
RobotBASIC Projects
For The Lego NXT

Robot Programming for Beginners

John Blankenship & Samuel Mishal

Copyright © 2011 by
John Blankenship and Samuel Mishal

ISBN-13: 978-1450558570 ISBN-10: 1450558577

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage
or retrieval system without the prior written permission of the
copyright owner.

Trademarked names may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the
trademark.

Images of proprietary devices and sensors are reproduced with the
permission of the manufacturing companies.

The information and projects in this book are provided for
educational purposes without warranty. Although care has been
taken in the preparation of this book, neither the authors or
publishers shall have any liability to any person or entity with
respect to any special, incidental or consequential loss of profit,
downtime, goodwill, or damage to or replacement of equipment or
property, or damage to persons, health or life, or any costs of
recovering, reprogramming, or reproducing any data, caused or
alleged to be caused directly or indirectly by the information
contained in this book or its associated web site.

Contents AT
A Glance

Preface v
Table Of Contents vii
1- The Lego NXT 1
2- Controlling the Motors 5
3- The Line Sensor 17
4- The Sound Sensor 29
5- The Bumper Sensor 33
6- The Range Sensor 39
7- Dealing With Objects While Following a Line 47
8- LineFollowing with Multiple Sensors 55
9- Suggestions For Projects 61
A- Constructing the Robot 65
B- The LegoLibrary.bas 73
C- Calibrating and Customizing LegoLibrary.Bas 81
D- The Bluetooth Connection 87
E- RobotBASIC Subroutines 93
F- RobotBASIC Tutorial 97
Index 107

Page vii

Table Of Contents

Preface xi
1- The Lego NXT 1

Our Robot 1
The Sensors 1
Physical Construction 2

2- Controlling the Motors 5
Lego Documentation 5
RobotBASIC’s Direct Command Library 6
A Motor Control Demo Program 6
LegoInit() 8
LegoDriveMotors() 8
Open-Loop Control 10
More Library Routines 10
Additional Routines 12
Calibrating the Routines 13
The Lego Simulator 14
Examining the New Movements 14
Demonstrating Errors 15

3- The Line Sensor 17
Feedback 17
An Algorithm for Following a Line 17
The Answer 19
Converting the Algorithm into a Program 19
Initialization 20
Possible Solutions 22
Other Solutions 23
Moving to the Real-World 24
Reducing the Speed 25
A Debugging Option 26
Summary 27

Table Of Contents

Page viii

4- The Sound Sensor 29
Initializing the Sound Sensor 29
A Sound Sensor Demo Program 29
Using the Simulation 31
Debugging the Sound Sensor 31

5- The Bumper Sensor 33
Initializing the Bumper Sensor 33
A Bumper Demo Program 33
Debugging the Bumper 34
Using the Simulation 35
Using Two Sensors 35
The New Program 35

6- The Range Sensor 39
Lego’s Range Sensor 39
Measuring the Distance to Objects 39
Using Range Data to Control the Robot 40
Looking Left and Ahead 41
Find a Wall and Follow it 42
A Complex Project 42
Finding a Wall 43
Following the Wall 44
Experimenting 46

7- Dealing With Objects While Following a Line 47
The Goal 47
Overview of the Algorithm 49
Creating the Environment 51
Follow Line Till Object Bumped 51
Follow Wall Till Line Found 52
Finding the Line Again 53
About Face 53
Summary 54

8- LineFollowing with Multiple Sensors 55
Three Line Sensors 55
Developing the Algorithm 56
Coding the Algorithm 57
Controlling the NXT 58

Table Of Contents

Page ix

9- Suggestions For Projects 61
Line Mazes 61
Corridor Mazes 62
Grippers 62
Cluttered Rooms 62
Following Lines 62
Closest Object 62
Mapping a Room 63
Control Over the Internet or With Your Voice 63
Create Your Own Projects 63
Sharing Your Programs 63

A- Constructing the Robot 65
B- The LegoLibrary.bas 73

Lego Documentation 73
Direct Commands 74
Library Source Code 74

C- Calibrating and Customizing LegoLibrary.Bas 81
FAST, SLOW, STOP 84
RightTurnTime,LeftTurnTime 85
AdvanceTime 85
DebugTime 85
TurretSpeed, TurretTime 86

D- The Bluetooth Connection 87
E- RobotBASIC Subroutines 93
F- RobotBASIC Tutorial 97

What is a Program? 97
Computer Languages 97
RobotBASIC 98
The Output or Terminal Screen 100
Drawing Lines 100
Running Programs 101
Saving and Retrieving Programs 102
Errors in a Program 103
Adding to the Program 104
Using Variables 104
Using Loops 104

Table Of Contents

Page x

Making Decisions 105
More Help 105

Index 107

Page xi

Preface

ot long ago, if you wanted to build a robot you needed
a degree in electronics. Nowadays, many companies

provide motor controllers, sensors, and even kits that make
it easy for anyone to experiment with hobby robotics. No
one though, makes experimenting with hardware any easier
than Lego.
 Lego’s NXT system allows you to snap together a robot
base without tools of any kind. They provide a variety of
self-contained, modular sensors and motors that can be
interfaced with the NXT computer by simply connecting
them with plug-in cables.
 The problem with the NXT Robot though is software.
While the visual programming language that ships with the
system is supposed to be easy-to-use for beginners, many
find it far from intuitive. Unless the tasks you are
attempting are rudimentary and uncomplicated you may
find the NXT’s programming system difficult to
comprehend. Even many of the after-market languages
available for the NXT have cryptic syntax that can frustrate
a new user.
 One solution to these problems is RobotBASIC. Its
easy-to-use English-like syntax makes programming easy
to grasp, even for beginners. We provide a library of
routines that allow you to control the NXT without
downloading anything to the robot itself. RobotBASIC
controls the NXT’s motors and reads sensory data by

N

Preface

Page xii

talking directly to the NXT computer using Lego’s wireless
protocol. With our system, you program totally on the PC
and when your program is ready, just run it and watch the
robot respond.
 Our Lego Library even has optional (but recommended)
predefined constants and conversions that make
programming even easier for beginners. You can
command the robot to move at a FAST rate, for example,
instead of setting the motor speed to an obscure number
like 74. As another example of simplicity, our library
returns distances measured with the range sensor in inches
rather than milliseconds.
 We also provide a Lego Simulation Library that allows
your NXT programs to operate with the RobotBASIC
simulator, letting you experiment even when the Lego
hardware is not available.
 The Simulation Library is extremely valuable for
schools because a robotics curriculum can be implemented
with only a single robot per classroom or perhaps even one
per school. Every student can work with their own
simulated robot both at home and in the classroom and
when someone gets their program working, just plugging in
a USB Bluetooth adapter will instantly allow their program
to control the real NXT.
 This system makes programming easier to understand
because the user can concentrate on concepts rather than
cryptic syntax or an unintuitive graphical interface.
 Finally, RobotBASIC is a powerful, full-featured robot-
control language, so after you have learned all you can
from the NXT you can still use the RobotBASIC skills you
learn from this book when you move on to other hardware
technologies with more options and capabilities.

Page 1

Chapter 1
The Lego NXT

he Lego NXT system comes with three gear-head
motors and numerous sensors that can be used, along

with a multitude of plastic snap-together structural parts, to
build a robot. Lego’s experiments often create different
robots based on the sensors needed at the time. We felt it
made more sense to build one robot that had all the sensors
needed for our experiments.

Our Robot
The robot used throughout this book is shown in Figure 1.1.
It uses two motors to move the robot, each motor moving
one of the main drive wheels. When both wheels turn the
same direction, the robot will move forward or backward.
When they move in opposite directions, the robot will
rotate left or right.

The Sensors
The robot supports a variety of sensors. A bumper sensor
is mounted at the front of the robot to allow it to detect
objects in its way. A sound sensor allows it to react to hand
claps or other sudden noises.

T

Chapter 1: The Lego NXT

Page 2

Figure 1.1: This NXT robot will be used throughout the book.

An ultrasonic ranging sensor measures the distance to
objects. This sensor is mounted on a motor controlled
turret so that objects can be detected in front of the robot or
off to the left side. When facing forward, the ranging
sensor can be used to avoid objects blocking the robot’s
path. When it is faced to the side, it can be used to make
the robot remain close to an object so as to navigate around
it by following its contour.
 Three line sensors are mounted near the front of the
robot. Three are used in our robot in order to demonstrate a
variety of line following methodologies. If your robot only
has one line sensor, don’t worry, because projects are
provided for that configuration too.

Physical Construction
If you have experimented with a Lego NXT system you
will notice that the main body of our robot is basically

Chapter 1: The Lego NXT

Page 3

constructed like one shown in their construction guide. If
you have played with any of the Lego parts, you probably
will have no trouble modifying Lego’s original design so
that it can support the additional sensors needed for our
projects. Many of our modifications (such as the bumper
sensor assembly and the rotating rear wheel) are similar to
those shown in various projects in the Lego documentation.
If you need more help, Appendix A provides several photos
of our robot in various stages of completion. Your robot
does not have to be exactly like ours. The important thing
is that your robot support all the sensors you wish to
experiment with.
 As you proceed with your construction, there are a few
things to keep in mind. The line sensors should be
mounted at the front of the robot so that they hang about a
quarter of an inch above the ground. The turret motor that
moves the range sensor on our model is mounted on the
rear of the robot to maintain proper balance. Without the
rear weight, the robot can tip forward pushing the line
sensors against the ground causing faulty readings.
 The rotating turret that positions the ranging sensor
works well, but it is far from sophisticated. A simple lever
attached to one of the gears acts as a stop at both ends of
the turret’s rotational travel. To move to either of the two
possible positions, we simply turn on the motor briefly (the
on-time was arrived at experimentally) in the proper
direction after which the motor coasts toward its
destination.
 The lever easily stops the turret’s movement at each end
of its travel since the motor is no longer under power. A
series of gears (you could also use some form of belt-
assembly) allows the drive motor to be mounted on the rear
of the robot (for weight balancing, as mentioned earlier)
while the ranging sensor is mounted on the front half of the
robot. The range sensor needs to be at the front of the robot
so it can properly navigate around objects (Chapter 6).

Chapter 1: The Lego NXT

Page 4

 The Lego NXT computer, often referred to as the brick,
can only control three motors and four sensors simultan-
eously. Our robot has only three motors so no problems
there, but it has six sensors (sound, bumper, range, and
three line sensors) all permanently mounted on the robot.
Since none of the experiments in this book need more than
four sensors, you will only connect the ones needed for the
experiment at hand.
 Now that you know what our robot will look like, let’s
move on to the next chapter and find out how to control its
motors.

Page 5

Chapter 2
Controlling the

Motors

ormally when you experiment with a Lego robot, you
must download your programs to the NXT’s com-

puter. In this text, we will use a different approach.
Fortunately, Lego provides links in their system software to
allow their robot to be controlled over a Bluetooth wireless
line using direct commands. This feature allows us to
control the NXT robot without downloading any programs.
In fact, there will be no need to program the NXT computer
at all.

Lego Documentation
Lego makes available extensive documentation and
technical information on how to utilize their direct
commands, but you won’t need to know any of these
details thanks to our system. We used Lego’s
documentation to create a library of routines that make it
easy for you to control the robot using simple RobotBASIC
commands.
 We realize though, that some readers may want more
information on how the direct commands work, so we
provide the full source code for LegoLibrary.bas in

N

Chapter 2: Controlling the Motors

Page 6

Appendix B. We strongly suggest though, that you work
through the entire book before you even look at Appendix
B. Remember, you don’t need any of the material in
Appendix B to understand any of the projects in this book,
so ignore it for now and concentrate on learning the
principles of how to program the robot.

RobotBASIC’s Direct Command Library
In order to make controlling the robot as easy as possible,
we have isolated all the technical complexities in a set of
library routines. When the library is included in your
RobotBASIC programs, you will have available numerous
commands that allow you to control motors and read
sensory data. Later chapters will explain how to utilize the
sensors to create intelligent behaviors. For now, let’s see
how to control the Lego motors using the library routines.
Look at the program shown in Figure 2.1.

#include "LegoLibrary.bas"
BluetoothPort = 34
call LegoInit(BluetoothPort)
call LegoDriveMotors(FAST,FAST)
call Wait(3000)
call LegoDriveMotors(STOP,STOP)
end

Figure 2.1: This simple program demonstrates how to
control two of the Lego NXT’s motors.

A Motor Control Demo Program
The program in Figure 2.1 demonstrates how to control the
robot’s motors, but it also shows how easy it is to use the
library routines. This text assumes you have at least a
little programming experience with RobotBASIC. We
will provide nearly everything you need to know, but if you
have never programmed with RobotBASIC before, we
suggest you go through Appendix E and perhaps the PDF
Tutorial on the home page at www.RobotBASIC.com.
You can also use the RobotBASIC HELP File to obtain
more information on commands used in this book. If you

Chapter 2: Controlling the Motors

Page 7

have never programmed before in any language, you
should consider reading one of our beginner’s books such
as Robots in the Classroom or RobotBASIC Projects for
Beginner’s, both of which are available through our web
site.

RobotBASIC has two types of modular structures
called subroutines. The first of these is the GOSUB-style
subroutine typicaly used in most dialects of the BASIC
language. RobotBASIC also has a more advanced,
CALLable function-style subroutine that allows for
parameter passing and local variables. This book will
make extensive use of both of these types of
subroutines and it is important that you understand how
to use both types. See Appendix F for more
information.

The first line in the program of Figure 2.1 causes the
LegoLibrary to be temporarily added to a program when
you run it, and then erased when the program terminates.
The library file must be in the same directory as your RB
program, or you can specify a path with the file name in the
#include statement.
 When the library is included, all the routines in the
library file will be available to your program just as if you
had written them yourself. In this program we will call
three different library routines to demonstrate how easy this
process is. Calling these routines is how we tell them to
execute. We can pass information to a routine by listing it
between the parentheses following the name of the routine.
When the routine finishes its job, it terminates and
execution continues with the code following the line with
the call statement.

Chapter 2: Controlling the Motors

Page 8

The names of the library routines (as well as all
variables used in RobotBASIC) are case sensitive.
Misspelling a name or using the wrong capitalization
will prevent RobotBASIC from finding it. This will
cause an error indicating that the name of the desired
function is incorrect. The commands in RobotBASIC
(things like call, #include, and so forth) are NOT
case sensitive.

LegoInit()
The first call is to a routine called LegoInit(). It is
assumed you have linked your Lego NXT system to your
PC using a Bluetooth adapter. If you are not familiar with
how to do this, refer to Appendix C for more information.
 When you call the LegoInit() routine, you must
pass it the port number assigned to your connection. Again,
refer to Appendix C if you need help with this topic.
 On our machine, the Bluetooth connection for the Lego
robot was 34. You could place the 34 directly in the call to
LegoInit(), but we will use a variable as shown in
Figure 2.1. The reason for using a variable will become
clear later in the book. The call to LegoInit()
automatically establishes communication with the Lego
robot and initializes the library so it can be used in your
program. Calls to the library routines will cause errors if
the library has not been properly initialized.

LegoDriveMotors()
The next program line calls the LegoDriveMotors()
routine and passes it two predefined variables. In this case,
we are asking both the left and right motors to turn at the
FAST speed. You can also command each motor to move
SLOW and STOP. Actually, the library lets you specify
numerically the exact speeds you want, but you should use
the predefined values for everything in this book, because

Chapter 2: Controlling the Motors

Page 9

they will allow you to use the simulation library, but more
on that later.
 The first parameter passed to LegoDriveMotors()
controls the motor connected to Port 1, which on our robot
is the left motor. The second number controls port 2 which
should be the right-hand motor.
 Once the motors are turned on, the program delays for
3000 ms (3 seconds) by calling a library routine called
Wait. Finally, another call to LegoDriveMotors() turns
all motors off.

RobotBASIC has a delay command but it should
not be used with the programs in this book. The Wait
routine shown in Figure 2.1 provides the same delay,
but it also provides added functionalities needed by
other library routines.

When you run the program in Figure 2.1, the robot should
move forward for three seconds then stop. If the program
does not work properly, start by checking to see if your
motors are connected to the correct ports. If there is a
problem with the Bluetooth connection, RobotBASIC will
issue an error saying the port is not available.
 Once you get the program running, try replacing both
the FAST parameters with SLOW to make the robot move
forward, but at a slower speed. If a parameter is negative,
the associated motor will turn in reverse. Two negative
numbers will make the robot go backwards. If one number
is negative and the other positive, the robot should spin in
place, because one wheel is moving forward and the other
is moving backward.
 Can you guess what would happen if you issued this
command:

call LegoDriveMotors(SLOW, FAST)

Chapter 2: Controlling the Motors

Page 10

Since the right motor will move faster than the left, the
robot will move forward, but in a slow turn to the left.
 Look at the program in Figure 2.2. It turns the motors
on in a particular way then waits a specified number of
milliseconds. When the program is run, the robot should
move forward about half the length of the robot, then make
a left turn of about 90 degrees, then move forward again. If
the robot is not making a proper right turn, try adjusting the
Wait time. A bigger wait time will make the robot turn
more, a smaller delay will turn the robot less.

#include "LegoLibrary.bas"
BluetoothPort = 34
call LegoInit(BluetoothPort)
call LegoDriveMotors(SLOW, SLOW)
call Wait(1500)
call LegoDriveMotors(-SLOW, SLOW)
call Wait(1100)
call LegoDriveMotors(SLOW, SLOW)
call Wait(1500)
call LegoDriveMotors(STOP, STOP)
end
Figure 2.2: This program moves the robot through a specific sequence.

Open-Loop Control
When you control a robot as demonstrated in Figure 2.2, it
is called open-loop control. This simply means that you
tell the robot what to do, but you never get any feedback to
let you know if your commands were actually executed
successfully. In the chapters that follow, we will begin to
learn how information derived from sensors can influence
how our robot behaves. The ultimate goal for this text is to
help you learn to use this sensory data to implement closed-
loop feedback systems so that your robot can react to its
environment.

More Library Routines
Actions such as moving forward about half the length of
the robot and turning 90º come in handy, as we will see in

Chapter 2: Controlling the Motors

Page 11

future chapters. Figure 2.3 shows how we could build two
routines that perform these actions.
 The low-level routines in the Lego Library are function-
style callable routines because they need parameters to be
passed to them. The routines in Figure 2.3 are standard
gosub-style routines. Appendix F provides information on
these two types of subroutines.
 The first routine in Figure 2.3 is called LegoAdvance.
It turns the motors on so as to move the robot forward then
waits a predefined time period before turning the motors
off. If the AdvanceTime is calibrated properly, the robot
should move about ½ its length.

LegoAdvance:
 call LegoDriveMotors(SLOW, SLOW)
 call Wait(AdvanceTime)
 call LegoDriveMotors(STOP, STOP)
return
//----------------------------------
LegoFaceLeft:
 call LegoDriveMotors(-SLOW, SLOW)
 call Wait(LeftTurnTime)
 call LegoDriveMotors(STOP, STOP)
return
//----------------------------------
LegoHalt:
 call LegoDriveMotors(STOP, STOP)
return

Figure 2.3: These routines, when properly calibrated, make
 the robot move half its length and turn right 90º.

The second routine in Figure 2.3 is LegoFaceLeft. It is
similar to the LegoAdvance routine except that it turns the
motors on in opposite directions, making the robot rotate
around its center. If the variable LeftTurnTime is
initialized to an appropriate value, the robot should turn
approximately 90º.

Chapter 2: Controlling the Motors

Page 12

 The last routine in Figure 2.3 halts the robot by making
a call to the LegoDriveMotors() routine to stop both
motors.
 These new routines are easier to use (especially for
beginners) than the callable routines used in Figure 2.2
because the new routines do not require you to specify any
parameters. For that reason, these routines are also
included in the LegoLibrary. Look at the program in
Figure 2.4. It uses the new routines to perform the same
basic actions as the program in Figure 2.2. Notice that you
GOSUB to these routines instead of CALLing them.

#include "LegoLibrary.bas"
BluetoothPort = 34
call LegoInit(BluetoothPort)
gosub LegoAdvance
gosub LegoFaceLeft
gosub LegoAdvance
gosub LegoHalt
end

Figure 2.4: This program performs the same actions as Figure 2.2.

Another advantage to using the new routines is that it is
easier to see what the program is doing. When you see the
statement gosub LegoFaceLeft you can guess it will
turn the robot to the left even if you don’t know how to
program. For that reason, we will use routines like these
throughout the book.

Additional Routines
In order to make it as easy as possible for beginners, we
have provided many routines similar to the ones shown in
Figure 2.3. A list of routines that make it easy to control
the movement of the Lego robot is shown in Figure 2.5.
The figure also explains what each routine does, but, as
mentioned earlier, the name of the routine is usually
sufficient.
 The easy rights and lefts move the robot forward with a
gentle turn in the direction indicated. Hard rights and lefts

Chapter 2: Controlling the Motors

Page 13

turn quickly with only a little forward movement. These
actions were chosen because they can serve as the basis for
the more complex behaviors developed in later chapters.
When you write programs to control the Lego robot you
can freely mix any of the Library routines to accomplish
your goal. Just be sure to use the correct statement (gosub
or call) to execute your chosen routines.

ROUTINE NAME ACTION PERFORMED
LegoAdvance
LegoRetreat
LegoFaceRight
LegoFaceLeft
LegoHardRight
LegoEasyRight
LegoHardLeft
LegoEasyLeft
LegoHalt

Forward ½ length of robot
Backward ½ length of robot
Right turn 90º
Left turn 90º
Quick turn to the right
Slow turn to the right
Quick turn to the left
Slow turn to the left
Stop the robot

Figure 2.5: These library routines make it easy to
control the robot’s movement.

Calibrating the Routines
These new routines should move your robot as previously
described, but no two motors are alike due to differences in
friction, efficiency, and other factors. For that reason you
should not expect the robot to move exactly half its
distance when it advances, nor should you expect it to
make perfect right-angle turns. This is typical when an
open-loop system is used to control a robot.
 The whole purpose of this book is to show you how to
use information obtained from the sensors mounted on the
robot to make your robot move appropriately and even
intelligently. So, at this point, don’t worry if your robot is
not doing exactly what you think it should do. As long as
the movements are reasonable (perhaps a 10-15% error)
then we will be able to use the library to create accurate
closed-loop behaviors. If your robot’s movements are off

Chapter 2: Controlling the Motors

Page 14

by large amounts, refer to Appendix D for information on
how to calibrate the libraries for your particular robot.
Remember, unless your robot has significant errors when it
moves, you do not need to perform any calibration at all.

The Lego Simulator
In addition to the LegoLibrary, we also have provided a
LegoSimulationLibrary. The simulation library has all
the same functions, but they control the RobotBASIC
simulated robot instead of the real Lego robot. To see the
simulation in action, use either the program in Figure 2.2 or
2.4, but change the first line in the program to:

#include "LegoSimulationLibrary.bas"

After you have made the change, run the program. You
will see a small circular robot appear on the screen. It will
move forward about half its length and then turn to the left
and move forward again, just like the real Lego robot did.
 If you run the program several times, and watch closely,
you will see that the simulated robot does not always move
or turn exactly the same amount. It has a slight amount of
random error associated with everything it does, just like a
real robot. Let’s look at an example to demonstrate this
point.

Examining the New Movements
Use the program in Figure 2.6 to see how the robot reacts
to the new library routines shown in Figure 2.5. Learn to
control your robot’s movements by modifying the program
with different commands. Compare the turning radius with
both hard and easy turns to the face right and left
commands. With each variation, change the #include
statement to use the standard LegoSimulationLibrary
to see how closely the real robot responds like the
simulation.

Chapter 2: Controlling the Motors

Page 15

#include "LegoLibrary.bas"
BluetoothPort = 34
call LegoInit(BluetoothPort)
gosub LegoEasyRight
call Wait(4000)
gosub LegoHalt
end

Figure 2.6: Use the program to experiment
with the new movement routines.

Demonstrating Errors
Look at the program in Figure 2.7. The for loop causes
the robot to move forward twice then face right, four times
in a row. Think about this for a moment or perhaps even
try it yourself. Stand in an open room, move forward two
steps, and turn right. Now do this three more times. If you
took exactly the same size steps and turned right exactly
90º, then you would have moved in a square pattern and
returned to your original position.
 Remember though, our robot’s movements are not
perfect. Enter the program in Figure 2.7 and run it to see
the simulated robot try to move in a square pattern. You
will notice that the simulated robot has an error in its
movement. The error is realistic – run the program several
times and you will see that the robot moves differently each
time. If you change the first line of the program to use the
standard LegoLibrary, you will see the real robot move
in a similar manner.
 The lines in Figure 2.8 were drawn because of the call
to the library routine LegoPen(DOWN) in Figure 2.7, which
causes the robot to leave a trail as it moves (as if a pen
mounted at the center of the robot was lowered so it can
draw as the robot moves). You can substitute UP with
DOWN to raise the pen if you wish to stop leaving a trail.

Chapter 2: Controlling the Motors

Page 16

#include "LegoSimulationLibrary.bas"
BluetoothPort = 34
call LegoInit(BluetoothPort)
call LegoPen(DOWN)
for i=1 to 4
 gosub LegoAdvance
 gosub LegoAdvance
 gosub LegoFaceRight
next
gosub LegoHalt
end

Figure 2.7: This program moves the robot in a square pattern.

Figure 2.8: The simulated robot has error in its
movement, just like a real robot.

You can see from Figure 2.8 that the robot is indeed trying
to move in a square motion. It is important to realize that
even if you could calibrate the library perfectly, the robot
will still not move in a square because there is always some
error added to its actions. We will learn how to overcome
this error in future chapters by creating programs that allow
our robot to adjust its movements based on its environment.
If you are new to robot programming this may sound
difficult or even impossible, but it is actually far easier than
you might imagine. Roll up your sleeves and move on to
the next chapter. The adventure is about to begin.

Page 17

Chapter 3
The Line Sensor

his chapter introduces many principles and techniques
needed in later chapters, so you should study it

carefully before moving on.
 Recall the exercise in Chapter 2 where you were asked
to pretend you were a robot and perform two actions (move
forward, turn right), four times in a row. If done perfectly,
your movements would describe a square. If you tried it
though you know you don’t end up exactly where you
started and you are facing at least a slightly different
direction.

Feedback
If you try these actions with your eyes open you can move
in a square easily, because the feedback from your eyes
allows you to constantly monitor your motion and
continually correct any mistakes. This is a powerful
concept and one we should apply to our robot in nearly all
situations.

An Algorithm for Following a Line
In order to demonstrate this principle we will develop an
algorithm (a step-by-step plan) for our robot to follow.
Coming up with an appropriate algorithm is not always
easy so let’s examine how it can be done.

T

Chapter 3: The Line Sensor

Page 18

 For this example, we will assume that our robot has a
single line sensor mounted near its front bumper. The
sensor generates a value of 1 (meaning it is over a black
line) or 0 (meaning it sees only white space). These
sensors work by emitting light towards the ground and then
using a photo-detector to determine if the light is reflected
back. A light colored surface reflects the light and a dark
surface does not. An easy way to create our line is to draw
it with a black felt-tip marker on a white poster board.
 The easiest way for you to develop an algorithm is to
place yourself in the position of the robot. In this example,
the robot is being asked to follow a line but it only has one
“eye” and can only see a tiny little area below the sensor.
To give you the same limitation as the robot, cut a small
hole in a 3 by 5 card and lay it on the line as shown in
Figure 3.1.

Figure 3.1: The hole in the card lets you see the line
the way the robot does.

In order to make this experiment even more like the robot,
get a friend to help you. One of you will be the robot
program that decides what to do, and the other person will
be the sensor and the motors of the robot – we will call that
person the hardware-person.
 Assume a starting position where the line can be seen
through the hole. The hardware-person says “I see the
line” and the program person must decide what to do. For

Chapter 3: The Line Sensor

Page 19

instance she may say “Move forward” or “Turn right” or
other similar actions. After the hardware-person moves the
card in the manner requested, he acts like the sensor and
reports whether the line can be seen or not. Using this new
information, the program-person has to decide on the new
action.
 If you think about this for a moment, it should be
obvious that the program-person only has two actions that
can be ordered; one action if a line is seen and another
action if a line is not seen. Get a 3 by 5 card and another
person to help and see if you can figure out what actions
should be taken when the line is seen and not seen.
Remember, the program-person must sit well away from
the line so she cannot see it. The only information she has
is what is reported by the hardware-person. Please try this
exercise before reading the answer below.

The Answer
The answer may be easier than you think. Basically, if we
see the line we want to move away from it, always in the
same direction (let’s say we move forward and right). If
we don’t see the line, we move back toward it (perhaps
forward and left). We can’t just move left and right,
because that would mean the robot would just sit in one
spot and rotate back and forth. The idea behind this
solution is that the robot is constantly moving to the right
away from the line if it sees it, and back to the left when it
can’t. Using our two-person experiment, see if this simple
algorithm works using a real line and the 3 by 5 card. Once
you see that it does work, we are ready to convert this idea
into a program.

Converting the Algorithm into a Program
Figure 3.2 shows the code that implements the algorithm
described above. The main while-loop does all the work.
It uses a call to the function LegoLineSensor() to read
the status of the sensor. There are two parameter passed to

Chapter 3: The Line Sensor

Page 20

the subroutine. The 2 indicates which Lego Port the sensor
is plugged into. The variable a is passed so that the routine
can place the answer in it. After the call, the variable a will
be a 1 if a line is seen or 0 otherwise. A multi-line if-
statement checks the value of a and if the line is seen, the
library routine LegoEasyRight is used to move the robot
forward with a drift to the right. If the line is not seen (the
ELSE block), the robot moves forward with a drift to the
left. The loop causes this action to be repeated, thus
implementing our algorithm. Notice that both call and
gosub statements are used depending on the type of library
routine being executed.

#include "LegoSimulationLibrary.bas"
BluetoothPort = 34
gosub DrawLine
call LegoInit(BluetoothPort)
call LegoLineInit(2)
while true
 call LegoLineSensor(2,a)
 if a=1
 gosub LegoEasyRight
 else
 gosub LegoEasyLeft
 endif
wend
end

Figure 3.2: This program allows the robot to
 follow a line using one line sensor.

Initialization
There are three actions that are needed before we are ready
to actually execute the loop that implements our algorithm.
First, we need to draw a line. In order to make it easy to
experiment with our simulation, we included a DrawLine
subroutine in the library. Simply call it to create the
environment shown in Figure 3.3. The DrawLine()
function only works when the Simulation library is used. A
call to this function is simply ignored by the standard

Chapter 3: The Line Sensor

Page 21

library. Of course, when you use the real robot, you will
have to provide a real line.
 It is also necessary to initialize the LegoLibrary just as
we have in previous programs. Notice that since we are
using a line sensor, we also have to initialize it with a call
to LegoLineInit(). We must tell the line-sensor
initialization module which port on the Brick the sensor is
connected to. In this example, we used port 2.
 Notice that the program in Figure 3.2 includes the
LegoSimulationLibrary which causes the algorithm to be
carried out with the simulated robot. When the program is
run, Figure 3.2 shows the path that the robot takes as it tries
to follow the line.

Figure 3.3: The library contains a function to draw a line.

If the line turns too sharply, the robot cannot stay with it
and strays from the line, but eventually makes its way back.
If the robot ever crosses to the left side of the line (as it
does in Figure 3.3) it continues to turn left trying to find the
line again – just as the program directs it to do. Of course
this action shows a flaw in our algorithm. The robot’s
behavior is fine as long as the line it is expected to follow
does not curve too quickly, but it fails when the line makes
a sharp turn.
 When you run the program, your robot might lose the
line at a totally different spot. This is true because the

Chapter 3: The Line Sensor

Page 22

random error (to create realism) introduced in our library
will make every run of the program slightly different.

On the real robot you can use any ports you wish for
the various sensors. On the simulation the port
numbers used for line sensors will control which of the
three simulated line sensors is used. The middle sensor
is Port 2, the sensor on the right is Port 1, and Port 3
activates the left sensor.

Possible Solutions
One possible solution to our robot loosing the line is to
make the line wider, or even create a solid object and let
the robot follow the edge of the object rather than thinking
of it as a line. If you think about it, this is actually what our
algorithm is doing. When the robot sees the object it
moves away and when it doesn’t it moves back towards it.

Figure 3.4: The robot can hug close to the edges of a solid object.

Figure 3.4 shows the robots behavior if the object is made
solid. Now, when the robot ventures too far left, it still sees
the object and knows it should turn to the right. The
program now works better, but the robot exhibits a loopy
behavior on sharp turns.

Chapter 3: The Line Sensor

Page 23

Other Solutions
Another possible solution is to make the robot turn quicker
instead of those slow lazy drifts to the right and left. This
can be done by changing the code as shown in Figure 3.5.
The lines that were changed are shown in bold. The robot
is made to turn more quickly by stopping the wheel on the
turn side instead of just slowing it down.
 With the changes shown in Figure 3.5, the robot follows
the line almost perfectly, as shown in Figure 3.6. There is
an unfortunate side effect though. The quick turns made by
the robot make the robot oscillate erratically back and forth
as it follows the line.

#include "LegoSimulationLibrary.bas"
BluetoothPort = 34
gosub DrawLine
call LegoInit(BluetoothPort)
call LegoLineInit(2)
while true
 call LegoLineSensor(2,a)
 if a=1
 gosub LegoHardRight
 else
 gosub LegoHardLeft
 endif
wend
end

Figure 3.5: The robot can handle sharp turns if it turns more quickly
itself, but now there is an erratic movement.

Figure 3.6: This is the path created by the program in Figure 3.5.

Chapter 3: The Line Sensor

Page 24

Running these programs and studying the robot’s behavior
can give you a better understanding of our algorithm, which
will be valuable as we strive to improve on it in later
chapters. It can also help you understand the deficiencies
such as the wobbly movement associated with using fast
turns. There is an important aspect of this discussion that
needs to be emphasized. We have learned many powerful
ideas and concepts about a robot following a line, and yet
we have not utilized a real robot at all.
 Simulations are used in many industries (not just
robotics) to solve problems and explore solutions without
the time and expense of using real hardware. Once
solutions are found, they can then be applied to real-world
situations. Depending on how accurate the simulations are,
the final programs may have to be modified to fine tune the
final behaviors, but that is far easier than developing the
entire algorithm on real-world hardware.

Moving to the Real-World
The next step is to see how closely our simulator emulates
the real world. Try running the programs of Figure 3.2 and
3.5 but change the first line to include the standard
LegoLibrary.bas instead of the simulation one. Of course,
if you are going to use the real robot, you will need a real
line for the robot to follow as shown in Figure 3.7. Notice
we have (starting at the bottom of the photo) a curvy line, a
nearly straight line, and a circular line similar to what was
used with the simulation. The lines were drawn with a
black felt tip marker on white poster board. To keep the
real line proportional to the size of the simulated line
(compared to the spacing of the simulated sensors) the real
line should be about one and three-quarter inches wide. If
the spacing for the real line and the simulated line are not
similar, you cannot expect the two robots to react in the
same manner.
 The program shown in Figure 3.2 should only follow a
fairly straight line without losing it. The program in Figure

Chapter 3: The Line Sensor

Page 25

3.5 will follow all the lines shown, and it does so with the
erratic wobble predicted by the simulation.

Figure 3.7: You must create lines for the real robot to follow.

Reducing the Speed
Another option for improving the robot’s ability to follow
the line is to reduce its speed. This will reduce the wobble
effect demonstrated by the program in Figure 3.5 and the
slower movement will help prevent the program in Figure
3.2 from losing the line when it curves too quickly.
 Appendix C provides information on customizing the
libraries, thus allowing you to control the speed of the robot

Chapter 3: The Line Sensor

Page 26

as well as many other parameters. Unless your robot is not
following the line properly, there is no reason to introduce
confusing options but it is valuable to know that such
options exist.

A Debugging Option
When a program is not producing the expected results, it
becomes necessary to debug your code. For those readers
not familiar with debugging techniques, we recommend
studying the RobotBASIC HELP file as well as our
introductory programming books (mentioned in Chapter 1).
 In addition to all of RobotBASIC’s standard debugging
tools, we have added a special feature to the Lego
Libraries. Just add the following line immediately after
you call LegoInit() to enable debugging.

 LegoDebug = TRUE

This will cause your program to pause every time any
sensor function is called and wait for you to press the
ENTER key. In our program, for example, the program
will stop when LegoLineSensor() is called. At that
point, the robot (either the real robot or the simulation,
depending on which Library you are using) will
automatically stop moving and the RobotBASIC terminal
screen will display something similar to Figure 3.8.

Figure 3.8: Both Lego Libraries have this special debugging feature.

As you can see from the figure, the sensor being
interrogated will be displayed, as well as its current
reading. In this example, we know that the robot is

Chapter 3: The Line Sensor

Page 27

currently seeing a line because the line sensor has a value
of 1. Knowing that, you should be able to predict what
action the program should take. When you press the
ENTER key, the robot will make its next move and stop
again when a sensor function is called. If the robot does
not move as expected you have one additional clue as to
what might be wrong with your algorithm or your
implementation of it.
 This debugging feature can help you (or students)
understand how an algorithm works (especially nice for
teachers). It can also provide insights on how to improve
on an algorithm you are trying to develop because it helps
you see specific sensor conditions that are not being
handled properly. We will examine these principles more
in later chapters.

Summary
This chapter introduced many principles you will need in
future chapters. Our next step is to learn how to utilize the
data from the sound, bumper, and range sensors. Once you
have a good grasp of how sensors can be used, we will
create programs that utilize multiple sensors to give the
robot more intelligent behaviors.

Page 28

