s 2D and 3D graphics engines and its extensi Vve
and functions for math and matrices and File I/O (low and high level) as well asritentlously easy syntax, RB

enables even the most novice programmer to create programs for controlling hardware with ergonomic and

professional looking interfaces (see Figure 1.2 or 8.15)

Another major advantage of RB is its integratelot simulatoraswell as its associatawbotic hardware
communications protocolSee Chapter 10 for more details on both these systems. As we saw in the previous section, a
simulation should be an indispensable part of the design cycle carried out by a prudent engineer.

Yone very effective and convenient method to implement the new paradigm explained above is through the
U4x1 USB I/O family of devices frordSBmicrd’. RobotBASIC has an extensive set of functions that enal

easyus@ef t he U4x16s -Wiecoanmunicaigns, ®mrbl ofawo Gtepper Motors and controfof
High-Voltage-High-Current built in Relays. This family of devices is an excellent and powerful substitute for a

eC in certain classesoafupcoj eat swi ar at eCluseéeha y ou
to the information resources available at the USBmicro web site, we havelapth tutoridi® teachinghow to

use these devices on our web site.

2/The RobotBASIC IDE and compiled RB programs can run under any Windows OS version from 95 tf W7

from a CD or Flash drive with no installation required. Also RB makes it easy to interact with the parallef§fport

andil SA/ PCl buses on older PCs. This makes RB i dpgpal for
electronics hardware experimentation platforms, instead of a reason for spouses to complain about ther taking

too much storage space.

Page8

http://www.robotbasic.com/
http://www.usbmicro.com/
http://www.usbmicro.com/
http://www.robotbasic.org/resources/RobotBASIC_USBmicro_U4x1.pdf

Introduction

1.2.2 Various Arrangements

There are various alternatives for how to incorporate

1. Laptop, Notebook or Desktop directly wired through a USB to an appropriate USB to TTL Serial converter
which then is wirembsasBxahdialinesf t he e€Cbés |/ O |

This option is not very mobile if you use a Desktop, but even with a Notebook it may be too bulky for
some situations (e.g. a small robot). The U4x1 devices would be an excellent option here as well.

2. APC Motherboard+SDcardolSB f |l ash memory to hold the OS and
in option one above.

This option is mobile but not very convenient if you require user interfacing and actitgnmealystem
monitoring. However, this option is great for mobile Egagions that require the computational
augmentation the PC motherboard provides. You can also combine it with option 3. Again, the U4x1
devices would be an excellent option here too.

3. The PC is connected to a wireless transceiver (see Chapter 9) ttrosighUS B port . The € C i
to a compatible transceiver through two of its I/O lines. The transceivers act as a wire replacement between
the PC and the ¢C.

This is the most versatile alternative and it has the power of being mobile and at¢éhinsaproviding
user interfacing and real time systems monitoring. This would be the option of choice for a distributed or
a mobile system (e.g. robots or monitoring stations).

1.3 Distributed Parallel Processing

Complex engineering systems comprise nwuasrsubsystems that can be thought of as a collection of subtasks. You
should divide a complex system into simpler subsystems (just like you do for a complex programming Baxjhct
subtask can be controlled by a dedicated e€C along wit
the PC as a master controll er whi ch distributed procesainge s wi t F
provided with thidivide-and-conquerstrategy, allows the PC to require less I/O conduits than would have been

needed if it had to control all the spbocesses directly. Also due to tharallel processingrovided by the various

¢ C snultitaskingis readily achievable ég Chapter 5).

On the PC you can have an overall controller software program or even multiple programs running in parallel, with
each program controlling one USB port that carries tfF
communicate with edn other using hard disk files or the UDP protocol (despite being on the same PC) to transfer data
between each other if the need arises.

The PC provides thal Brain. The microcontrollers only deal with readitrgnsducersand activatingctuatorsbut

not with why they need to do so. The PC decidbstandwhy anddelegatesthehotvo t he mi crocont r c
is programmed with the appropriate firmware to be able to communicate with the PC software and to be able to control
the various hardware components it is dedicated to. The firmware is therefore quite simple with aidnsuffi

complexity to independently control its subtask according to parameters transmitted to it by the PC software.

1.3.1 A Remote Computational Platform (RCP)

A PC used in the manner described above can be easily convertedRenoote Computational Pl&rm (RCP)by
using wirelessorwWFi connections to all the subordinate €Cs. T
facilitate many interesting possibilities.

The RCP also acts as aperator interfacenode that provides operators with infornsatiabout and control over the
system and with the ability teconfigure the system dynamical(y.e. while it is working) and/or toverridethe
systemds automatic actions when required. Thiper9.emot e

There are numerous advantages in having an RCP. Think of Planetary exploration. If you have an orbiting RCP that
controls multiple surface Rovers, you can simultaneously explore multiple regions, rather than being limited by one

Page9

Chapter 1

explorer. Alsoeah i ndi vi dual explorer is simple and expendabl e
the possibility of damage during landing. Since there are numerous explorers, there would be no problem if one or

more are damaged during the landing. Ywlli still be able to achieve the mission or reassign another rover to take

over the task o Withithis®ptiche foboticplatforin€an bd kephsgnall. Only the sensory and

actuations systems are needed onboard and perhaps some dgyaosedarometefisin the case of airborne or

seagoing platforms for doing attitude control or an INS (inertial navigation).

AAISO with the RCP option, once the robot is configured and its onboard microcontrollers programmedy it
never needs to be tampdrwith againAll the work can now be done through the PC to make the robot do
different tasks and actiondepending on the projects. You can ewveronfigurethe robot inreal timewhile it

is in the field still doing its work. You can convey to it im@ives to make it alter its previously assigned
behavior remotely while it is still in the field.

Somelateral thinking and aparadigm shiftin conceptualizationare necessary to appreciate this kind of robot. Most
people think that an autonomous robasto be human like. We humans do not have aniR&@RIo we; food for
thought. An autonomous robot is still autonomous even though it is additional not onboard brains

Another advantagef this idea is that you can hamultiple robots sharing theame RCP to act ashave or matrix of

robots. They can then intercommunicate and be orchestrated all at the same time through the RCP. Moreover, the RCP
can provide information to the hive that is otherwise not possible to obtain by the individual holbgise having a

robot able to access the Internet to collect some data it requires (e.g. GPS augmentation, weather data, satellite
imagery). Think of a hive that is distributed over remote places but yet can communicate and orchestrate actions by

usinghe I nternet as a communications |link. Researchers ¢
is under intense researdResistance Is Futile

it oo e et B e K e B s s A B S B B e S l E B T "
! HELICOPTER |
1 SERVOS |
|} |
1 |
' 6 |
U |
' POSITION & ¢ FLIGHT ' ALTITUDE | !
: RATE GYROS =% COMPUTER SENSOR :
' | acousTic $ A :

v ‘ ______ :.. - - —
B L LASER — ! cuvassosic
1 L7 KM RECEIVER ; ! SIGNAL
' P TONE ‘ i ! !
L R e A EX I KR X o LR SN LT J

i LASIR ! ;

' > 3 MANUAL
MICROPHONES, L L TRANSMITTER [wad (olnbors
ELECTRONICS & LASER
PULSE COUNTERS DEVICE 4
‘ | INTERFACE BOARD |

SERIAL LINE

SERJAL LINE

ATTITUDE & ALTITUDE
COMMAANDS

GUIDANCE

[INTERFACE BOARD] |

NAVIGATION

SERJAL LINE

|

| POSITION &

! YELOCITY WAYPOINT
! ESTIMATE

| GROUND MISSION

| COMPUTER PLANNING

Figure 1.6:An RCP research systembébs conceptual

Pagel0

Introduction

See Figure 1.6 for the conceptual moofehn RCP used by researcher at Mfo implement a helicopter control

system. The controller onboard the helicopter is able to autonomously maintainthé veld s at t i t ude. B
or to change altitude the decisions come from the ground controller (PC). The RCP communicates through three serial
i nks wi-basedtdvices. ®neaiggs RF transceivers. Another uses a LASER link (similar to)lrifizezed

third uses Ultrasound. Notice how the RCP providesrilssion planningaspect in other words the Al.

1.4 What Will You Learn?

The goal of this book is to showstrategic methodologfor implementing the new paradigm expounded in Section
1.2. Wewill gradually evolve a series of programs into a capable and funcfion&lare layerthat can be used to
carry out thecommunications protocob e t we e n t hseftwar€sysiemuhnirtg bnethe PC.

Along the way we will use an amalgamation of hardware (such as an accelerometer, ultrasound ranger, infrared line
sensors, compass, servomotors, potentiometers and more) to demonstrateytioé thiildverall concepby

controlling the hardware through software programs to carryealitime controlof theintegrated systemEven
though we are using specific hardware and a specific
particular systems or even the particular protocol. Rather the aim is that you would beusibie tthe methodology

as a template to achieve your own requirements

Themultitasking and parallel processingoncept is of paramount importance and you mékd to use it regardless of
the particulars of your system. This book will utilize the concept almost right from the start.

There are four levels at which a person can acquire a new skill:
U Rote: where a skill can be repeated only by emulation, witkimaerstanding for why it is performed so.
U Understanding: where one still can only repeat the skill but now with an understanding for why it is applied
within the particular application with which one is familiar.
U Application: where the skill can be appliéa different situations and with understanding. However, there is
no additional innovation of technique.
U Correlation: where one can adapt the skill to apply it to new applications in an innovative manner.

we hope this book will induce you all the waythe correlation level where no matter what new situatio
you face you would find the information acquired here an inspiration for you in creating your own uniqugjand
innovative solutions.

1.5 What Do You Need To Know?

This is not a book about learning héevprogram RobotBASIC or Spin. Nor is it about how to use particular devices.
All these are skills best acquired from the resources mentioned in Appendix A. However, this book is about how to
create a system to allow a PC to control electronics hardwane éfficient and useful way.

You are not expected to be an expert in any of the systems used in the book. In most cases we do show enough detail
be useful even to a novice. However, you are expected to be at a level of knowledge where you cde eratl co

discern the algorithms in it. If you are not familiar with certain syntax, you are expected to read the manuals and learn
about the particulars you are not sure about.

We will use RobotBASICWww.RobotBASICcom) and Spinwww.Parallax.Com/Propellgat an intermediate to
advanced level and there will be a few programming techniques and tricks to achieve efficient results. Some of these
may be explained inosne detail. However, you are expected to be sufficiently versed in both languages to be able to
follow along with the explanations since myerydetail might be expounded. You should be familiar with these

Pagell

http://mit.edu/whall/www/heli/paper/node3.html#SECTION00030000000000000000
http://www.robotbasic.com/
http://www.parallax.com/Propeller

Chapter 1

languages, at the very least, beyond the begierel. You can find tutorials for both at their respective web sites (see
items 1, 2, 62, 63, 65 in Appendix A).

In RobotBASIC we will use techniques for serial communications and for communication across the Internet. Detailed
Tutorials for both thesean be found at our website (see item20857 in Appendix A). Additionally there are
numerous YouTube video tutorials about the RobotBASIC language (see item 63 in Appendix A).

There are also five other books that teach RobotBASIC at an advanced as avbkginner and intermediate levels.
There are many links on the RB web site but also see item 62 in Appendix A. Theldraolkare Interfacing With
RobotBASIC, the Fundamenté@sdesigned to be a precursor to this book for beginners(search for it on
www.Amazon.conor see the linkvww.RobotBASIC.com

Similarly, for the Spin language as well as most of the hardware used here, there are tutorials, specification sheets,
example code and much more on the Parallax web site (see Appendix A). Alsaaeparallax.com/propeller/gna
andwww.parallax.com/propeller

You are epected to be able to read schematics and translate them into physical wiring arrangements. We assume that
you are versed with electronics hardware and are able to determine what you need from specification sheets and other
information resources that wouddigment whatever detail we give in this book.

1.6 An Overview of the Chapters

In Chapter 2 we list the required hardware and software, so you can collect the necessary equipment before you start
building the projects and prepare it to be ready for ldiapters.

In Chapter 3 we develop programs to test the initially simple hardware setup. This verifies the hardware and software
systems and provides a working starting point. Also it provides base line programs for carrying out serial
communications thatan be evolved as we progress through the book. We also learn certain important facts about
serial communications buffers.

In Chapter 4 we develop further sophistication in the software establishing some GUI programming techniques. We
further develop theesial communications techniques required to achieve effective interaction between the PC and the
Propeller. We also learn about some pitfalls in serial communications and how to avoid them using software
handshaking and how to use software to complemeheahance the hardware and to work around certain limitations
that may arise.

In Chapter 5 we delve into the allmportant concepts of Multitasking and Parallel Processing. We look at the three
different techniques of Polling, Interrupts and Parallel ssing. We learn about timing and timers in RB and Spin.

We learn about memory sharing using pointers in Spin. We also learn about semaphores and flagging. For examples of
parallel processing we utilize frequency generation and use that to create nonsisalnd tunes on a speaker.

Additionally, we learn about avoiding some elusive traps while utilizing parallel programming in general and the
Propeller Chip in particular.

In chapters prior t&€hapter 6, we utilizead hoc protocoldo effect the communi¢®ns as required by the systems

being developed at the time; every program had a different technique and a different standard. This would be sufficient
for small oneoff projects but not adequate for complex more general ones. In Chapter 6 we destafujaed

protocolto effect the communications on a more versatile and robust level. We then demonstrate how the protocol
provides fault adaptability and tolerance as well as versatility while using it in complex GUI software programs that
provide professioa looking instrumentation applications on the PC.

BeforeChapter 7 only simple hardware was utilized to experiment with the techniques being learned. This aided in
keeping the complexity at a minimum while concentrating on the algorithmic contenttrethdreing mired in the

details and intricacies of hardware. In Chapter 7, armed with the sophistication of parallel processing and a versatile
communications protocol, we start imparting more complexity to the hardware. We add an ultrasound ranger, two

Pagel2

http://www.amazon.com/
http://www.robotbasic.com/
http://www.parallax.com/propeller/qna
http://www.parallax.com/propeller

Introduction

continuous motion servomotors and two potentiometers. Initially we develop each system on its own and develop
simple test programs in firmware and software to establish a base line mechanism for using them. We then integrate
them into one overall system. Wjeadually evolve the firmware developed in Chapter 6 to allow the software to

control and interact with the hardware by means of the established protocol with everything functioning in parallel in a
smooth and controlled manner. We then go on to imparé @bilities to the firmware and also develop another

complex GUI software program to utilize the improved firmware and hardware.

In Chapter 8 we add further hardware and outline a general and methodical strategy for incorpmgtiagdware

into the fimware and protocol. Additionally, we learn more sophisticated programming techniques in both Spin and
RobotBASIC. We add a compass, an accelerometer, a standard servomotor to be a turret for the ranger, infrared line
sensors, ability to save system paramets t o an EEPROM, and a better way to
3D graphics engine and see how to develop professional looking instrumentation.

In Chapter 9 we see how to make the hardware system remote from the controlling PC using woeleasmication

with systems such as the XBee and Bluetooth. Another method for achiemiote controlis over a Local Area

Network with WiF i or across the globe using the Internet. We
TCP commandsral functions.

InChapter10we | ook at the RobotBASIC simulated robot and
over the hardware developed in previous chapters using itsdmeemulator In fact, the protocol developed in
chapteréad i mpl emented in Chapters 7 and 8 is followed b
to use the simulator to develop a program to make the simulated robot move in the simulated environment on the
screen. But then we see how the veasyne program with the change of a single number can be made to drive the
hardware. Al this is possible due to RB6s intrinsic
book. We then go on to use the simulator protocol to devediplistic INS (inertial navigation system) to prove

how versatile the protocol can be.

In Chapter 11we examine some of the limitations of the firmware and we discuss and suggest possible improvements.
As an example for how some of these improvementdedmplemented we go ahead and create an extended

firmware that applies some of those suggestions. We also talk about the soon to be developed RROS (RobotBASIC
Robotic Operating System) which is a more sophisticated and general version of the stradeigielsraques

elucidated in this book.

1.7 Icons Used In This Book

The icon ¥ denotes a point of interest of which you should be aware. The_godenotes a warning about
something that could lead to problems if you are not fully aware of the pertic&tTae icon) is to prompt you to
laugh whenevewe thinkwe made a joke. You might think otherwise but gbouldlaugh regardless; it is good for
the mind.

In code listings we will sometimes draw attention to some lines of code in particular frorg #reasther lines in the
listing. There are three levels (other than normal code):

Normal code

First level is Bolded text in the listing.
Called Bold code or lines.

Second level is in white text on a dark gray background.
Called Highl ighted code or lines.

Third level is white text on black background.
Called Reverse code or lines.

Pagel3

Chapter 1

!\We often refer to RB or the Propell er or Spi by
ARB wil |l expectram aeatedeénaRB runnong am thep RCceigher within the RB IDE or as a

compiled executable (exe) running as a standalone program in the OS. Likewise for the Propeller or Spg when
we say fithe Propeller will ¢é. 0 orin8psgor PASMar hothk 0€é0

then compiled and uploaded to the Propeller and is currently running on the Propeller.

1.8 Webpage Reference Links in This Book

We use many devices and refer to many itenensdrehat can
underlined and numbered with a superscripted number. You need to use the superscript number adjacent to the
reference and index in the list given in appendix A to find the full URL address of the relevant link. You will also find
Appendix A includeé in a PDF file in the downloadable Zip file that contains all the source code of the book (see
Section 1.9). This will be useful since you can click on the link in the PDF file to visit the site instead of having to type
the URL by hand in the browser.

1.9 Downloading the Source Code of the Book

You can download fromww.RobotBASIC.cona Zip file containing all the code (Spin and RB) organized in folders
for each chapter. Additionally there is a file called SystReferences.PDF, which has in it all the appendices at the

end of this book and a selection of some of the figures but in color. There will also be an additional download file
containing corrections for any critical errors in the book. There will be nd toegownload this file since it will

remain empty, of course.

Pagel4d

S

http://www.robotbasic.com/

Multitasking & Parallel
Processing

[In Chapter 4 we gained experience in communicating RB and the Propeller and we developed a system for
controlling the process by having Ridtiate the interaction. The Spin program repeatedly waits for RB to send
information. Once the data from the PC is received, the Propeller responds by using the received information to set or
interrogate certain hardware and then sends its informati@nRB program uses that information and goes on to send
the next information. The process repeats ad infinitum. This is an excellent procedure in that we have an orderly
system with no swamping and buffer overflow due to disparate and asynchronous tedasfand processing speeds.

However, we do have a slight glitch with this methodology. The system is fine if the Spin program does not need to do
anything else other than wait for RB to send its data. Consider these lines of code from Program_03.Spin:

repeat
OUtA[23..16] := RB.RX 'receive the byte and set the LEDS
RB.TX(inA[7..5]) ' read the buttons and send the states

RB.RX is the method used to receive a byte of data from RB. This method will continue trying to receive the byte
forever. The Spin program will not proceed to the next statement until the byte is received. This, of course is exactly
what we want since the next statement sends data and we did not want this to take place until RB is ready to receive it
But, this becmes a problem if we want the Spin program to do other things in the background while it is waiting for

the byte from RB to arrive. Unfortunately, with this strategy we cannot do this.

The concept of doing things in the background while waiting for ottiegs to happen is callédultitasking. Another
related concept is calldefarallel Processingvhich is another way to do multiple tasks at the same time or what
appears to bat the same time. Consider if we wanted Program_03.Spin to also blink an LieDsante time it is
waiting to receive the byte from RB. With the current program this is not possible, sirRB.fR¥ method will wait
for the byte and there is no way to go off to do something else occasionally.

In this chapter we will examine how warcachieve this multitasking action. There are three ways we can achieve
multitasking in a program:

U Interrupts

U Polling

U Parallel Processing

Pagel5

Chapter 5

5.1 Multitasking Using Interrupts

This option is not available for us using the Propeller and Spin. The Propeallparallel processing microcontroller,

which, as we will see later, is a much better option than interrupts. So interrupts will not be much use in projects using
the Propeller (and a good thing too). Nonetheless, this is an option that is widely usetthevitmicrocontrollers and

may be something you would like to use in other projects. RobotBASIC is able to péarferrapt-Driven

processing, and we will use it to learn briefly about this option using RB programs. Even so, despite the fact that RB
makest easy to learn about interrugtiven programming, it is a complex issue and is hard to achéave

multitasking with it. You are much better off using the Propeller which is an amazing technology that makes it painless
to achievereal multitasking wihout having to acquire a PhD in computer science before you do so.

What exactly is an interrupt? Well, as the name implies, it is a signal that occurs while a program is performing a task
that forces the program to branch to a particular place in cod@memd execute some action, then go back to where

it was when it was interrupted to proceed where it left off. The interrupt can be any one of a variety of things. It can be
the press of a button, or the arrival of data on a serial port, or the tiakaxfla In microcontrollers, for example, it

can be the change of state (e.g. high to low) on an 1/O pin, or the overflow of a register, or a transition on an encoder,
and the like.

This is actually the way all microprocessors and microcontrollers havesiobéeving multitasking up until the advent
of multi-cored processors not too long ago. We will not delve into this now antiquated, yet ubiquitous, methodology
other than to see it in action because RB makes it very simple to do so.

In fact, interrupt opration is noteally multitasking. It just appears to be so due to the speed of processing achievable
with microcontrollers and processors. In reality the processor is only doing one task at a time, since while off attending
to the interruption the maimask it was executing is halted. Nevertheless, if attending to the interruption takes only a

few lines of code, then the main task will appear to have never been halted. But since the action carried out in response
to the interruption has been accomplishémhg with the actions in the main process then both appear to us mere

humans as if they were executed simultaneously.

Compare this to the human brain. The human brain is capable of true multitasking in that it can attend to the eyes and
the muscles in yar arm and hand while also still making your heart beat and receive information from your ears and
nose.

5.1.1 RobotBASIC Simulation of a Microcontroller

Before going on to examine how RB interr updomethingyolk , | et
can do with a microcontroller. Letb6s say we have a mic

Blinker_01.Bas

i=0 \ duration =500 \ data clr;white,red
t = timer()
while true

circlewh 10,10,30,30,red,clr]i]

dela y duration \ i=li

[lif timer() - t > duration then i =i \ t=timer()
wend

This program works as desired and blinks an LED on for 500 ms and off for 500. Try changing the duration. For now
ignore the commented bold line.

In fact the program is faulty:
1. It does not account for the time it takes to execute code. So it is not really at the desired rate. To verify this run
Blinker_01_B.Bas (see below). After about a minute or s@éneeivedcount of seconds as counted by the
number of blinks will start tétag behind thectuallapsed time in seconds. The reason is that the perceived

Pagel6

Multitasking & Parallel Processing

time as counted by the number of blinks does not take into account the time it took to execute the code for the
loop and for the counting and so forth. This takes very litthe bf course and if the duration was larger you
may not even see any discrepancy for a long time. The shorter the duration the quicker you will see a lag. Try
changing the 200 to 100 (in Blinker_01_B.Bas) and see what happens, also change it to 78@vhat se
happens. In summary, this method of counting time is faulty but works for slow rates and for a low count.

2. The real problem however, is that while the program, hence the processor, is executing the delay statement it
cannot do anything else. The detturation is just wasted time.

Blinker_01_B.Bas

i=0 \ duration =200 \ data clr;white,red
t = timer() \ n=0
while true
circlewh 10,10,30,30,red,clr]i]
delay duration \ i=li
n++ \ xystring 10,300,n*duration/1000;(timer() - t)/1000
wend

We can slve both problems in Blinker_01.Bas by commenting out the highlighted line aconamenting the bold

line. With this change we are using a timer so that the LED is blinked at the right rate which is not affected by the time
it took to execute other lined code. Also since the program does not sitdekaywhich does nothing else other than

count time we can now do other things inside the loop. For example with this method we can now blink other LEDs at
different rates (see Blinker_02.Bas), while wiie previous version we would not have been able to do so.

Blinker_02.Bas
Main:
data clrs;white,red,white,green,white,yellow
data rates;200,500,1000
data states;0,0,0
data timers;timer(),timer(),timer()
while true
for i=0 to 2
circl ewh 10+100%*,10,30,30,clrs[i*2+1],clrs[states][i]+i*2]
if timer() - timers][i] > rates]i]
states[i] = !states]i]
timersJi]=timer()
endif
next
wend
End

5.1.2 Using Interrupts in RobotBASIC

Now | et 6 s interrm may bewsed. 15ay there is a pushbutton that when pushed the program Blinker_02.Bas
should toggle the color of the LED between blue and red. The bold and highlighted lines in Blinker_03.Bas (see below)
are the new lines added to implement theoacti

Notice that the bold lines constitute what is calleditiherrupt handler, code that will be executed whenever the

interrupt occurs. The handler has to do ceiritgiialization tasks, then thevork it needs to do, and before returning it

must do ceainfinalization tasks. In a microcontroller the initialization tasks are to, for instance, disable further
interrupts, clear certain flags, save the current program counters, and stack pointers and so forth. The finalization task:
are to update registeand reenable interrupts reinstate the program counter and pop the stacks and such. With RB,
initialization and finalization tasks (but nowhere as complicated) are also necessary as explained in the RobotBASIC
help file. Also, it is necessary that anerrupt handler be brief and to only have a small amount of code to be executed.
Otherwise the interruption will be too long and the multitaskingion would be lost.

Pagel7

Chapter 5

Blinker_03.Bas
Main:
addbutton "Blue",10,60
onButton bHandler
data clrs;white,r ed,white,green,white,yellow
data rates;200,500,1000
data states;0,0,0
data timers;timer(),timer(),timer()
while true
fori=0to 2
circlewh 10+100%,10,30,30,clrs[i*2+1],clrs[states][i]+i*2]
if timer() - timers]i] > rates]i]
states[i] = !states]i]
timers][i]=timer()
endif
next
wend
End
bHandler:
Ib = LastButton() //initialization
if Ib == "Blue"
renamebutton Ib,"Red" \" clrs[1] = blue
elseif Ib == "Red"
renamebutton Ib,"Blue" \' clrs[1] = red
endif
onButton bHandler //finalization
return

It is important to note that the above seems all too easy. This is because RobotBASIC is an excellent language that
enables doing such things easily. However, with microprocessomni@nocontrollers achieving interrupt handling is

not an easy or trivial task. There are numerous considerations and obstacles that can make interrupts fail if not designed
and coded correctly. Additionally, in the programs above, RB did scads of hopisekie you in the background,

alleviating the need for you the programmer to have to do all those intricate and confusing details. On the other hand
with a microcontroller you have to attend to all these details yourself.

In any case, we will not useishmethod with the Propeller chip since there is no need for interrupts due to its ability to
do real multitasking without having to resort to the illusion of one. If you opt to use another microcontroller, then you
will need to learn about its interrupggabilities and how to program for them. If your processor does not support
interrupts, then you need to consider using another one. It will not be easy to achieve viable multitasking without an
effective interrupt mechanism.

5.2 Multitasking Using Polling

The second method for achieving multitasking is yet another illusion. Polling is the action of occasionally glancing

over to see if something else other than the task at hand needs attending to. pblilikgoés a sefimposed

interrupt. Imagine you a working on your computer and are typing something. Your work requires that you answer
emails when they arrive. If you have setup your email program to sound a bell whenever an email arrives, you have an
interrupt. However if you do not have that abililien you can elect to, either regularly or whenever you feel like it,

stop your typing and go over to the email program to check if there is an email.

The polling mechanism can be fine if every time you go to check for an email there happens to benomreaver, it

has not been sitting there for too long. If you frequently go to check and there is no email then you are wasting too
much time. If you go there too seldom and emails pile up or you lose certain ones because you did not attend to them
on time or they sit there for too long, then again you are not functioning correctly.

Pagel8

Multitasking & Parallel Processing

Interrupts are in fact the optimal method for this kind of multitasking in that you only abandon the task at hand when
emails arrives and do not waste time checking when #reraone. Also with interrupts you will never miss an email
due to not going there in time to check if one has arrived. Polling is not an efficient mechanism for handling time
critical and frequent interruptions. However, it is an option that you caangsan many situations it is an adequate
strategy and is easy to implement.

5.2.1 Polling in RobotBASIC

[Cut Out]

5.2.2 Polling on the Propeller Chip
[Cut Out]

5.2.3 Counting Time in Spin
[Cut Out]

Integer Multiplication Overflow
[Cut Out]

Determining th e Clock Frequency
[Cut Out]

5.3 True Multitasking with Parallel Processing

Interrupts and Polling are functional methods and are what has been traditionally used in numerous viable systems;
they work well. Polling is simple but not easy to make optimaériapts is the better of the two methods but is hard
and complex to program.

The third alternative, Parallel Processing, is in fact the most effective alternative. With parallel processing we can
achievereal multitasking instead of thilusion of it. In the past this option has been expensive and complicated and
only available to few systems. With the advent of the most innovative microcontroller, the Propeller Chip, all this has
changed. It is now possible to implement parallel processing cheaply,aabieffectively. It is truly an innovation

and a revolution on many levels.

What is parallel processing? There was a movie a while back called Multiplicity that starred Michael Keaton. In it
Michael was overtaxed by the number of things he had togugdiis life. As one person he could not be in two

places at the same time. He could not pick up the children from school while attending a meeting at work and painting
the fence. If only he could have multiple versions of himself. He could then dosd thsksimultaneously You

cannot really be picking up the children from school in one part of town and then occasionally jump over to the other
side of town to attend to a meeting when it is time for you to speak. So the option of polling or imterisuptt

possible in this situation. The only way for Michael to multitask these life obligations is to either, allocate them non
overlapping time slots and allow for travel from one to the other, or he can clone himself and assign each clone the
varioustasks. Being clones of course they are just as capable as Michael. Michael and his clones can all be doing
disparate taskisdependently and simultaneously

There is one limitation however. If a task requires that two or more Michaels have to be usegtthteavel in
different directions then only one Michael can use the car and the other Michaels will have to wait until the car

Pagel9

Chapter 5

becomes free. Also, it is not advisable that any other
origina | Mi chael . But Michael 6s wife and the other Michae
Well, enough with Michael and his clones, |l etds | ook &

chip is that it is in fact 8 microcontrollens one chip (with a surprisingly reasonable price tag). Another remarkable
thing about it is the Spin language. This highel language is easy to learn and easy to use but more importantly it has
all the tools you need to creatal parallel processingvith exceptional ease and elegance.

As an example, consider what a roiwial robot system has to accomplish:
1. Control motors with PWM which require constant updating
2. If wheel encoders are used then constant attention has to be given to the quadratigriosigiculate and
keep fresh the current count.
3. Attend to various sensors like Bumpers and Infrared or maybe line sensors.
4. Other systems such as compasses or GPS etc. will also have to be interacted with.
5. If the robot is doing any communications to attal command then this too will have to be performed.

A single processor will be extremely tasked to accomplish the above and even interrupts and polling would not be
adequate due to too many interruptions. For instance a wheel quadrature counteecegaiig\be made to function

in a system that has to do all the above and at the same time give proper interrupt or polling time slots to be able to not
miss quadrature states.

5.3.1 Using Helper Modules

One solution is to useelper modulesFor instane amotor controller modufé allows a microcontroller to employ
setit-and-leaveit approach to controling r obot 6 s wheel s. This in effect is
allows the controller to specify the direction and speed of the motor and then go off to do whatever it needs to do

without having to worry about maintaining the PWM signals reguioekeep the motors running.

There are numerous helper modules like these that free up the microcontroller and allow it to manage other tasks. In
fact with this methodology the microcontroller is nothing more than an overall manager of various diiodecsn

Most of these modules are in themselves microcontrollers dedicated to doing nothing but the task they are supposed to
do (e.g. pulse the motors). If there are no available or affordable modules that can do a task you require and wish to
accomplis in parallel then you can easily design your own helper module utilizing a microcontroller to do the task.

Frequently the control of these modules is achieved with a communication between the main controller and the
controller onboard the module. Oftéhig control boils down to the main controller sending a byte or two of data

(settings and parameters). The modul ebs controller the
accordingly doing what it needs to do independently and in paratretie other actions of the main controller.

This strategy is in reality what makes it possible today to design effective robots that can be controlled with controllers
of modest capabilities. Many pr oj e dwee notiorthe@mpoynéist ofr o b ot
helper modules such as are availablenatv.Parallax.conand many other similar web sites.

5.3.2 Using Multiple Microcontrollers

Some disadvantages of the hetpawdules strategy @fchieving parallel processing and true multitasking is that the
modules are not cheap and the variety of interfacing protocols required is bewildering and cumbersome.

Imagine if you had the ability to utilize many microcontrollers with minimal wiring eimeaply and where all of them

can communicate with each other via a shared memory rather than throudfaadiitg serial protocol (slow). This

woul d be ideal. We wondét be | imited to avail alea@a modul
bottleneck in communications.

Page20

http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/64/Default.aspx
http://www.parallax.com/

Multitasking & Parallel Processing

Well, that is exactly what the Propeller Chip is. It is 8 microcontrollers in one package that share 32KB of RAM.
Moreover, the Propeller makes it possible to achieve parallelism with effectiveness that wouldtbeabhiele
otherwise.

5.4 Parallel Processing with the Propeller Chip

We wi | | now convert Program_03. Spin into a parallel [
parallel processing ability ever since Chapter 3.4. You may notrkalized that the FDS and SM serial drivers each

use one of the 8 sulicrocontrollers in the Propeller Chip. Whenever we used these drivers we were in effect already
utilizing parallel processing. The FDS (or SM) object runs in its own COG (thenguwboontroller is called COG in

the Propeller Chipbs parlance).

If you think about what the FDS and the SM modules do you will realize the power of these objects. They,
independently of your program, sit in the background listening to the RX Pin (receivés pee if any data is coming

and then if data comes in they do the-Bénging required to achieve the Asynchronous Serial Communications; they
then store that data in a memory area in the shared RAM (receive buffer). Your module can then call methods to
extract the data. Also when you use 1) or Dec() or Str() methods in the modules you are in fact sending the data
to the shared RAM (send buffer) which the object will then send out on the TX pin while also checking if it is allowed
to send and so on

All this is happening in parallel to other tasks you are doing in the main cog. Our programs so far have only utilized
one cog (the start up one) and have not utilized any parallel processing save for the FDS and SM objects. So how do
we do our own muiprocessing using our own parallel processes? Well, that is exactly what we are going to do from
this point onwards. We will progressively build up to a complex and intricate (yet easy to understand and achieve)
system that will be a major step towardsatireg a powerful hardware control system (e.g. a robot) using the Propeller
and RobotBASIC as partners.

We will start by gradually converting Program_03.Spin to be a parallel processing system and then add to it some mor
functionality. All this will sene the purpose of comparing how the program can be made infinitely more versatile and
capable than iténear-flow counterpart. Armed with the knowledge and experience that the next few sections will
provide, we will have the tools required to create thepex system needed to achieve our final overall objective of
interfacing and controlling a complex hardware system using the PC.

5.4.1 Modularization in Preparation
[Cut Out]

A Variableds Address in Memory (Pointer)
[Cut Out]

Brief Note About Objects and Methods
[Cut Out]

5.4.2 Initial Multitasking With Polling
[Cut Out]

5.4.3 Achieving Initial Parallelism
[Cut Out]

Page21

Chapter 5

The Relationship Between Cogs, Methods and Objects
[Cut Out]

Cogs and Stack Space
[Cut Out]

5.4.4 Systematic Debugging of Complex Programs
[Cut Out]

5.4.5 Sources For Obtaining Help With Difficult Problems
[Cut Out]

5.4.6 Parallel Processing Contention for Resources
[Cut Out]

5.5 Objects, Semaphores and Flags

In Section 5.4 we achieved a major step forward towards our objective. We manageddagarallelism with three
processes (5 really with the FDS and SM) running independently and truly simultaneously:

1. TheMain cog doing the byte receiving and sending as well as blinking an LED on P23.

2. TheSetLEDs()cog setting the LEDs according to thgdreceived byain.

3. TheReadPins()cog reading the pushbuttons and setting the byte to be sbfdiby

4. The FDS cog doing serial data bit banging to and from RB.

5. The SM cog doing serial data bit banging to the PST.

In fact though, we really do not gefudl appreciation for the parallelism since cog 2 and 3 are not really doing much
that truly requires the power of parallelism. Of course we are still in the process of advancing towards a useful and
powerful system and we have to proceed gradually. Nieslesss, we did get a feel for this parallelism when we
allowed cog 2 and 3 to output to the PST, albeit in an intermingled manner.

I n this section we are going to press forward, adding
worry we will proceed in small surmountable steps. We will:

U Divide the project into objects, adding some more parallel actions.

U Solve the problem of jumbled output to the PST by using Semaphores

U Manage the Parallelism further with Flags

5.5.1 Creating Objects
[Cut Out]

5.5.2 Utilizing Semaphores

Recall how in Program_05_E.Spin (Section 5.4.4) we used output to the PST but when we let both cogs stream out to
the PST we had a problem with the bytes from each being intermingled with the other and the outpgeleas a u
jumble of data from each shuffled up into an unreadable mess.

In this improvement of our program we are going to use PST debugging and we will let both cogs as wilhas the
cog output messages to the PST while also working the LEDs and posistauttd receiving and sending data to RB as

Page22

Multitasking & Parallel Processing

well as keeping the LEDs blinking. With all this action we will make decisive use of parallelism and multitasking. See
Figure 5.4 for a conceptual schematic the system.
P23-Blinker LED

1

1 Program_07.5Spin (Main in Cog0)

P7..5-Pushbuttons .
‘o*'e’e’ RAM (all common variables)

4.‘1 L -l
P22-Blinker LED l l l

> 4

FullDuplexSerial (Cogl) Program_07_Read.Spin (ReadPins in Cog4) P21-Blinker LED
E3 T
RB_Rx (P0) RB_Tx (P1) Semaphore, +
D1 + + Program_07_Set.Spin (SetLEDs in Cog3)

r—y HiH

SerialMirror (Cog2) 4]
D Tx (P30 D Rx (P31) P20..16-LEDs

Parallax Serial Terminal

Figure 5.4: A schematic of the various ptts and cogs in the new system showing how they interact. Cog humbers
are just for reference, they are not necessarily the actual order.

Notice howMain, ReadPins()andSetLEDs() are all using the SerialMirror object. Because every object must
instantide its own version of any other objects it uses, we must instantiate the SM obiject in all the objects. However,
only one of them must call tigtart() method of the SM object. This should be done bytdpdevel-object(Main).

This is why we used SM fatebugging with the PST instead FDS. It is because SM can handle multiple objects using
it with only one cog, while the FDS has to have multiple cogs. So the FDS is wasteful of cogs. However, notice that
SM will only do this for the same RX/TX pins for #le objects using it. Since we want different pins for sending to

RB we use the FDS as the object for that. We cannot use SM with another caitéatiismethod with different pins.

Also notice that the FDS and SM objects do not share RAM with tiex objects. They have their own RAM area that
does not need to be accessed by outside objects because the objects provide getters and setters (for Exgmple the
Rx andDec() method). Strictly speaking all the objects share the same RAM gigal terms the RAM for the FDS
and for SM are not accessible or visible to the other objects.

Study Figure 5.4 well. It is a good way of understanding what we have achieved so far and for developing a feel for the
way parallel processing is going on and apatéty how the shared RAM is a great way for connectindvthin cog

with the SetLEDsandReadPinscogs. The next thing we need to do in Program_07.Spin is to create a mechanism
where only one of the three independent and parallel cogs can send throBihdbgect at a time.

What is a Semaphore?

The wordSemaphoremeansan apparatus for signaling, such as the arrangement of lights, flags, and mechanical
arms on railroads.

Imagine the three cogs are like trains trying to usimgle crossing. You obviosly need a signal to tell the trains to

wait before they cross while another train is using the crossing. No train can attempt to move through the crossing until
it has a green light to do so. Once it has acquired the green light it should then creisseacidar of the crossing it

should release the green light. Other trains will then be able to attempt to turn the green light on. Only one train can
have the green light at a time.

Page23

Chapter 5

The above mechanism of Semaphores is exactly what we will use to sagprdbling when cogs are trying to send
data simultaneously to the PST. Only the-leyel object should create the semaphbackNew) and then it must
pass the address of the signal to the other cogs so that they can try tolock$et). A cog will only send data
through the PST if it has managed to acquire the lock. Once it finishes sending it should then release the lock
(LockClr). This way, the three cogs will be guaranteed a turn to send data through tiemeresource

2\The three Spin atements used to utilize semaphores are:

LockNew(): to create the required semaphore and store its ID in a vaffédideis only performed once for
each semaphore (maximum of 8) the toplevelobject and then it makes thedressof the ID variable
avdlable to all other cogs that need to manipulate the semaphore.

LockSet(): to try to capture the semaphore. If the semaphore is in use by another cog then the function ill
return true, if it is not then it will return false, but that also means thahiw captured by the calling cog.
There is no specific need to take any other actiono¢kSet() returns false then it is now captured by the
calling cog. If it returns true then it is not captured by the calling Notg the logic

LockClear(): to release the semaphore when it is no longer needed by the cog. A cog that acquires a segnaphore
must also release.itf it does not release it then other cogs that may require it will never be able to do thegr

action. Even the cog that has the semaphorenogtge able to do any more work again if it does not releasq the
semaphore before it tries to lock it again (e.g. in a loop).

Using a Semaphore
[Cut Out]

5.5.3 Tighter Control With Flags

In the previous section we resolved the problem of interminglingstsgnt from the cogs simultaneously by using a

very clever technique that the Propeller + Spin make extremely easy to implement. Another technique related to
semaphores Bagging. Using flagging, a process signals another to go ahead and do sontehistgpuld only be
performed when flagged and once itds finished doing soa
the signaling process that the task is finished.

| A flag serves as a two way signal between two processes wheraisegethe flag and the other lowers it.I

With this mechanism even though the two processes might be running in parallel and at different speeds, the controller
process can signal the other to tell it that some data is ready or that it is ok to dargpriéia other process can

check for the flag state (polling) and if it is raised the process does what it is supposed to do and then lowers the flag.
This indicates to the master process that the work is done. Sometimes, depending on the task, theagriovess

the flag before it finishes doing the work if the action permits that kind of synchronization. This way the flag raiser can
go on doing something else while the flagged process can be working at its pace processing the flagged action.

In Progam 08.Spin (and its subordinate objects) we will use flags betweadalmecog and the two other cogs (2

flags). The flags are basically to let the other cogs knowMla&t has output data to the PST and so the other cogs can
output their data too. In thimannermMain can get in a word edge wise instead of being outspoken by the much more
verbose other cogs. When you run Program_08.Spin and observe the output on the PST window you will see that now
theMain message is visible a lot more often and that thipud from all the cogs is taking place in a lot more orderly
manner. Also observe that the RB interaction is quite timely too and that the three Blinker LEDs are also blinking on
time.

[Cut Out]

Page24

Multitasking & Parallel Processing

Using Semaphores and Flags we managed to tame the chaed bgwnbridled parallel processing. We utilized the
power and convenience of multiple microcontrollers doing their wogkamllel but yet in orchestrated unison

Semaphores are also a great mechanism for coordinating memory access. Imagine dasseprshare a buffer in
RAM. One writes to it and the other reads from it. Imagine if the buffer is a few bytes long. If a process reads the
buffer while another is still writing to it then it is possible that the reader would be reading jumbled ddtaraf new
bytes. Semaphores should be used to synchronize this process.

Notice in the program how we used a byte variable irDidesection of the togevelobject. The individual flags are
the Least Significant (first from the right) two bits of theadyyariable.

Rather than passing yet one more parameter to the other cogs we made use of the faBldlgatvthr@able in theDat
section comes directly after tis®maphorevariable. And since we are already passinggithdressof the Semaphore
variabk to the other cogs, we obtain flagsvariable by reading the byte after tRemaphoresvariable. Thus the
use ofByte[Semaphore][1]sinceByte[Semaphore][0]would be the byte which is tfgemaphorevariable itself then
[1] is the byte right after andhérefore is thé&lagsvariable

2When sharing RAM variables between cogs, we need to pass the addresses of these variables fromghe
object that contains them to the cogs in the other objects. This can be achieved by passing an ashlrbess gpr
variable, btithis is wasteful. A better mechanism is to ensure that all the necessary variables are arranggd in a
contiguousblock of RAM we will call abuffer. Then the address of the top of the buffer is passed to the ofher
cogs. This buffer can then be used asmay of data. The cog using the buffer dadexinto the buffer as it

needs to obtain thieongs, Word or Bytesit needs. Of course the arrangement has to be known so that th
correct indexing can be used. However, not all the variables in the buftetdbe of the same type. But car

has to be taken to ensure that theyadigned properly

Notice the use of thElagMask constants. These are used to check if the flag is set in the respective cogs by masking
out the appropriate bit from the byte tlsantains all the flags. Also the inverted mask is used to reset the flag.

The flags are not set unMain has actually sent some data to the PST. When the flags are set, the other cogs contend
between each other for the semaphore to write to the PSd tiié¢ cog does not clear its flag until after it has already
written out to the PST. This assures that the cog will continue to contend for the Semaphore until it has written data ou
to the PSTMain also needs to contend for the Semaphore becausedrmgs might still be trying to write out and

we do not want it to clash.

Semaphore ensures that no two cogs can write out at the same time. The flags are a way for the less frequent writer
(Main) to not be swamped out and rarely be able to get holced@@¢maphore.

5.6 Parallel-Parallel Processing

The Propeller Chip has a mechanism to create even more parallelism. It is like parallel processing on top of parallel
processing. This mechanism is caltzinters Every cog has two of them. Each counter caualtisorts of actions

that once configured can be left alone and they will continue to do their action while the cog is free to do other actions.
So this is like two parallel processes going on within the cog and the cog is doing its work in patal@thets;
Parallel-Parallel processing

There are numerous things these counters can do. As a useful example we are going to modigvitleotripct
(Program_08.Spin) instead of blinking the LED on P23 to slowly vary the brightness of the LED frtonfudif
brightness and then gradually dimmer until off again. This will continue as long as the cog is active.

Page25

Chapter 5

We modified Program_08.Spin to make Program_09.Spin. However thebgedis remain the same. This illustrates
the use of making objects sinttee Program_08_Set.Spin and Program_08_Read.Spin will be used again with
Program_09.Spin.

The accompanying RB program remains to be Program_06.Bas since the new system is the same as far as the RB
program is concerned. The only difference is that insbédtinking the P23 LED on/offdain will use a counter in
theduty modeto control the level of voltage on P23. This causes the LED to vary in brightness. We will set it so that
the LED will repeatedly increase in brightness from off to fully bright i &&ps over 1 second and then dim back to
off in 255 steps over 1 second.

MThe principle is something similar to Pulse Width Modulation (PWM). It is similar in effect but not the
same in action. In action it is more aptly called Pulse Frequency Martu[@FM). Rather than vary the duty
of a constant frequency signal we vary the frequency of a constant duty signal.

[Cut Out]

5.7 Stack Overflow

[Cut Out]

5.8 A Musical Keyboard

As you saw in Section 5.6 the counters in the Propeller Chip can be dqeitstmg. One of the modes for using the
ctrA or ctrB counters in a cog is to generate a signal of a particular frequency. In this section we will make use of this
ability to make musical sounds ofPa&zoelectric Speaker (Part#900001F".

" o | [|)

Gnd

Figure 5.5: Piezoelectric Speaker Connection Schematic.

We will use RB and the Propeller Chip to allow a user to plagicran a Piano Keyboard by clicking with the mouse

on a graphical representation of the keyboard. Furthermore, there will be a button that when pushed will start playing a
tune. The new program Piano.Spin is a modification of Program_09.Spin. We wilkstifrogram_08_Read.Spin but

we will not use Program_08_Set.Spin. Instead we will make a new object called Piano_Set.Spin.

Piano.Spin is a major modification of the original object in that we now will receive 4 bytes not one as before. These
bytes will ke used to create a Long integer (32 bits) using the {Httidian arrangement since that is what the Propeller
uses to store its 3it integers. Other actions are as before in changing the brightness of the LED on P23 and
everything else as in Section 5.6

Page26

http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/106/Default.aspx

Multitasking & Parallel Processing

5.8.1 A Different Way of Sharing RAM

Other changes from the old program are that we no longer neBeteé¢/edBytebuffer area and also when we

Set.Start() we no longer need to pass along the buffer address either. This is because we are usindeaafew sty

passing the value to the other object and thus to the other cog (see discussion about objects in Section 5.4.1). This is
achieved with th@ublic PlayNote() method in thd?iano_Setobject. We use the method to pass the value of the
frequency to thebject But this does not pass it to tbeg to make it available to the cog, the method has to store the
value into a variable in the RAM to which the cog has acdassgj(ency). This variable is accessible to the cog since

it is in the same objectastheo g6 s met hod. But the variable is not acc

This new method of passing parameters to other objects and on to the cog in the object is effective because it achieve:
tighter encapsulation. Nevertheless, it is a bit wasteful in lieaé tare function calls to be made and stacks to be

pushed and popped and so forth. This can be wasteful in both stack size requirement and in speed. However,
encapsulation and hiding of variables may be a desirable property in certain situations.

In this case we will use this method just as an illustration of this option. It would have been more efficient to have
givenMain access to the shared variable and let it set the variable and then-tigeathwould see the change.
Nonetheless, in certain sitions using this methodology might be desirable for other than encapsulation. Sometimes
calling methods providesequencing controWhere some actions are only performed when the method is called as
opposed to when the variable changes value which Haesrtwonitored (polled) or by using flagging as we have been
doing.

MThe Propeller is a 3Bit processor and a Long in its memory is ab&2humber (4 bytes). You can also
access the 4 bytes as individual bytes. If you have a vafidelgared as a Longpu can access its individual
bytes usindg.Byte[n] wheren ranges from O to 3.

The Propeller uses the LittEendian format to store integers. So if we have an integer in memory that is
$A3 12 BC_45then in RAM it is actually stored as 4 bytes wheréirdt byte (byte 0) is $45 and the next
byte (byte 1) is $BC and so forth. So when we lodkBatte[0] we will see $45 and so on.

Piano.Spin will wait for 4 bytes to arrive from the RB program one by one. When the first one comes in it will be set in
thef.Byte[0]. The next received will be saved in the next byte (1) and so on. When all 4 arrive the Long value would
then be fully formed as a 34t integer and it will be passed to tRe&ano_Setobject using th&layNote() method

which uses it to set tHerequencyvariable in its RAM space where the cog has access to it.

We will still use theProgram_08 Readobject just as before to read the status of the pushbultiais.will send that
value back to RB to serve as a signal to proceed with sendingsthé bytes and also the RB program may use the
pushbuttonsd status if needed |li ke before.

The newPiano_Setobject will not set the LEDs on P20..P16 any longer. Instead it will uderéagiency value to set
thefrgB register of a counter as will be eapied shortly.
5.8.2 Creating Frequencies (Numerically Controlled Oscillator)

The new object will setup therB counter to be in the NCO (Numerically Controlled Oscillator) mode. In this mode
the counter will make a pin go high as long as tH& 82 (bit 31) on thephsB register is high and low when it is low.
And since the counter will add the valuefmfB to phsB every clock tick then we need to set flgB value so that bit
31 of thephsB register will go high and low to generate the right frequemtye formula is:

frqB = Required Frequency * 2*?/ clock-frequency.

Since the clockrequency we are using is 80_000_000 (80 MHz) tH&8@ 000 000 = 53.678

Page27

Chapter 5

To generate a frequency of say 1708 we need tiogitto the valugound(1708*(2.0132)/80e8. When we send this
value to the Propeller, it assigns itftgB and also sets P4 to be an output pin. If P4 is connected to a Piezoelectric
Speaker the right tone would be generated.

The object will also blink an LED on P21 (as before). WRerguencyis other thanl it will be assigned térgB and

P4 will be set as an output pin to allow the oscillations to start. It will alderegtiencyto -1 to prevent replaying the
same note for ever. When tRé&ayNote() method is invoked it will also start eopwatch timer. This timer is used to

stop the note playing if no new note (frequency value) is received before a certain timeout (5 secs)by makingP4 an
input pin which will disable the oscillation, effectively stopping the signal. If a new value is rédedf@re the

timeout then of course it will change tirgB value which starts a new frequency and reset the timer.

The new firmware is much like the old system but now RB will have to send thi¢ @@ng Integer) frequency value
as 4 bytes with the LSBe first and the firmware will receive those bytes and then send a byte back to RB (the
pushbuttons status as before).

5.8.3 Testing the Speaker Firmware

The RB program needs to calculate the value to be sent to the Propeller using:
N = (2.0"32)/80e6
Fre qValue = round(ActualFreuency*N)

FreqValue will then be sent using:
Serialout BuffWrite(™,0,FreqValue)

The functionBuffwWrite() is used to create a byte buffer with theyte (32 bits) integer in it. RB also uses the Little
Endian format and so bytei®also the LSByte. WheBerialOut sends the byte buffer all 4 bytes would be sent to the
send buffer and then RB would take care of sending these 4 bytes to the Propeller one at a time.

Examine the program Speaker_Tester.Bas to see how this is impldnretitePlayNote() subroutine. Also notice
how the main program generates random frequencies. The program will not do much else for the sake of simplicity.
Notice all the bold code lines to see how the discussion above is implemented in code.

2 The Propder is a 3.3V chip, so the Speaker will not be very loud. You may have to be close to it to h@ar the
sounds well. We will see how to increase the volume of the sound in Chapter 8.

Ll you are running on an Me or XP machine you will be able to hear thels@menerated on the PC spealger
if you set the variabl@ort to 0 and also uncomment the highlighted line. Do not do this if you have a Vist
machine because it may give you an error.

4/ Another way we can send the 4 bytes of the Long Integer value ie tbaGetByte() function in a loop:

N = (2.0732)/80e6 \ FregValue = Round(ActualFrequency*N)
For =0 to 3

SerialOut GetByte(FreqValue,l)
Next

Speaker_Tester.Bas

/[Speaker_Tester.Bas
/lworks with Piano.Spin
Port = 8 //change this as per your system
Main :
setcommport Port,br115200

Page28

Multitasking & Parallel Processing

while true
call PlayNote(random(3000)+500,600)
wend
End
I
sub PlayNote(F,D,&B)
xystring 1,1,"Note = ",F;"Duration = ",D,spaces(10) //display data

B=0 \ c=1
if _Port == /lif not serial
else /lotherwise
N = round(F*2.0732/80e6) //convert to frgA values
SerialOut BuffWrite("",0,N) //sen d the 4 bytes of the Long LSByte first
[****this is another way to do the same thing but is commented out
fori=0to 3 /l[send the 4 bytes of the Long
serialout getbyte(N,i) //LSByte first
next
kkkkkkkkkk *****************/
delay D /ldelay

serbytesin 1,m,c //get the confirmation byte (buttons state)
if c then B = getstrbyte(m,1) //get the value
endif
Return (c==1) //return true or false if there was a byte received
I

[Cut Out]

5.8.4 A Piano Keyboard Player

Now that we tested the new firmware we will write an interesting program utilizing the new firmware to allow a user to
interact with a graphic&iano Keyboard on the PC screen. The user can click on the key and will hear the notes

playing on the Piezoelectric Speaker on the Propeller. Additionally, there will be a button on the screen that will allow
the user to hear a tune playing repeatedlyunt t he button i s pushed again. The

The program is a complex one but it basically use®tagNote() subroutine we saw in Speaker_Tester.Bas to play
the note that the user clicks the mouse over. The program wdltbadetermine the following:
1. Which key the user is pushing. This is determined by:
a. The position of the mouse when clicked
b. The color of the key under the mouse
2. What the frequency of that key is. This is calculated from:
c. The keybs scale
d The Key 6 withipthesscate (Note)

Remember that there are seven normal notes and five sharps in each scale. Also there are 5 scales as drawn on the
screen with the middle scale being the middle € a | e . Once the keyb6s scale and n
frequency value is determined from an array of frequencies.

All the code in the program is to draw the keyboard and to determine the key being pushed and its frequency. Once the
frequency is determined, it is played by sending it to the Propeller.

Another adbn the program provides is the ability to play a tune. Thésniglar to the RTTTL tunes on cell phones.

The tune is defined as a series of notes and durations with also the ability to define the scale and pauses. The tempo ¢
the code of the duratioredt er mi ne t he actwual time in milliseconds t
determined from the scale and the noteds position in
the array of frequencies.

Page29

Chapter 5

Examine the listig below to see how all the above logic is implemented.

2 RobotBASIC Interactive Terminal Screen [C:\Data\A_Hardware_Interfacing And_Control Protocol\Piano.BAS]

Jingle Bells

Note = 440 Duration = 100

Figure 5.6: Screenshot of Piano.Bas in action

Nin Piano.Bas and many of t

he progr ams

to

com

parameters, by reference parameters, local variabléngcapd global variables with the use of theperator.

SeeRobotBASIC_Subroutines.PD#or a tutorial on this powerful feature of RB.

Piano.Bas
/[Piano.Bas
/IWorks with Pia no.Spin
Port = 0 //set this as per your system
Main:
GoSub Initialization
while true
call CheckMouse()
while PlayTune
call Play_Tune(Tempo)
wend
wend
end
1
Initi alization:
GoSub SetUpNotes
GoSub SetUp_Jingles
clearscr gray
WOffset = 50 \ WW=20
for i=0 to 7*5 -1 //draw the normal keys
rectanglewh WOffset+WW*i,100,WW,100,rgb(0,0,50)
next
BW =14 \ BOffset=63
for i=0 to 7*5 -1 //draw t he sharp keys

rectanglewh BOffset+WW*i,100,BW,50,black,black
if i#7 == 1 || i#7 == 5 then i++ //some sharps not allowed
next
data NoteMap; 0,2,4,5,7,9,11
data SharpMap; 1,3,0,6,8,10
setcommport Port,br115200
clearserbuffer
Pla yTune = false
AddButton "&Jingle Bells",500,20

Page30

http://www.robotbasic.org/resources/RobotBASIC_Subroutines.pdf

Multitasking & Parallel Processing

onButton bHandler
Return
I
sub bHandler() //button interrupt handler
Ib = LastButton()
if left(lb,3) == "&Ji"
RenameButton Ib, "&Stop"
_PlayTune = true
else
RenameButton Ib,"&Jingle Bells"
_PlayTune = false
endif
onbutton bHandler
return
1l
SetUpNotes: //frequencies array
data Notes;32.703 ,34.648,36.708,38.891,41.203,43.654
data Notes;46.249,48.999,51.913,55.0,58.27,61.735
data Notes;65.406,69.296,73.416,77.782,82.407,87.307
data Notes;92.499,97.999,103.83,110.0,116.54,123.47
data Notes;130.81,138.59,146.83,155.56,164.1,174.61
data Notes;185.0,196.0,207.65,220.0,233.08,246.94
data Notes;261.63,277.18,293.66,311.13,329.63,349.23 'middle C
data Notes;369.99,391.99,415.31,440.0,466.16,493.88
data Notes;523.25,554.37,587.33,622.25,659.26,698.46
data Notes;739.99,7 83.99,830.61,880.0,932.33,987.77
data Notes;1046.5,1108.7,1174.7,1244.5,1318.5,1396.9
data Notes;1480.0,1568.0,1661.2,1760.0,1864.7,1975.5
data Notes;2093.0,2217.5,2349.3,2489.0,2637.0,2793.8
data Notes;2960.0,3136.0,3322.4,3520.0,3729.3,3951.1
S=2\ P=1\ C=0\ CS=1\ D=2\ DS=3\ E=4
F=5 \ FS=6 \ G=7\ GS=8\ A=9 \ AS=10 \ B=11
Return
1l
SetUp_Jingles: //RTTTL codes for the tune
Tempo = 1500
data Song;S,5,E,8,E,8,P,32 ,E,4,P,32,E,8,E,8,P,32,E,4,P,32
data Song;E,8,G,8,P,32,C,4,D,16,P,32,E,2,P,16
data Song;F,8,F,8,P,32,F,8,F,16,P,32,F,8,E,8,P,32
data Song;E,8,E,16,P,32,G,8,G,8,F,8,D,8,P,32,C,2
Return
// ==
sub Play_Tune(Tempo) //play all the notes in the tune list
Scale =4
FOR i = 0 TO MaxDim(Song,1) -1step 2
if Song[i] = _P //if a pause
Frequency =0
Duration = Tempo/Song[i+1]
elseif Song[i] = _S //if scale change
Scale = Song][i+1]

continue
else
Frequency = Notes[Song[i]+12*Scale] //determine freq from scale & note
Duration = Tempo/Song]i+1] /l[determine duration from tempo
endif

call PlayNote(Frequency,Duration)

Page31

Chapter 5

if ! PlayTune || 'PlayNote__ Result then _PlayTune = false \ break
next
Return
I
sub PlayNote(F,D,&B)
xystring 1,1,"Note =",F;"Duration = ",D,spaces(10) //display data

B=0 \ c=1
i f_Port== /lif not serial
/[sound F,D /Iplay on PC speaker...only XP machines

else

N = round(F*2.0732/80e6) //convert to frgA values

SerialOut BuffWrite("™,0,N) //send t he 4 bytes of the Long LSByte first

delay D //delay

serbytesin 1,m,c /lget the confirmation byte (buttons state)

if ¢ then B = getstrbyte(m,1) [/ get the value of t
endif

Return (c==1) /lreturn true or false if there was a byte received
1
sub CheckMouse() //determine which key is pushed

readmouse Xx,y,b /Iread mouse
if Ib then call PlayNote(0,1) \ return //if no click then no sound
¢ = pixelclr(x,y) /lget the color under the mouse
if c == white
x=(X -_WOffset)_WW /lconvert x to key number
Scale = 1+x/7 \ Note = NoteMap[x#7] / /convert to note number & scale
elseif c == black
x=(x -_BOffset) WW /lconvert to key number
Scale = 1+x/7 \ Note = SharpMap[x#7] //convert to note humber & scale
endif
if c == white || c == Black /lif there is a note

Frequency = Notes[Note+12*Scale] //convert to frequency
call PlayNote(Frequency,100) /lIplay it
endif
Return

An Exercise

In Piano.Bas above, when you press the button on the screen to siag fiaytune you can stop the tune by pushing

the button again. Is it possible to accomplish the same action with the hardware pushbuttons? The firmware returns the
status of the pushbuttons on the hardware; therefore it is possible to have the tstepstarffushing a button on the
hardware say the one on P5. If the tune is already playing, pushing the pushbutton on P5 should stop it, and if the
tune is not already playing then it should be started; P5 will behave like the button on the RB seréa@me €hn be

started or stopped (toggled) by pushing either the RB screen button or the hardware P5 pushbutton.

Can you implement the required software changes in the program Piano.Bas to apply the above improvements? What is
needed is to use the bytéumed by the Propeller with the status of the pushbuttons to decide whether to play the tune

if it is not already playing or to stop it if it is already playing. Try to do so without reading the hints. The solution is

given below.

2/ The above interactivillustrates how the software can be made to act as a surrogate for the hardwarejput
also augment and enhance it (e.g. the piano GUI keyboard). Also imagine if you had a library of tunes
wanted to allow the user to select one from a list of tunefie software it would be easy to do this (see
AddListBox command in RB). However, in the hardware you would need additional hardware.

Page32

Multitasking & Parallel Processing

Hint: The buttons are active low

Hint: Remember that the RB pushbutton needs to be renamed to reflect the gtatturié is playing it should say
Stop and if the tune is not playing it should siigigle Bells This way the button will continue to work correctly
in conjunction with the hardware button.

Hint: Look at theMain section in the RB program and see whaedwetnes if a tune is to be played or not.

Hint: A few lines of code are needed in the subroutta/Note()just above thendif statement. These lines should
check to see if the hardware button is pushed. But also to check what is the current conglidipniioplaying
then stop, if not then start.

Solution

In thePlayNote() subroutine just after the line:
if ¢ then B = getstrbyte(m,1) /[// get the value of

Add the following lines:
if (~B) & 0%001 //the buttons are active low and P5 is the LSBit

if _PlayTune
RenameButton "&Stop","&Jingle Bells"

else
RenameButton "&Jingle Bells","&Stop"

endif

_PlayTune =! _PlayTune

delay 200 //delay to eliminate b utton bounce

endif

5.8.5 Some Thoughts and Considerations

Sections 5.8.3 and 5.8.4 highlight something very interesting. Consider what we did. In Section 5.8.3 we used a
hardwaresetup with dirmware and aprotocolto play some random notes by ussigplesoftware. The protocol

allowed the software to send values which the firmware knew what to do with and that caused the hardware to generat
an audible frequency on the speaker.

In Section 5.8.4 we used the very same hardware, firmware and protoitong changed The hardware does not

know anything about how to play a tune. It does not have any user interface (only the pushbuttons). It has no means o
organizing tempo or determining if the user wanted to play Jingle Bells or not. There wiag imothe hardware that

even told it what to do if the user did push the pushbutfims hardware and firmware knew nothing except how to

play a note of a particular specified frequency and read a pushbutton states, when we changed the software we

had a sophisticated overall system.

The PC did not have the means of generating the sound. It had no speaker and no frequency generator. However, whe
combined with the hardware it had the means to do so. The hardware had no means of effecting dacseryieter
when combined with the PC it had the means to do so.

Later in the exercise we saw how powerful the cooperation between the software and firmware can be. The firmware
had absolutely nothing to relate the press of a pushbutton to any actiothath&r send it on the serial port. It had no

logic to make it into a toggle switch for playing a musical tune. As far as the hardware is concerned there is absolutely
no relationship between the speaker and the pushbuttons. But, with the addition tihadef software we made it

possible for the hardware to become an intelligent device.

Think about this for a moment. If you are standing away from the PC and do not see the screen while the RB program
is running, you can push the button on P5 and tieasong play. You push it again and it stops. The hardware is now
doing something intelligent. It knows when you push the button whether to play a song or not. It knows whether a song
is already playing to stop it and vice versa. How can it even kno® Tifedre is nothing in the firmware that tells it

that.It has decision abilities that were not even programmed at all in the firmwditge firmware is doing something

Page33

Chapter 5

it was never specifically programmed to do. This is a powerful concept. Three differsioin of software, using the
very same hardware, accomplished different actions. The behavior of the very same hardware changed angstically
by changing the software

This is what we are trying to accomplish here. We want to be able to make haddveifferent things but without
having to reprogram the firmware on it. Without having to keep changing thiel@vOperating System of the
hardware we can add new software to make it do new actions.

2/The hardware and firmware kndvowto do a lowleve action. The software knows thehen andwhythe

hardware needs to do something without having to be hindered with the details of how. It is like a compfny.

The boss knows why she needs a certain product and when it has to be created. The boss dr@spivtulnéy

in view; she knows what she wants done to be able to make the company successful. However, she do§s not
know how to create the product. She has no idea how to use a lathe or how to weld. So she employs pdbple who
do. She knows the why and whdre employees know the how. Alone the boss could not accomplish he

vision. Alone the employees do not have the drive. Together they form a successful endeavor beneficiajgto all

(at least most of the time).

5.9 Parallel Programming Can Create Puzzling Err ors

Programming for parallel processing has many pitfalls that can cause quite a lot of puzzling bugs. Often the cause is a
lack of appreciation for what can occur when parallel processes are interacting. Other times the cause can be
misunderstanding whéhe mechanisms provided by a system such as the Propeller Chip can do.

Coming from the traditional linear flow programs it is often hard to switch over to a mode of thinking that allows for
the nuances of parallel processing. The Propeller Chip enablesstition of parallelism with ease, nonetheless, there
are things the Propeller cannot do for you. You still have to consider carefully all the intricacies of interaction that are
required to assure proper sequencing and orchestration of the variolenitheleoprocesses.

You have to remember that despite the programs in each cog being linear programs, the overall system is not. Each cog
can be in a totally undeterminable state in as far as another cog is concerned. We have already seen one type of this
problem where parallelism can be puzzling. When we finally had the program working in Section 5.4 we had the
problem of the PST output being a jumble of letters where the messages from all the camifflecttogether. The

fact that the cogs were senditigir messages simultaneously through the one serial port was the problem and we

devised a mechanism for orchestrating them using semaphores in Section 5.5. We also had to use flags to further
control the output of the cogs to stop one swamping and nbgdbte output of the others.

5.9.1 An Example of a Parallel Processing Trap
[Cut Out]

5.9.2 An Example of a Propeller Specific Trap
[Cut Out]

5.10 Logistical Planning for Parallelism With the Propeller

[Cut Out]

Page34

Multitasking & Parallel Processing

5.11 Summary

In this chapter we:

StudiedMultitasking using interrupts in RobotBASIC.

Created Parallelism using Polling in RobotBASIC and Spin.

Learned about timing in Spin.

Learned about variable addresses (pointers) in Spin.

Learned about some objeased programming in Spin.

Learned how to art cogs working in Parallel.

Examined the relationship between cogs, methods and objects.

Learned how to debug puzzling problems.

Learned how to use Semaphores and Flags to avoid contentions.
Learned about Stack Space.

Learned about using counters in fiaty and NCO modes.

Utilized a counter to generate sound.

Seen how the PC and Propeller can create synergetic relationship through the protocol, firmware and
software.

Learned about some possible traps in using the Propeller and parallelism.
Considered somaspects of the logistics of planning for parallel programs.

0000000000000

O 0

Page35

More Advanced Hardware

n Chapter 7 we added some interesting hardware. In this chapter we will add more hardware that despite being
slightly more complicated than what we hadfar, is nonetheless easy to integrate into our system due to the

versatility and robustness of the protocol. The actual hardware used is immaterial and your requirements may dictate &

different set of devices. What is important, aregtiaciplesinvolved in incorporating the hardware within the system.
Section 8.2 will expound proceduralstrategythat makes adding any hardware to phetocola simple endeavor. The
details will differ from one device to another, but the overarching principle for hefirmware makes the devices
available tosoftwareby means of a protocol is what interests us here. We will add:

U A compass
Ability to control the motors individually
A turret for the ultrasound ranger
A mechanism to save t h&PROWand tméesthem podactarynsettingsr st
An accelerometer
Three Infrared line sensors
A speaker

et BN et B et A et BN et ent

1o keep track of all the modifications and hardware, see Appendix B for the complete details of the ffpal
setup of the system as it will be once we conepéetding all the hardware in this chapter. See Figures B.1, B.2
and Table B.1. Also see Figure 8.15.

1/see Section 8.2 for@rocedural strategyor adding hardware to a system that implements our protocoll

8.1 Adding a Compass

[Cut Out]

8.1.1 Using the Compass
[Cut Out]

8.1.2 Inter-Cog Communications and Complex Object Interaction
[Cut Out]

Pagel83

Chapter 8

8.1.3 Using the Compass Calibration

The HMC6352 compass module has a very good resolution.
need. Howevetthe readings can be affected by surrounding magnetic fields. One way to minimize this error is to
calibrate the module in the environment it is to be used in.

The compass has a very easy and effective inbuilt calibration. All you have to do is invoikhitation process,

which lasts 20 seconds. It is important to keep the module level and to turn it slowly through two complete turns. We
have provided a method in our protocol to perform this calibration. There are two ways you can performahisla
calibration and arautomatic calibration

Manual Compass Calibration

In this method sending a command of 24 with a parameter of 2 causes the firmware to start the calibration process but
in the background It will also immediately return the 5 bytes witltalelay,allowing the RB program to continue
processing and to issue other commands as needed.

This mode doerot cause a timeout since it returns immediately. Also remember that the compass needs to be turned
around slowly preferably twice and on adégurface. This can be accomplished manually by hand, or the RB program
can issue the turn command (12 or 13) in a loop for 20 seconds. Just do not try to issue further compass commands
before 20 seconds are out; you will get O if you do.

Automatic Compas s Calibration

In this mode you will issue command 24 with a parameter other than 2. The firmware will then start the calibration
process but it will automatically cause the motors to keep turning for a period of 20 seconds.

This modewill cause a timeoutnless you have modified the timeout parameters in both the firmware and RB using
the commands to do so before performing the calibration. However, you do not really need to do so. Just take
appropriate measures in your RB code to handle the time oubeBhavay to do that is to use a delay of 20 seconds in
the code right after issuing the command.

Do note that even though the firmware will time out an
20 seconds. During those 20 secottsmotors will be turning (i.e. rotating the robot).

The manual method is better because you have more control and it does not cause timeouts. However, the automatic
option is useful in that turning the motors is performed automatically. Also sinceaymot issue any further

commands until the 20 seconds are over it means you are not likely to try to use the compass before the calibration is
completed.

Complexity of Programming the Automatic Calibration:

How does the automatic calibration achieve tugrthe motors? The way described in Section 8.1.2 (option4). The
Others cog flags theMotors cog after specifying the command 12 in the command buffer with a parameter of 1. It
then waits for 20 seconds repeating the flagging and commanding to keep tbeningtors. When the 20 seconds are
over it returns tvain. This is why the time out occurs. Because Bdtiors andOthers are busy for the duration,
you must not issue any more commands that require either of these two cogs.

Mhis procedure is a vegood illustration of how theter-cog interactionscan be achieved. If you require
this kind of control you now have an effectieanplateto follow.

8.1.4 A Simulated Compass Instrument

We will now develop a program that displays the compass headinganesinteresting manner than just numbers on
the screen. Compass_Animation.Bas is similar to Compass_Tester.Bas above but instead of printing out the heading as
a text number it calls to subroutine cal@ibplayCompass() However, you will notice thahe subroutine is not

Pagel84

More Advanced Hardware

listed in the program. It is part of a library of subroutines called Instruments.Bas. The Compass_Animation.Bas
program knows how to use the subroutine because the Instruments.Bas library hiaslbéedin the program. This
is the mrpose of the line:

#include ".. \ Utilities&IncludeFiles \ Instruments.Bas"

This line tells the program where to find the file that has the subroutine. When Compass_Animation.Bas runs it will
look for the file Instruments.Bas in the directory called UafIncludeFiles that is in the parent directory of the one

in which Compass_Ani mati on. Bas \Utidiss&lntledeFilesd haeéf o set hker
of the file. When Compass_Animation.Bas finds the library file, it incorporasesiftit were part of the program and

when a call tdisplayCompass()is made it works.

MThe advantage of placing subroutines in a library is that many programs can use the subroutines. W will do
precisely this with many programs to come. You will netilcat Instruments.Bas has another subroutine tha we
will use later, so ignore it for now.

The DisplayCompass()subroutine implements an authentic looking Compass Instrument like ones found on boats or
airplanes and it will behave very much like a restiument. The subroutine is designed to be versatile and generic.
You can pass optional parameters to it to configure where to place the instrument on the screen and how many
gradations it will display. Additionally it will display the numeric value dof tieading (not available on a real device).

All the parameters are optional and if you do not specify any they will have default values. In the main program the
subroutine is used in its default mode. We will use the same subroutine in Section 8.4igufsc@.F1), but by

passing it different parameters, the instrument will be different in size and position.

If you are not a pilot or navigator, the heading markings might look to you as if they are the wrong way around. We
will not go into the detailsfahis here since this is not a book on navigafidyut this is in fact how it is on a real
compass instrument in real life.

2/ The subroutine allows for a way to make the instrument display the markings in a more intuitive marfer.
The main program wilprovide a checkbox that you can uncheck to make the instrument have the gradudgions
increase to the right. This illustrates how using a programming language like RobotBASIC can be a majjgr
advantage when creating GUI instrumentation. You can simulate &éatloerking and behaving instruments

you can improve on the old mechanisms and increasergiomomiceffectiveness and create a more amenalfje
human interface

The HMC6352 is in fact just like a real compass. It has to be level to read accurate qidagimgpitch and roll the

heading will change even if you did not turn. Again, we will not discuss the reasons for this, but notice how the
compass heading changes when you do any roll or pitch. Pickup the PPDB and keep the reference axis p@&nting in th
same direction and keep it straight and level. Note the heading. Now tilt the PPDB to the right or left or downward and
upward. Notice how the heading changes. The change is in fact a predictable value depending on the bank angle and
direction as well awhat latitude you are at and what heading you are facimyréscopic devic® does not give

different keading readings when you pitch and roll.

I n order to make the display fIl i c-kuffared screengraphitBlpeon)s ubr oL
Comment out the line in the main program that $digsOn and observe what happens.

2/The HMC632 compass module is just like a real compass and is subject to all compass errors: Varigion,
Deviation, Dip, Acceleration/Deceleration and Pitch and Roll.

Pagel85

http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/588/Default.aspx

Chapter 8

¥ Real Mode ™ Real Mode

12 6 6 12

) E
Leforerefoerepe]erng SRARNRRRRUARRRRRENY

Figure 8.4: Screenshot of Compass_Animation.BAS simulating an authentic looking GUI CompassérgtrNotice
the difference between the real mode (left) and enhanced mode (right).

Compass_Animation.Bas
/[Compass_Animation.Bas
/lworks with Firmware_Main.Spin
Port = 8 //change this as per your system

#include ".. \ Utilities&IncludeFiles \ Instruments.Ba s"
Main:

setcommport Port,br115200

flip on

call SendCommand(24,1,s) //see if there is a compass
if SendCommand__ Result

if lgetstrbyte(s,5) then print "no compass available" \ Terminate
endif
/luncomment the following three lines to invoke a manual calibration
[/ print "Calibration in progressérotate two turns wh
/[call SendCommand(24,2)
/l[delay 20000
AddCheckBox "Mode",430,230,"&Real Mode",1,0
while true

call SendCommand(24,0,s) //read the compass
i f!SendCommand__ Result then continue
X = (getstrbyte(s,4)<<8)+getstrbyte(s,5)
call DisplayCompass(!GetCheckBox("Mode"),x)
Flip
wend
end
1l
sub SendCommand(C,P,&s)
m=""
serialout C,P
serbyte sin 5,s,x
if x <5 then m="Comms Error"
xystring 500,20,m,spaces(30)
return (x == 5)

Instruments.Bas (a library of reusable subroutines)
/linstruments.Bas
/lto be used as an #include file in all programs
/lthat need to display the instruments
Il ---
sub DisplayCompass(Mode,H,x,y,f,t)
fnt = "Times New Roman"
if 'vType(Mode) then Mode = 0
Mode = Limit(Mode,0,1)*2 -1

Pagel186

More Advanced Hardware

if WType(H) thenH =0
if WType(x) then x = 400
if WType(y) theny =3 00
if wWType(f) then f = 2
if WType(t) thent= 10
dim xx[2,t*2]
erectanglewh x - 20,y - 75,40,35,9,gray
rectanglewh x - 20,y - 75,40,35,gray,black
xyTextx -12,y - 65,Format(H,"000°"),fnt,10,fs_Bold,white,black
erectanglewh x -t*f*5 -ty -40,2* (t*f*5+t),60,9,gray
rectanglewh x -t*f*5 -ty -40,2*(t*f*5+t),60,gray,black
n=H#5
fori=0Otot -1
xx[0,i]=H -n-5*% \ if xx[0,i] < 0 then xx[0,i] += 360
if xx[0,i] == 360 then xx[0,i] =0
xX[1,i] = Mode*f*(n+i*5)

xX[0,i+t] = H+5- n+5* \ if xx[0,i+t] == 360 then xx[0,i+t] = 0
XX[1,i+t] = - Mode*f*(5 - n+i*5)

next

for i=0 to t*2 -1

=5 \ hh=xx[0,i]
if 1(hh#10) then | =7
if I(hh #30)
hh /= 10
if hh ==
hh = "N"
els eif hh ==
hh ="E"
elseif hh == 27
hh ="W"
elseif hh == 18
hh ="S"
endif
xytextx - xx[1,i] -5,y - 30,hh,fnt,8,fs_Bold,white,black
=10
endif
line x - xx[1,i],y - ILx - xx[1,i],y+l,2,white
next
line x,y -36,x,y+15,1,red
return
1
sub DisplayAttitude(Pitch,Roll,Cx,Cy,r,LW,CW)
if IvType(Pitch) then Pitch = 0
if 'vType(Roll) then Roll =0
if vType(r) then r = 100
if vType(Cx) then Cx = 400
if WType(Cy) then Cy = 300
if IvType(LW) then LW = 2
if WType(CW) then CW = 10

/Ihorizon

T= -Roll -Pitch \ TT = - Roll+Pitch+pi()
x1 = cartx(r,T) \' yl = carty(r,T)

X2 = cartx(r,TT) \' y2 =carty(r,TT)

x3 =(x2+ x1)/2 \ y3=(y2+yl)/2
Circle Cx -r,Cy -r,Cx+r, Cy+r
line x1+Cx,y1+Cy,x2+Cx,y2+Cy,LW,red

Pagel187

Chapter 8

/l[ground and sky

fori= -3to3step6
T1l= -Roll - Pitch+dtor(i) \ TT1 = - Roll+Pitch+pi() - dtor(i)
x1 = cartx(r,T1) \' vyl =carty(r,T1)

x2 = cartx(r,TT1) \ y2=carty(r,TT1)
x4 = (x2+x1)/2 \' y4 = (y2+yl)/2
j = brown
if i < 0 then j= lightcyan
floodfill Cx+x4,Cy+y4,j

next

/l[ground texture arrays

if WType(_DAI_Flag)
dim DAI_b[0]
data DAI_b;5,10,20,40,60
dim DAI_a[0]
data DAI_a;0,dtor(30), - dtor(180), - dtor(40),dtor(10), - dtor(140)
_DAI_Flag = true

endif

/Ihorizontal ground texture

for i=0 to 4
Tl = -Roll - Pitch+dtor(DAI_b[i]) \ TT1l= - Roll+Pitch+pi() - dtor(DAI_b[i])
x1 = cartx(r,T1) \' y1 =carty(r,T1)
x2 = cartx(r,TT1) \ y2 =carty(r,TT1)
line x1+Cx,y1+Cy,x2+Cx,y2+Cy

next

/ldiagonal ground texture

j=dtor(20) \ i=T+Hj

repeat
x1 = cartx(r,i) \' y1 = carty(r,i)
line Cx+x3,Cy+y3,Cx+x1,Cy+yl
i+=]j

until abs(i) > abs(TT - j+.2)

Arc Cx -r,Cy -r,Cx+r, Cy+r,,,CW,gray //instrument rim
/Iroll gradations

for k=0 to maxdim(DAI_a) -1lstep 3
i= - Roll+DAI_alk] \ j=DAIl_a[k+1]
TW = CW/2

if k >=3 then TW = 2
rrl =r+TW \ m2=r -TW

repeat
x1 = cartx(rrl,i) \ yl= carty(rrl,i
X2 = cartx(rr2,i) \ y2 = carty(rr2,i)
line Cx+x1,Cy+yl,Cx+x2,Cy+y2,2 white
| -=
until i < - Roll+DAI_alk+2] -.2
next

/roll or bank indicator

forj= -2to2step4
i= -dtor(90 -))
x1 = cartx(r+CW/2,i) \ yl= carty(rtCW/2,i)
X2 = cartx(r -CW/2,i)) \ y2=carty(r - CW/2,i)
line Cx+x1,Cy+yl,Cx+x2,Cy+y2,3,red

next

/lsmall airplane

rr=r/10

circlewh Cx - 2,Cy - 2,4,4,white

Page188

More Advanced Hardware

line Cx,Cy,Cx,Cy+rr - 1,2,white
Arc Cx -rr,Cy - rr,Cx+rr,Cy+rr,pi(),pi(),2,white
Line Cx -rr,Cy,Cx - 4*mr,Cy,2,white
Line Cx+rr,Cy,Cx+4*rr,Cy,2,white
Return

8.2 A Procedural Strategy for Adding Other Hardware

As you have seen so far, because of the way the system is designed, adding hardware is extremely simple and routine
As a matteof fact, the hardware we added covers almost every category of hardware that you are likely to want to

incorporate into your system.

| List 1: Categories of Hardware

a) Digital hardware with On/Off type I/O (Pushbuttons, LEDs)
b) Digital to Analog output (Dimrar LED)

¢) Pulsating Frequency output (Blinking LEDs and Speaker)
d) Analog To Digital input with RETime (Pots)

e) Controlling Servomotors (Servomotors)

f) Counting Time Intervals (Ping and RGme)

g) I°C /O (Compass)

h) RS2321/0 (FDS, SM)

i) Using Counters (in Duty, NC@nd Edge Detector modes)

| List 2: Programming Techniques Required to Develop the Firmware

j) Using Semaphores and Flags

k) Using Parallelism

I) Using Polling

m) Sharing RAM

n) Inte-Cog communications and control
0) Creating objects and methods

Just about any hardware thau are likely to want to add as well as the programming techniques required to add them

to the firmware are most | ikely to belong to
may wish to add to a project:
Table 8.1: Possibé Hardware and its Category

Hardware Category
Bumper Switcf’ a
Infrared Proximity Sensots aorc
QTI Line Sensoré aord
PIR Movement Sensdr a
Turret® e
Accelerometef’ g
GPS® horg
DC motors® e
Thermometet G
2-Axis Joystick® D
Sound Impact Sensor A
5-Way buttoif’ A
Piezoelectric Speakgr [
Quadrature Systeth H

one

ragelsy

of

t

http://www.pololu.com/catalog/product/1403
http://www.pololu.com/catalog/product/1134
http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/CategoryID/51/List/0/SortField/0/Level/a/ProductID/100/Default.aspx
http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/ProductID/83/List/1/Default.aspx?SortField=UnitCost,ProductName
http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/248/List/0/Default.aspx?SortField=ProductName,ProductName
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/585/Default.aspx
http://www.parallax.com/Store/Sensors/CompassGPS/tabid/173/CategoryID/48/List/0/SortField/0/Level/a/ProductID/396/Default.aspx
http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/64/Default.aspx
http://www.parallax.com/Store/Sensors/TemperatureHumidity/tabid/174/CategoryID/49/List/0/SortField/0/Level/a/ProductID/94/Default.aspx
http://www.parallax.com/Store/Accessories/HumanInterfaceDevices/tabid/822/CategoryID/90/List/0/SortField/0/Level/a/ProductID/581/Default.aspx
http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/614/Default.aspx
http://www.parallax.com/Store/Accessories/HumanInterfaceDevices/tabid/822/CategoryID/90/List/0/SortField/0/Level/a/ProductID/615/Default.aspx
http://www.parallax.com/Store/Accessories/Sound/tabid/164/CategoryID/38/List/0/SortField/0/Level/a/ProductID/106/Default.aspx
http://www.parallax.com/Store/Accessories/MotorServos/tabid/163/CategoryID/57/List/0/SortField/0/Level/a/ProductID/665/Default.aspx

Chapter 8

8.2.1 Commands in the Protocol So Far

In our potocol so far we have allowed for many possible commands and Table 8.2 below is a good overview.

Table 8.2:List of protocol command codes at this stage.

Command Code Parameter [EREIES CIfifE) Data Returned
Sensors
Stop Motors 0 0 Yes None
Forward 6 Amount Yes None
Backwards 7 Amount Yes None
Turn right 12 Amount Yes None
Turn Left 13 Amount Yes None
Read the Compass 24 0 Yes Last two bytes
th :
Check if the compass is available 24 1 Yes :AL' fbyte 0,8 byte is
or yes or 0 for no
. 2=Manual Yes
Calibrate the Compass 24 3=Automatic No None
Read the Pots 66 0 No First 4 bytes
Read the Ping))) 192 0 Yes Last two bytes
Set P20..P18 LEDs 1 LED States Yes None
Set P21 Frequency 2 Hz Value Yes None
Reset the Propeller 255 0 No None
Set P23 LED brightness 200 Level Yes None
P22 LED Blink duration 201 Level Yes None
Set 29 byte receive Timeoutl 202 N x 10ms Yes None
Set operations Timeout2 203 N x 10ms Yes None
Set L_Speed 240 Speed Yes None
Set T_Speed 244 Speed Yes None
Set L_Timeout 241 N X 10ms Yes None
Set T_Timeout 245 N X 10 ms Yes None
Set StepTime 242 N X 10 ms Yes None
Set TurnTime 243 N X 10 ms Yes None

8.2.2 A Procedural Strategy For Extending the Hardware

Much of the hardware you may wish to add is likely to be just a mattexoadidg what category it is under (List 1 and

List 2 and Table 8.1) and then looking at the commands in Table 8.2 to decide which command resembles it best. Once
you have decided on this, use the command from Table 8.2 as a template for adding the wasg.Haig not just

hardware that we might want to add. We may also want to add more housekeeping commands.

List 3: There are three types of commands:

1. Ones that set/change system parameldasn object but can be any of the objects)
2. Ones that do sometig in the background and do not need to be commarkaterobject)
3. Ones that carry out a task and then

a. Do not return dataMotors object but can b&thers too)

b. Return data in the last two bytes of the primary send bftre¢s object)

c. Return data in all or some bytes of the secondary send bDffesr§ object)

Pagel190

More Advanced Hardware

Procedure For Adding a New Hardware or Command

To add a new command you need to
i. Decide which category of hardware it is from Lists 1 and 2 andeTaab.

i. Decide what type of command it will be from List 3.

iii. Selectatemplate command from Table 8.2.

iv. Modify the appropriate object to incorporate the methods needed to interact with the hardware and fill the
send buffer if required. If you decide that yoeed a new object then use one of the existing objects as a
template and modify it as needed.

v. Add any constants in tHeéON section.

vi. Add any variables in th&ar or Dat section.

vii. Instantiate any required supporting objects in@tg section and invoke theStart() methods in the
Initialization method.

viii. Decide on a code for the command (make sure there is no clashing) and what parameters it has to be passed.

ix. Add the Case statement in the Case block to call the method. This should follow the template command.

Xx. Add the Case Statement in thiain object to allow for the new case statement in the subordinate object. This
should follow the template command.

To illustrate the process we will now add hew commands to:

¢ Allow for actuating the motors separately in atisection for a certain number of steps or to keep them on
(Section 8.2.3)

¢ Allow the Ping))) mounted on a turret to be turned by 90 degrees right and left before measuring the distance
(Section 8.2.4).

¢ Save all the system parameters to the EEPROM. Wealsil extend the system to read them from the
EEPROM upon boot up if there are any valid saved ones (Section 8.3) and also allow for resetting them to
factory settings.

¢ Add an Accelerometer (Section 8.4).

¢ Add three QTlI infrared line sensors (Section 8.5).

¢ Add a speaker similar to Chapter 5.8 (Section 8.6).

8.2.3 Controlling Motors Separately

If you have noticed with our commands for controlling the motors they can only be rotated together. This is what we
need on a robot for example. However, it may be dbkirto control the motors separately in certain occasions, such

as if you wish to effect curved turns where the cent e
motors are used in a process other than robotics, we may wanaitelte control the motors as separate entities.

In the process of implementing independent control, we want to illustrate how following the procedure outlined in
Section 8.2.2 makes the process simple and quick.

Step i: It is still a servomotor.

Stepi: It is like commands 6,7 in Table 8.2.

Step iii: Commands 6 and 7, but allowance has to be made for different processing.

Step iv: We will do them in theMotors object (see bold lines in the listing).

Step v: Not required.

Step vi: See Listings (addedariables inviotors object)

Step vii: Not required; but foMain we changed the name of thotors object to allow for the new version.

Step viii: Codes 8/9 move the right motor forward/backward and Codes 10/11 for the left motor. We will have

it so thatparameter 0 means stop, parameter 255 means stay on. Any other numbesstefisr But

the command will not wait for the steps to be completed, it will always return immediately.

Therefore, We will need to allow for timing and switching the motorsroffieProcessOmethod.
Step ix,x: See bold lines in the listings.

Page191

Chapter 8

Here are the listings of the new Firmware_Motors_B.Spin and Firmware_Main_B.Spin. Notice the bold code performs
the steps above. We will only list areas where there are changes. Thetestade is as before. Tkehers and
Readerobjects are not changed and we will use the same ones as before.

[Cut Out]

Testing the New Commands
[Cut Out]

8.2.4 Controlling a Ping))) on a Turret

If we mount the Ping))) on ervomotor turréf like the one sold by Parallax, we can extend the utility of the ranger
because we can then turn it left and right. The wayhave previously implemented the ranger command (#192) the
parameter is ignored. If we allow the parameter to specify the angle right of the straight ahead and if we add another
command (#193) and allow the parameter to define left of the straight tieeade would have full control over the

turret and once the turret finishes the turn, a reading of the Ping can be taken and returned as before.

2/since now the Ping))) would be mounted on a turret the connection to it should now be made -wsireg § 3
cable (just like the one for the servomotors) to one of the 8 servomotor headers on the PPDB (see Figu
AppendixB). Thepi n (bl ack) on the header goes to the
on the Ping))) and the Spiniwi t e) goes to the Sig pin on the
the servos header has a 1509 resistor already

As discussed in the strategy outlined in Section 8.1.2, we will hawdm cog control thalivision of labor. Main

will receive the command 192 or 193. It will then flag Metors cog to turn the Servomotor of the turret (we will use
astandard ervomotof? on P15) to move to the correct position. WhenNtwors flag is loweredViain will then flag

the Others cog as before to read the Ping))).

To implement the required changes we will follow the steps in Section 8.2.2. The changes ar&lairtyaod

Motors. Another thing to note here is that due to the division of labor aspeGtlilees object needed no changes at

all despite the new commands being all to do with the Ping))) which is read Gyttiies cog. We also added a

constant in thé/otors object so that we can dataap the value-®0 into in a number that causes the turret to be truly

turned 0 to 90 degrees, where 0 is straight ahead. Remember that servomotors have the 1500 microseconds pulse as th

center. We want to limit the Max andiivivalues so that the motor will turn 90 degrees either way. Thus we can use

the number 0 to 90 as
ServoSignal = 1500+n*Max/ 90 o6for the left turns
ServoSignal :=150en * Mi n/ 90 o6for the right turns

We need to experiment to determine what Max and Min labe. We can always of course add two more commands

to set these values at rtime from RB. But we will leave this up to you. Use Servo_01.Spin to experiment with the
servomotor to see what values set it to about 90 degrees either way and use thesBemdember we are using P15

as the motorés signal pin so change the Pin number to
(23001500 = 800 and 156000 = 800)

[Cut Out]

Pagel192

http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/248/List/0/Default.aspx?SortField=ProductName,ProductName
http://www.parallax.com/tabid/768/ProductID/101/Default.aspx

More Advanced Hardware

A Radar Application

To test the new firmware we made the iatging program Turret_Radar.Bas. What you should pay most attention to is
the Ranger() subroutine. Notice in this subroutine how we check if the angle is negative or positive and send the
appropriate command accordingly (192 or 193) with the angle masivpoThe other two subroutines are what
implements the RADAR simulation. Notice tBaveScrandRestoreScrcommands and also the usageaitx() and
carty(). In Chapter 10 we will see a slightly different version of this program.

Turret_Radar.Bas

/IT urret_Radar.Bas
/lworks with Protocol_Main_C.Bas
Port = 8 //set this as per your system
Main:

setcommport Port,br115200

call RadarScreen()

call Radar()
End
1l
sub Ranger(Angle,&Value)

C=192 \ Value= -1 \ m= "Comms Error"

if Angle < 0 then C = 193

Angle = Limit(Abs(Angle),0,90)

serialout C,Angle

serbytesin 5,s,x

if x ==

Value = (getstrbyte(s,4)<<8)+getstrbyte(s,5)
m = spaces(40)

endif

xyText 600,10,m,,10,,red
return (x==5)

sub RadarScreen()
for i=1 to 400 step 50
arc 1,i,800 -,800 -i,0,pi(),2,gray
next
for i=0 to 180 step 20
th = dtor(i) \ r=400
line r,r,r+cartx(r,th),r - carty(r,th),1,gray
next
savescr
return
1
sub Radar()
j=-90 \ i=1
while true
call Ranger(j,V)
if V < 0 then continue
V *=400/23000. \ th =dtor(j - 90)
x = cartx(V,th) \ y=carty(V,th)
circlewh 400+x - 5,400+y -5,10,10,red,red
jr=i \ i fabs(j)==90 then i= -i \ restorescr
wend
return

Pagel193

Chapter 8

? RobotBASIC Interactive Terminal Screen [C:\Documents and Settings\Samuel\Desktop\ A _Hardware_|Interfacing And_Co... @

4 %
AR

« Y

Figure 8.5: Screenshot of Turret_Radar.Bas in action.

8.3 Saving The System Parameters to EEPROM

As you have seen so far and as detailed in Table 8.3 below, we are able to change the values o&tkesparawn
in the table. As the system stands you can set the values but whenever the Propeller is rebooted the values will always
revert to the ones assigned to them in the programs as shown in the listings. Some are operational, but most would be

nice o retain so that whatever value you assigned to them last would be the value upon reboot.

Table 8.3:List of changeable system parameters

Parameter Purpose Cog
L Speed The speed for the motors in forward/backward travel Motors
T Speed The speed of the ators while turning Motors
StepTime The time needed to accomplish a step of forward/backward travel Motors
TurnTime The time needed to accomplish a degree of turning Motors

L_TimeOut The time to leave motors on until a new command arrives in linedr tavg Motors

T_TimeOut The time to leave motors on until a new command arrives in turning Motors

P22 Duration The on/off duration for the P22 LED in tieadercog Main

TimeOutl The timeout period to wait for the parameter to arrive Main

TimeOut2 The timeaut period to wait for a command to finish Main
P21 frequency | The blinking frequency for the P21 pin in tb¢hers cog
P23 Level The voltage level for the dimmer LED in tMain cog.

8.3.1 EEPROM Limitations

[Cut Out]

8.3.2 Required Changes to The Firmware

[Cut Out]

Pagel194

More Advanced Hardware

8.3.3 CRC and Validity Check
[Cut Out]

8.3.4 The New Commands & Firmware

In addition to rearranging things so that the two parameters that are not already in the contiguous buffer are moved
over to the buffer iMain, we will also use thB8asic_12C_Driver.Spiff as the object that has all the necessaBy |
protocols to communicate with the 24LC256 EEPROM and store/read data from it (included in the downloadable zip
file too).

We will provide two new commands
Command code 5:
If the parameter is O it will store the current system parameters as they are in RAM to the EEPROM. It will
return in the # and %" bytes of the primary send buffer a $01 if the operation succeeds or a $00 if not.

If the parameter is 1 the system parameters will be restoRAM only to the factory settings. This does
not affect the EEPROM. If you want the factory settings to be in effect on the next boot up you must also
issue another command 5 with parameter §ai@ the RAM parameters to the EEPORM.

If the parameter is 2 the system parameters as they are in the EEPROM will be sent out to the PST as text
numbers. The PST screen will then display the values.

If the parameter is greater than 2 the system parasréizt are in the RAM will be sent to the PST as text
numbers.

Command code 4:
The system parameter (from RAM) is sent to RB using the secondary send buffer with the first 4 bytes
being the system parameter in LitEdian format. That is the 1st bytey{e 0) is the LSByte and the 2nd
byte is the next byte and so on. The fifth byte is set to 0 to indicate that the requested parameter is a valid
one.

Which system parameter is sent depends on the parameter of the command. If the requested parameter
numker is too large then all the returned 5 bytes will be OxFF to indicate a wrong requested parameter
number (i.e-1). The order is from 0 to N (N=10 for now). See Table B.2 for the order and description of
the parameters (or Table 8.4).

Modifications are rostly to theMain object, with two new methods Motors to return a pointer to the buffer and to
restore the factory settings. Rearrangemetbers implements the new setup for the parameters that are now stored
as part of the buffer iMain instead ofas variables i®©thers.

The new firmware suite is called Firmware_XXXX_D.Spin where XXXX is Main, Others, and M&ee&sleris not
changed and is not renamed. All the changes are bold lines in the listings. Only changed areas are listed.

_!lRemember thatommand 5 with parameter 1 will restore the factory settingsrdutin RAM. If you wish
to also reset the EEPROM so that the settings will be factory settings on the next reboot, you must alsofave the
restored factory settings to the EEPROM (commapdrameter 0).

[Cut Out]

Pagel95

http://obex.parallax.com/objects/26/

Chapter 8

8.3.5 Testing the EEPROM Commands

EEPROM_Tester.Bas exercises all the new commands. Compile the new Firmware_Main_D.Spin and save to
EEPROM (F11) then run the RB program. You may want to also run the PST and have it so thatat disable
when it loses focus because we want to go to the RB program and interact with it

The program will

Print all the EEPROM parameters (none to start with and they all should be 0) on the PST screen.
Print all the RAM parameters (should be asdbestants in the program code) on the PST screen.
Print on the RB screen all the RAM parameters (same as 2).

Modify some of the parameters.

Save the parameters to the EEPROM and check if successful.

Reset the Propeller and wait for it to reboot.

Print allthe EEPROM parameters (now they should be the same as set in 4) on the PST screen.
Print all the RAM parameters (should be the same as 7) on the PST screen.

Print all the RAM parameters (same as 8) on the RB screen.

Restore Factory Settings.

Save the paraeters to the EEPROM.

Print all the RAM parameters (should be as the constants in the program code) on the PST screen.
Print all the EEPROM parameters (should be as in 12) on the PST screen.

O 000000000000

i the program when printing the parameters to the RB screavillwese an extra count (12 instead of ju
11) to see how reading an invalid parameter retttf®xFFFFFFFF).

EEPROM_Tester.Bas

/[EEPROM_Tester.Bas
/lworks with Firmware_Main_D.Spin
Port = 8 //change this is as per your system
Main:
setcommport Port ,br115200
call SendCommand(5,2) 'print EEPROM params to PST
call SendCommand(5,3) 'print out RAM params to PST
for i=0 to 11 //using an extra to demo how it returns -1
call SendCommand(4,i,s)
print Buffreadi(s,0)," "
next
call SendCom mand(200,250) 'set the P23 brightness
call SendCommand(201,0) 'no blinking on P22
call SendCommand(2,0) 'no blinking on P21
call SendCommand(5,0,s) 'save to EEPROM
m = "Saving to the EEPROM failed"
if SendCommand__ Result
if getstrbyt e(s,5) then m = "Saving to the EEPROM succeeded"
endif
print m
print "resetting the propeller . . . wait 3 secs"
call SendCommand(255,0) ‘reset the Propeller
delay 3000 ‘wait for Prop to finish reboot
print
call SendCommand(5,2) '‘print EEPROM params to PST
call SendCommand(5,3) 'print out RAM params to PST
fori=0to 11
call SendCommand(4,i,s)
print Buffreadl(s,0)," "

Pagel196

More Advanced Hardware

next
print "Resetting factory settings and saving to the EEPROM"
call SendCommand(5,1) 'resto re factory settings

call SendCommand(5,0) 'save to EEPROM
call SendCommand(5,1) 'print RAM params to PST
call SendCommand(5,2) 'print EEPROM params to PST
print "all done"
end
1l
sub SendCommand(C,P,&s)
serialout C,P
serbytesin 5,s,x
if x I= 5 then return false
return (x==5)

8.4 Adding an Accelerometer

An accelerometer module is a very useful device in many robotic projects. To that end we will incorpdtd&he
Tri-Axis Accelerometer modufé(see Figure 2.10). The connection schematic is shown in Figure 8.7 below.

7
A =T I TR +5
i\' WHH . =+

CLK-P14 220a 1

6

o AAA
208 2 5

& AAN
DIO -P13 3 4

HEHEBEHEH

CS -P12 339a
- AN

Figure 8.7: H48C Connection S&matic

8.4.1 Adding the Accelerometer Commands to the Protocol

The accelerometer provides acceleration values for the threes axes (x,y,z). From these values weatanzétthe

tilts of these axes using math functions in RB. We need to obtain @@ from the device; all will be 16 bit

numbers (actually 12 see later). We can make our protocol return these valued'iarttedibytes of the primary

send buffer. This would then require RB to send a command to request each axis one atrastimighTnot be quite

good enough especially if you consider that the acceleration values are usually needed to control a robot in a very
dynamic situation where we would need these values as quickly as possible. Algorithms that need acceleration values
are for controlling a walking robot or a balancing robot for instance. In such situations any delay in obtaining the
readings may cause algorithms to be sluggish or even fail altogether.

A better alternative is to use the secondary buffer. However, tharsriag. Since the data is 16 bits that means we
need 2 bytes for each value and since there are 3 we would need 6 bytes. However, our protocol only allows 5 bytes

Page197

http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/97/Default.aspx
http://www.parallax.com/Store/Sensors/AccelerationTilt/tabid/172/CategoryID/47/List/0/SortField/0/Level/a/ProductID/97/Default.aspx

Chapter 8

and it is not possible to return all three values in one go. We would require two cormtmgatall three values. This

may be acceptable if we are working in two dimensions and we mount the device to give us the most advantageous
orientation of the »/-plane. After all many robots have been designed with owalyi® accelerometers and the

algaithms worked quite well. If we want to use all three axes then the application should not be a very dynamic where
acceleration values change too r api dlayisak agepatate eommand t wa r
requires another commd cycle.

There is a way to return all three readings in 5 bytes; all three values can be obtained with one command and one
communications cycle and therefore as fast as our protocol allows. The data from the H48C does not quite need 16 bits
since the m@mum value can only be 4095 (OxFFF). So the maximum value is 3 nibbles. To transmit all three values

we need 9 nibbles, which fit quite easily within our 5 bytes (10 nibbles) with 1 nibble to spare.

The 48HC values for the axes are actually voltage DAIQes in reference to a reference voltage value. We will need

to read this value for maximum accuracy. However this needs to be performed once upon startup since it is not going to
vary during the operations of the device. It should almost always be/3@93, which is between 2045 and 2049

with it almost always being 2047. Of course you can always read the reference voltage every time before reading the
axesd values but this will slow the whol igpercgpvith ati on a
reading the reference voltage except for the first time. The gained accuracy is inconsequential as compared to the loss
in speed.

The command to interrogate the H48C will have two modes depending on the parameter passed to it. If the paramete
is other than 1 then the values of the axesd accelerat
parameter is 1 the command will return the value of the reference voltage thahe &' bytes of the primary send

buffer.

The praedure is as follows:
¢ Before using the H48C commands for the first time issue command 70 with parameter 1 and reconstitute the
reference voltage value from th8 dnd 5" bytes (MSByte first) and store the value (VRef).
¢ Whenever you need the acceleratiafue issue command 70 with a parameter of O (or any number other than
1) and reconstitute the values for thaxis from the first three nibbles (xRef), theyis from the next three
nibbles (yRef) and the-axis from the last three nibbles (zRef).
¢ Onceyou have the raw values for the axis readings you can calculate the actual acceleration in reference to 1g
using the formula (replace x with y and z for the other axis):
XxG = (xRefvRef) * 0.0022
¢ To obtain tilt angles you can either calculate them froarrdlw data after subtracting vRef or from the
calculated g values (xG above) using &ff@n2() function in RB. So for example to get the tilt of thé\xis
you would do
aTan2(xRefvRef , zRefvRef)
to get the angle in radians or
rTod(aTan(xRef-vRef , zRefvRef)
to get the angle in degrees.

To reconstitute the axesd values from the 5 bytes (sece
¢ First byte and the M8libble of the second byte constitute the xRef value.
¢ LS-Nibble of the second byte and the third byte constitute the yRef value.
¢ The fourth byte and the MBibble of the fifth byte constitute the zRef value.

Page198

More Advanced Hardware

XRef yRef zRef

1st 2nd 3rd 4th Sth
Bytes

Figure 8.8: Order of the Acceleration Reference Values In the buffer.

You will see all this in the code listings in the Spin program and in the RB program.

2/The orientatiorof the device on the PPDB itself has to be taken in consideration if you need the readiigs to
be in reference to the PPDB axes. See Figure 8.7 for how the poséiie and yaxis are oriented and also t
z-axis is pointing upwards from the plane of figure. Also see Figure 8.10.

8.4.2 Incorporating the H48C in the Protocol
[Cut Out]

8.4.3 Testing the New Command

In the previous section you saw how the values of the three axes were placedlytnd&fer. On the RB side the 5
bytes have to berbken up and the nibbles extracted to reconstitute the numbers. You can see all this in the listing of
H48C_Tester.Bas in tHieead_H48c()user defined subroutine. The subroutine will readviRef and the axes values

if the passed parameteRefisOandi it i s not O then only the axesd6 val
you can use in other programs to read the H48C values.

Also notice in the main program how the tilt angles are calculated usiad @&m2() andrToD() functions to gettte
angle in degrees.

YFor later programs that require the use of the H48C we will put the subrBa#&te H48C()in the
Instruments.Bas include file we used previously in Section 8.1.4.

H48C_Tester.Bas
/[H48C_Tester.Bas
/IWorks with Firmware_E.Spin
Port =8 //change as per your system
Main:
fmta = "#0.0000 " \ fmtb=" #00 "
setcommport Port,br115200
v=0
while true
call Read_H48C(v,x,y,z,0X,9Y,92)
xystring 10,10,v;x -V;y -V;z -V;spaces(20)
xystring 50,30,Format(gX,fmta),Format(g Y,fmta),Format(gZ,fmta)
xystring 50,50,Format(rtod(atan2(gX,92)) - 90,fmtb)
Xystring -1, - 1,Format(rtod(atan2(gY,gZ)) - 90,fmtb)
Xystring -1, - 1,Format(rtod(atan2(gZ,gY)),fmtb)

Pagel199

Chapter 8

/lIv=0 [/luncomment this to refresh the vRef all the time
wend
End
I
sub SendCommand(C,P,&s)
m=""
serialout C,P
serbytesin 5,s,x
if x <5 then m="Comms Error"
xystring 500,20,m,spaces(30)
return (x == 5)
1l
sub Read H48C(&vRef,&xRef ,&yRef,&zRef,&XG,&yG,&zG)
xRef=0 \ yRef=0 \ zRef=0
xG=0 \ yG=0 \ zG=0
if vRef ==
call SendCommand(70,1,s) //read vRef
if ISendCommand__ Result then return false
VRef = (getstrbyte(s,4)<<8)+getstrbyte(s,5)
endif
call Se ndCommand(70,0,s) //read the axes
if ISendCommand__ Result then return false
xRef = (getstrbyte(s,1) << 4) + (getstrbyte(s,2) >>4)
yRef = ((getstrbyte(s,2)&0x0F) << 8) + getstrbyte(s,3)
zRef = (getstrbyte(s,4) << 4) + (getstrbyte(s,5) >> 4)
XG = (xRef - vRef)*.0022 //convertto g - forces
yG = (yRef - vRef)*.0022
zG = (zRef - vRef)*.0022
return true

8.4.4 Three Dimensional Animation of Airplane Pitch, Roll & Heading

Using acceleration data has numerous uses in the field of engineering. Combineeiaditty data from a compass
you can control cars, airplanes, ships, submarines and robots. You can create balancing and walking robots. You can
control a robot arm with accurate positioning.

Using acceleration data (with a gyroscopic unit) you can ceeagey viable Inertial Navigation System. An INS uses
acceleration data to calculate speeds and translations (distances) from a start point. With an INS you do not even need a
compass to know where you are. Using the translations in the three axes yalcakate how high and where you are

quite accurately. The math is quite complex; it is not just straightforward integration. There are nuances to things like
using filtering to filter out noisy data and combining data from other sources like gyroscdpamgrasses. See

Chapter 10 for an implementation of@ry simplistichut entertaining INS of sorts.

Another use for acceleration data is calculation of Pitch and Roll. Pitch is the angle between the longitudinal axis
(body) of an airplane (for instancahd the horizontal. Roll is the angle between the lateral axis (wings) and the
horizontal. For full control of an airplane one also needs the Heading, which is the angle betwesxiglama the
magnetic north pole. This is obtained from a compass.

If our PPDB were to be placed on an airplane with the HMC6352 and H48C we would be able to acquire information
on the attitude of the airplane in 3Epace. To calculate the pitch and roll we assign the longitudinal axis asxige x
and the lateral axis aké y-axis. Heading will be a rotation around thexs.

To calculate pitch we will need to find the tilt angle the longitudinaxps) is making with the vertical {&xis). This
isaTan(gX , gZ). Likewise the roll is the angle of theaxis with the ertical. This isaTan(gY,gZ). For the heading
we will use the compass reading.

Page200

More Advanced Hardware

+7Z

r

" Heading

4y Pitch &7

+X_“IRoll
+

=

Figure 8.9: Pitch, Roll and Heading

2/When we calculate the tilt of theaxis or yaxis we are actually calculating the angle it makes with the
vertical usingaTan2(gX,g2).1 f t he pl ane i s | evel this angl e il b
calculated tilts to have the correct pitch and roll values.

in RobotBASIC theaTan(x,y) function requires the first parametertobethea | ue (cosd) fand t
they-val ue (sind). I n other | anguages (e. g. C++) it mi

2\ The tilt calculations require that the deviugt be experiencing any forces other than gravity. Any additighal
forces would introduce additional acceleration, which wouldiee the tilt calculations incorrect due to the
additional component accelerations. A better way to obtain pitch and roll is to use a gyroscopic device.

The program H48C_Plane.Bas will use the power of RB and the power of our protocol and firmwareycadi&p
Animation of the orientation in 3D space of a simple airplane representation. We will keep the program as simple as
possible so not to cloud the issues with too much detail. Nevertheless, you will be quite impressed. You will be able to
pitch androll and turn the PPDB and you will see the airplane figure respond according to your movements. Moreover,
there will also be a Compass instrument and Attitude Indicator (Al) instrument. The response is instantaneous. When
you consider what is going on yauill be quite surprised at how responsive and dynamic the display is. The system

will:

¢ Send a command over the serial link to ask for the H48C data

¢ Receive the 5 bytes

¢ Reconstitute the-axis raw data

¢ Calculate the dorces

¢ Calculate the tilt angles ofeéhx and y axes

¢ Send a command to get the HMC6352 heading

¢ Reconstitute the heading

¢ Use these angles to calculate the transformati on
¢ Use RB&6s graphics engine to transform the body co

Chapter 8

¢ Use RBO0s graphics engine to transform the 3D body
¢ Draw the airplane representation on the 2D screen

¢ Draw the Compass instrument including its required calculations

¢ Draw the Attitude Indicator (Artificial Horizon Indicator) drits required calculations

All the above has to be performed continuously and rapidly enough to be able to display a faithful representation of the
plane and the two instruments in response to moving the PPDB-$p&E2 in a convincing animation.

H48C Pl ane. Bas uses RB6s 3D graphics engine to transforn
screen coordinates (2D) of these transformed points so as to draw the plane on the screen. The program also uses some
of the math functions in RB> calculate geometric properties of the Al instrument and to plot it and the compass
instrument in 2D.

The transformations are rotations around the x,y and z axes. Heading is a rotation aroumdstHeitzh is a rotation
around the yaxis. Notice, ifis the yaxis since pitch is a tilt of theaxis as if the plane is hinged by its lateral (y) axis.
Likewise Roll is a rotation around theaxis. See Figure 8.9. The origin of the axes is at the center of gravity of the
plane.

Figure 8.10: Compass anéccelerometer orientation and axes setup.

In the program we use tiieead 48HC()subroutine that we used in the H48C_Tester.Bas program. Also notice the
PlotPlane() subroutine. You are of course already familiar withSemdCommand()routine. Additionaly, notice

how thelnitialization routine creates the body coordinates of the airplane. The airplane is not an elaborate image, all
we want is to see the principle in action and complicating the program would not serve that purpose.

The H48C was placed dhe PPDB so that the positiveaxis is pointing in the same direction as the heading reference
on the HMC6352 compass (Figure 8.10).

The RobotBASIC 3Bgraphics engine follows the rightainded coordinate system standard. The H48C Axis system
obeys the ghthanded standard too (see Figure 8.10). However, when tilt angles are calculated the pesiisve Y
tilting down to the left (Figure 8.10) is a positive angle. This is opposite to thehdgladed standard where a rotation
around the axis as shown ifrigure 8.10 is to the right. Thus we will need to make the tilt angle negative before we
use it to calculate the rotation transformation around taeix (see bold lines in the listing below). The same for the
Heading; the righhanded standard dictatdst a turn to the left (Figure 8.10) is positive while compass turns are

Page202

More Advanced Hardware

positive to the right. Therefore we also need to negate the compass heading before using it in the rotation
transformation around the-axis (see highlighted lines in the listing twe).

In the listing you will notice that the line of code to transform the body coordinate points for the heading is commented
out. This is because to control the plane you want the picture to be oriented as if you are looking at the plane from
behind. Ifthe line is uncommented the plane will be rotated irspBce and you will not be able to orientate yourself

for the picture correctly. Try to uncomment the line and see how this affectpsispective

Notice the use of thimclude file Instruments.Bs we used in Section 8.1.4. You already saw how we used the
DisplayCompass (subroutine. We will use the routine in this program too, with some parameters to force the
instrument to be of a certain size and position on the screen. The subBisgileyAttitude() is a similarly versatile

and generic subroutine to draw an Attitude Indicator (Al) instrument for pitch and roll. The Al is a simple one but quite
functional and gives an excellent feedback in addition to the 3D airplane representation dflf@mkdland pitch.

The subroutind®lotPlane()takes care of all the calculations and plotting of the 3D plane on the 2D computer screen.
Also now the subroutinRead H48C()from the program H48C_Tester.Bas in Section 8.4.3 has been moved to the
include fie, so there is no listing of it in the program below.

The 3D airplane and both the Compass and Al instrumert
commands with a few mathematical functions. We will not explain the details. You shulitidasy to figure out the
program by just reading the code (also read the code of Instruments.Bas in Section 8.1.4). If there are commands and
functions in the program with which you are not familiar, look them up in the RobotBASIC Help file. All the
commands that startwithear e t he graphics engine commands. RB&ds ma
powerful feature that enables the program to be so small yet so powerful.

» RobotBASIC Interactive Terminal Screen [C:\Data\A_Hardware_Interfacing And_Control Protocol\H48C_Plane.BAS] @
z046 a3 z09 450
0.1826 0.4598 0.9300
= 40 = 420 29

¥ Beal Mode
21 S

24 2 .
Lol

Figure 8.11:Screenshot of H48C_Plane.Bas

H48C_Plane.Bas
/[H48C_Plane.B as
/lworks with Firmware_Main_E.Spin
Port = 8 //change this as per your system
#include ".. \ Utilities&IncludeFiles \ Instruments.Bas"
Main:

Page203

Chapter 8

gosub Initialization
while true
call Read_H48C(v,x,y,z,0X,9Y,92)
xystring 10,10,v;x -V;y -V;z -v;spaces(20)
xystring 50,30,Format(gX,fmta),Format(gY,fmta),Format(gZ,fmta)
xystring 50,50,Format(rtod(atan2(gX,gZ)) - 90,fmtb)
Xystring -1, - 1,Format(rtod(atan2(gY,92)) - 90,fmtb)
Xystring - 1, - 1,Format(rtod(atan2(gZ,gY)),fmtb)
/lIv=0 /luncom ment this to refresh the vRef all the time
call SendCommand(24,0,s)
H=0
if SendCommand__ Result then H = (getstrbyte(s,4)<<8)+getstrbyte(s,5)
call PlotPlane(gX,gY,g9Z,H)
wend
End
1l
Initialization:
f mta = "#0.0000 " \ fmtb=" #00 "
setcommport Port,br115200
v=0
data plane;9,.5,6,1.5,4,1.5
data plane;0,8.5, -185, -1,15, -4,5 -535, -6,35
data plane; -6,-3.5, -5,-35, -4,-05, -1,-15, -1,-850, -85
data plane;4, -15,6, -159, -059, 5

data Eye;170,pi(),pi(.30),1550,400,350 //rho,theta,phi,d,Cx,Cy

dim Plane[maxdim(plane)/2,5]

mconstant Plane,0

for i=0 to maxdim(plane)/2 -1

Planel[i,0] = plane[i*2]
Plane[i,1] = plane[i*2+1]

next

flip on

AddCheckBox "Mode",630,13 0,"&Real Mode",1,0
return
1
sub SendCommand(C,P,&s)

m=""

serialout C,P

serbytesin 5,s,x

if x <5 then m="Comms Error"

xystring 500,20,m,spaces(30)
return (x == 5)
1l
sub Plot Plane(gX,gY,9Z,H)

thX = atan2(gX,92) - pi(.5) /Ix - tilt

thY = atan2(gY,92) - Pi(.5) /ly - tilt
mcopy Plane,K //refresh body coordinates array
geRotateA K, -thY,1 //rotate around x - axis i.e. Roll

/Inegative to orientate for Right - Handed Standard

geRotateA K,thX,2 //rotate around y - axis i.e. Pitch
/lgeRotateA K,dtor(- H),3 /Irotate around z - axis i.e. Heading
/Inegative to orientate for Right - Handed Standard
ge3dto2da K,Eye //calculated screen coordin ates
for i=1 to maxdim(K) -1 /Iplot the plane

lineK[i -1,3],K[i -1,4]K]i,3],K]i,4]

Page204

More Advanced Hardware

next
call DisplayCompass(!GetCheckBox("Mode"),H,600,200)
call DisplayAttitude(thX, - thY,200,200)
flip
clearscr
return

8.5 Using the QTI Infrared Line Senso rs

[Cut Out]

8.5.1 The New Firmware
[Cut Out]

8.5.2 Testing the QTI
[Cut Out]

8.6 Adding Sound

[Cut Out]

8.6.1 The New Firmware
[Cut Out]

8.6.2 Testing the Speaker
[Cut Out]

8.6.3 An Exercise
[Cut Out]

8.7 The Final System Firmware

Our firmware is now compte. We will change the hardware to be wireless in the next chapter, but that requires no
firmware changes and just a minor hardware change (also see Chapter 11). In the zip file with all the source code thert
is a folder called Final_Protocol. In it yeuill find all the files needed to compile and upload the firmware to the
Propell er6s EEPROM (F11). Now that the firmware is coc
PPDB with any programs you develop. You would not have to changertiveaire agairi unless you want to add

new hardware. We have renamed all the four objects to Protocol_XXXX.Spin where the XXXX is Main, Reader,
Others, or Motors. Thop-levelobject is Protocol_Main.Spin.

In the subfolder are also copies of all thedtparty objects that we used. You will also find all the RB programs that
work with the new firmware. They are mostly copies of the programs we have seen so far placed there for your

Page205

Chapter 8

convenience. There @ae new prograntalled Complete_System_Tester.B8sd Figure 8.15 below). This program
incorporates all the generic and versatile subroutines from all the other programs that we developed during the
progression through Chapters 7 and 8. The program performs a dazzling number of tasks all going oaaisiyltan

and yet

in real time. It is a testament to the power of our protocol, the Propeller Chip and RobotBASIC.

See Appendlx B for the following:

[l =l <l i = =l i i il

A tree of objects hierarchy for the Final Protocol

A tree of objects hierarchy for the Extended Protocohff@hapter 11)

Figure B.1: The System6s Conceptual Schematic
Figure B.2: Propeller Pin Utilization

Figure B.3: Hardware Connections Schematics.

Figure B.4: Picture of the final PPDB setup

Table B.1: List of Protocol Command Codes for the Final Protocol

Table B.2: System Parameters Value Mapping when using the Final Protocol

Table B.3: List of Extended Protocol Command Codes (as in Chapter 11), in addition to Table B.1
Figure B.5: Protocol State Diagrams.

Here is a list of all programs that work with the &ior Extended Protocols

u

[enta et en-BN en-l ent- en-R xR ant N et en- ant i et en i e e

Complete_System_Tester.Bas (a new program for the final firmware)
Compass_Tester.Bas
Compass_Animation.Bas
EEPROM_Tester.Bas
H48C_Plane.Bas
H48C_Tester.Bas
Individual_Motors.Bas
Piano_2.Bas

Ping_03.Bas

Pots_03.Bas
Program_12_RealSimple.Bas
QTI_Tester.Bas
RobotMoves_12.Bas
Servomotor_12.Bas
Speaker_Tester_2.Bas
Turret_Tester.Bas

your

3/ Complete_System_Tester.Bas (Figure 8.15) is a variation on Program_12_ Advanced.Bas to incorp@rate all
the new hardware from Chapter 8. It is an irdéngg and comprehensive GUI system for testing the firmwal
and hardware. Also, it has numerous reusable and versatile subroutines that you may want to use or erulate in

software. Notice how the Compass and Al instruments are now smaller and nepdsilice same

include file was used to draw them as before. You may want to migrate some of the subroutines in the ffogram
to another include file so that you can use them in your own progRemas. 48HC()for example and
mmDistance()have already been med to the Instruments.Bas include file.

Page206

More Advanced Hardware

» RobotBASIC Interactive Terminal Screen

P20.P18 LEDs
rre

P7.P5 Pushhuttons

ol 10
QTIs
@ X |

164°

S 15

[C:\Data\A_Hardware_Interfacing And_Control_Protocol\Complete_System_Teste... @

eX
-0.1870,

gZ
-0.2772,

gZ
1.0186

09X
10

93¢
15

RBeset The Propeller

Save The Settings

Restore Eactory Settings

4 .
L If Lit => exror

. Last Comunand , Parameter

70 , D
v Real Mode

Dimmer Level (P23) P22 Blink Duration P21 Blink Frequency

I] Bl] r]
1.637 V 792 ms 10 Hz

Unit Change the Pots' positions and obsexve the Sliders

nits
@ Millimeters ¢ Feet | | | _]
© Meters " Yards 0 2587 5248 O 1345 5368
" Inches

B~

3632.3196 mm

Finished

Move the Pots from max to min waiting a litile while
at each end then repeat the process a few times
When done press "Finished"

Twret

“«»

Move Motors with Keyhoard Arrows
Or Click on the arrows above
Space or click in middle white hox to Stop

=

PISiE o

Figure 8.15: Complete_System_Tester.Bas Screenshot. Pots calibration is in progress.

Page207

Chapter 8

8.8 Summary

In this chapter we:

¢ Added an HMC6352 compass unit.

¢ Learnt about intecog interactions.

¢ Learnt about a procedurdtategy for adding other hardware in a systematic manner.

¢ Added a turret for the Ping))).

¢ Added the ability to control the motors individually.

¢ Added the mechanisms to save/retrieve the system parameters to/from EEPROM.

¢ Added an H48C accelerometer unit.

¢ Developed authentic looking simulated Compass and Attitude Indicator instruments.

¢ Utilized the#includec o mmand i n RB to include a library
to rewrite these useful subroutines.

¢ Utilized RBO06se3D graphics engin

C Added 3 QTls.

¢ Added a Piezoelectric Speaker with the ability to play RTTTL like musical tunes.

of

Page208

r

ou

