
Part II 

Developing A Toolbox Of Behaviors 
 

In Part II we develop a toolbox of utility programs. The programs impart the robot with 

a collection of behaviors that enable it to handle specific tasks. Each chapter focuses on 

a single behavior, evolving algorithms that can work in a variety of situations of 

increasing complexity. In Part III we utilize combinations of these behaviors to create 

solutions to real-world problems. 

 

We build on the programming skills developed in Part I by utilizing new commands and 

functions from the language as well as show how to use arrays to manipulate data more 

efficiently. Additional robot commands and functions are introduced along with more 

sophisticated interrogation and manipulation of the standard sensors on the robot. We 

also utilize customizable sensors to handle more demanding situations and show how to 

use advanced features of the standard sensors. 

 

Upon completing Part II you will be able to:  

�� Create complicated programs and employ advanced programming techniques.  

�� Utilize all the sensors on the robot and analyze their data more intricately. 

�� Utilize arrays and array commands and functions along with looping constructs 

to manipulate large amounts of data. 

�� Improve on the behaviors introduced in this part as well as create new ones of 

your own. 

�� Appreciate the advantages of using RobotBASIC as a research and development 

tool so as to minimize abortive efforts in a real-world project. 
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Chapter 7 

Following A Line 
 

In Chapter 5 we made the robot move around the screen freely while avoiding objects in 

the environment. A robot is a device that can be made to do useful work. To be able to 

achieve its assigned tasks the robot usually will need to move to specific locations 

where it will perform the required work. There are various ways we can move the robot 

around: 

¾�Move along a prescribed path defined by a line 

¾�Freely move along a path that the robot determines for itself  

¾�Move to a specific destination while keeping within a specified limited 

boundary 

 

In subsequent chapters we will explore the second and third options. This chapter will 

explore the first option. The advantage of having the robot move along a designated 

path is that we can ensure where the robot will be all the time as it progresses from one 

location to another. It is also easy to make sure that the robot will have no obstacles 

along its path or at least avoid having to program it with a sophisticated obstacle 

avoidance behavior. 

 

An example application for a robot of this kind is an automated waiter that carries food 

items along a continuous loop starting at the kitchen winding around and between the 

tables, and returning to the kitchen. It would not be desirable to have a track that 

protrudes above the ground due to the risk of customers tripping over the exposed 

tracks. A robot that can follow a line painted on the ground would be preferable. The 

line does not have to be visible to humans. Only the robot’s sensors need to see it. 

 

Developing a robot that can follow a line on the floor (perhaps black tape on a white 

floor) is a common activity at many robotics clubs. The project is straightforward 

enough that it usually can be understood and accomplished by novice robot enthusiasts, 

yet it is complex enough to introduce them to many aspects of robotics.  
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7.1 The Base Program 
In this chapter we will develop a few algorithms to perform line following, but before 

we can do this we need to develop a base program in which we will place the code that 

implements the various algorithms. The base program sets up the robot and the 

environment and then starts the robot on its way to follow the line using the algorithm 

that we want to test. 

 

The first thing we need is to draw a line on the screen for the robot to follow. Next we 

need to create and place the robot on the screen. Finally we want the robot to start 

executing the Line-Following algorithm we are trying to test.  

 

The code in Figure 7.1 contains three subroutines called InitializeRobot, DrawLine and 

FollowLine. All the main program does is call each of these in turn. The third line after 

the MainProgram label makes the robot move forward 10 pixels. The purpose of this 

will be discussed below. 

 

Notice how the use of subroutines makes it easier to understand what the program 

accomplishes. The subroutine names indicate what the subroutines do. The main 

program becomes an over all manager. Of course the actual details of each subroutine’s 

actions may need further explanation but if you keep this policy of modularization 

throughout your programs, whenever possible, the programs become self-documenting. 

 

The subroutine DrawLine creates a line for the robot to follow. The first statement sets 

the width of the lines (in pixels). The next sets their color and the one that follows 

positions the cursor on the screen. A series of LineTo commands draw the line one 

segment at a time. Refer to Appendix C.7 for details on these commands. Also see 

section 7.4 below for a better way to implement this routine. 

 

The IntitializeRobot subroutine positions the robot. The command rLocate x,y,heading 

creates the robot and places it on the screen at the specified location and heading. Since 

the robot’s default radius is 20 pixels and this routine places the center of the robot 30 

pixels to the right of the start of the line, the front edge of the robot will be 10 pixels 

away from the line. This is why we need to forward the robot 10 pixels before we start 

the line following routine. This action brings the front of the robot to the beginning of 

the line in preparation for following it. In a later improvement (section 7.5) this action 

will not be necessary. 

 



Chapter 7 

Following A Line 

 

Page 4 

RobotBASIC normally issues an error if the robot bumps into a color on the screen 

(collision with some obstacle). Since the robot must be able to move over the line, we 

must tell the system the color of the line so that it can differentiate it from an obstacle. 

We do this with the rInvisible Green command. Green is used here because the line 

color was set to green in the DrawLine subroutine. Refer to Appendix C.9 for a detailed 

discussion on the rInvisible command 

 

The final action of the MainProgram is to call the FollowLine subroutine. This 

subroutine is the code that actually performs the task of following the line. All the 

routines we will develop in this chapter will be replacements for this subroutine. Figure 

7.1B shows the output screen when the program in Figure 7.1 is run. For now 

FollowLine is left empty so no line following will occur. 

 

MainProgram: 

  gosub DrawLine 

  goSub InitializeRobot 

  rForward 10   // move the robot over to the line 

  goSub FollowLine 

End 

//======================================================== 

InitializeRobot: 

  //-- place the robot at the beginning of the line  

  //-- and face it left 90 degrees 

  rLocate  200, 71, -90   

  rInvisible Green   //-- Green is a line not an object 

Return 

//======================================================== 

DrawLine: 

  linewidth 4 

  setcolor Green 

  gotoxy 170,71 

  lineto 160,72 

  lineto 145,80 

  lineto 140,90 

  lineto 130,100 

  lineto 125,110 

  lineto 120,140 

  lineto 130,200 

  lineto 140,250 

  lineto 130,270 

  lineto 145,300 

  lineto 200,350 



Chapter 7 

Following A Line 

 

Page 5 

  lineto 300,325 

  lineto 450,375 

  lineto 450,450 

  lineto 600,450 

  lineto 600,400 

  lineto 650,200 

    lineto 500,350 
return 

//======================================================== 

FollowLine: 

  //-----Line Following algorithm 

  //--we will put code here to make the robot follow a line 

Return 

Figure 7.1: This code draws a line on the screen and places the robot at 

its start 

 

 
Figure 7.1B: The robot is ready to approach the line 

 

7.2 An Initial Algorithm 
RobotBASIC’s robot has three line sensors. One is mounted directly in front of the 

robot, and the other two are spaced 10 degrees left and right of the front sensor. Figure 
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7.2 shows this setup. The scale has been enlarged to make the setup obvious. Refer to 

this diagram to visualize the action of the algorithms that will be developed. 

 

 
Figure 7.2: The Line-Sensors Setup In RobotBASIC 

 

With three sensors there are many choices for how to develop a line-following robot. 

You could, for example use only the front sensor and have the robot constantly swing 

left and right as it attempts to keep the sensor on the line. Such an algorithm can work, 

but the robot follows the line with an oscillating snaking sort of motion that is far from 

efficient. 

 

On deeper analysis, you might decide that a better implementation would be to use the 

two outside sensors. In this case, the robot should try to keep the line between the two 

outside sensors. It can do this by turning a little to the right every time the sensor on the 

right detects the line and turning left when the left sensor is triggered.  

 

••  Reading The Line Sensors 
All three line sensors are accessed simultaneously with the single function 

rSense(Color). If you do not specify a color by using rSense(), the first color in the 

list of invisible colors passed to the command rInvisible will be considered as the line 

color to be sensed. You must specify a list of invisible colors before you do any line 

sensing, and the color of the line must be in the list (preferably the first one on the 

list). If you do not do this, the robot will not be able to sense the line since it will 

consider it an obstacle and will report an error if you make the robot move over the 

line. 

 

The rSense() function returns a number from 0 to 7. This number represents the 

sensory condition (on/off) with the least significant bit being the right-most sensor. 
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Each sensor is on if it senses a line underneath it and is off otherwise. In the situation 

of Figure 7.2, rSense() would return a value of 2 (010 in binary) because only the 

center sensor is seeing the line. A value of 6 (110 in binary) means that the left and 

front sensors are sensing the line while the right sensor is off the line. This could 

happen if the line made a sharp turn to the left as shown in Figure 7.2. 

 

We can determine the status of a specific sensor by using a binary AND (&) operator 

as shown in the examples of Figure 7.3.  

 

      EXAMPLE                         ACTION     

 if rSense( ) & 1 true if right sensor sees the line 

 If rSense( ) = 4 true if only the left sensor sees the line 

 if rSense( ) & 6 true if left OR middle OR both sensors see the line 

 if rSense( ) true if any sensor sees the line 

 a = rSense( )  

 if (a = 2)  true if only the middle sensor sees the line 

 if a & 7 true if any sensor sees the line 

 if a = 7 true only if ALL the sensors see the line  

Figure 7.3: The rSense( ) function reads the three line sensors 

 

••  A First Attempt 
Figure 7.4 shows a subroutine that can follow a line using the above logic. The routine 

simply turns right or left depending on where it sees the line. The while-loop creates a 

loop that, in this case, continues forever (or until the user stops the program). To test 

any of the routines given from now onwards, replace the FollowLine subroutine in the 

base program of Figure 7.1, with the new figures given (Figure 7.4 in this case). If 

you test this subroutine you will see that it fails if the line turns too sharply. We will 

address this problem shortly. 

 

FollowLine: 

  while true 

    if rSense() & 1 then rTurn 1 

    if rSense() & 4 then rTurn -1 

    rForward 1 

  wend 

Return 

Figure 7.4: This subroutine will follow a relatively straight line. 
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••  An Improvement 
One problem with the routine in Figure 7.4 is that the robot does not know when it 

loses the line and continues moving until it crashes into a wall. Figure 7.5 shows how 

the robot can determine when it is no longer on the line. The robot constantly checks 

to see if any of the sensors are seeing the line. Since it is possible that a thin line could 

be between two of the sensors (and thus make the robot incorrectly assume it has lost 

the line, the algorithm will continue trying to follow the line until the sensors have not 

seen the line 50 times in a row. If you substitute this code into the base program, you 

will see that the robot stops shortly after losing the line. This is an improvement, but 

we still need to find a way to keep the robot on the line.  

 

FollowLine: 

  c=0 

  while c<50    //exit loop if line is not seen for 50 tries 

    if rSense() & 1 then rTurn 1 

    if rSense() & 4 then rTurn -1 

    rForward 1 

    if rSense()    // if any sensor sees the line 

       c = 0       // start the counter over 

    else 

       c = c + 1   // increment counter if no line is seen 

    endif 

  wend 

Return 

Figure 7.5: This subroutine knows when the end of the line has been reached 

 

7.3 Sharp Turns Cause A Problem 
As mentioned earlier, the algorithms in Figure 7.4 and 7.5 fail if the line turns sharply. 

The robot will do just fine if the line is relatively straight, but it will lose the line when 

there is a sharp turn in it.  

 

••  Possible Solutions 
In order to solve this problem, we need to understand exactly why it is happening. The 

robot fails to follow the line when the line turns faster than the robot is turning – in 

this case more than about a 45-degree change because the algorithm makes the robot 

turn about one pixel left or right for each pixel that it moves forward. When this 

happens the robot moves past the turn and will not see the line on any of the sensors. 

It continues moving forward and loses the line. 
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There are relatively straightforward approaches to solving this problem. We can, for 

example, make sure the robot stays on the line by ensuring that it does not move 

forward past a turn in the line. This can be done by continuing to turn until it is safe to 

move forward. Another solution would be to let the robot move past the turn in the 

line, but give it a means of finding its way back to the line.  

 

Either of the above strategies can provide a possible solution for the robot, but they do 

it in a very different manner. The differences will be reflected in the behavior you see 

as the robot attempts to follow a line using the above methodologies. In the first case, 

the robot will appear to slow down when it sees a sharp turn because it executes more 

turning than forwarding. In the second algorithm, the robot will constantly move 

forward, but try to make its way back to the line after it has lost it due to a sharp 

curve.  

 

You might think that the second strategy is better. After all, it should allow the robot 

to reach the end of the line more quickly if we can implement it properly. However, 

consider for a moment that the robot in question could be a car driving down a road 

and not just following a line on the screen. The second algorithm would indeed let the 

car take a shorter path to the end of the road, but it does so by letting the car take 

short-cuts by driving off the road when the road makes a sharp turn and then getting 

back on the road a little further on. 

 

It is important to realize that neither of these strategies is necessarily better than the 

other. Each one has advantages and disadvantages depending on the situation and the 

environment. 

 

One of the advantages of using a simulator is that you can test and improve a variety 

of algorithms very quickly and test them in various environments just as easily. We 

will develop two algorithms to implement both strategies discussed above. 

 

••  A First Strategy 
Figure 7.6 shows a subroutine that implements the first strategy discussed above. If 

you run the program, you will see the robot behaving exactly as predicted. For 

simplicity the code does not check if the end of the line has been reached. 
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FollowLine: 

  while true 

    rForward 1 

    while rSense() & 1 

      rTurn 1 

    wend 

    while rSense() & 4 

      rturn -1 

    wend 

  wend 

Return 

Figure 7.6: This routine keeps the robot on the line even at sharp turns. 

 

Compare Figure 7.4 and Figure 7.6, the subroutine in Figure 7.4 lost the line in a fast 

turn because the robot only checks once (with an if statement) to see if it needs to turn, 

and only turns once (if needed) before proceeding forward. This means that the robot 

can lose the line if the line turns faster than the robot can turn. 

 

In Figure 7.6, the robot uses a while-wend loop to continue to turn as much as is 

necessary to stay on the turning line before moving forward. This means that the robot 

will not move forward until it has turned sufficiently to remain on the line. Extremely 

sharp turns, such as the last one in Figure 7.1B, still present a problem, but the robot 

performs well in most situations. 

 

 

••  A Second Strategy 
The second strategy is implemented in Figure 7.7. The routine allows the robot to 

leave the line when it turns sharply and then reacquire it a short distance later.  

 

Once the robot loses the line it cannot use the line sensors to determine which way to 

turn. To solve this problem, we need a way for the robot to remember which way it 

was turning the last time it saw the line. This will normally be the direction the robot 

should turn if it has lost the line. Each time the robot makes a normal turn (the if-

decisions in Figure 7.7) the subroutine stores the turn direction in the variable 

LastTurn to remember which direction the robot was turning. Later in the routine, if 

none of the sensors are on (indicating we probably have lost the line), the robot will 

be able to head back towards the line. Extremely sharp turns are still a problem even 

for this algorithm. 
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In this algorithm, since it is acceptable to lose the line, we can speed up the robot’s 

progress by moving it forward two pixels at a time. While the robot is still over the 

line it will turn only one degree at a time to stay on it, but if the line is lost, the robot 

will turn three-degree turns to help it get back on course. Notice that these choices for 

how much to move or turn are somewhat arbitrary. With a little experimentation, you 

can determine the optimum values for your situation. This reminds us again of the 

advantage of using a simulation. With RobotBASIC you can change the values and 

see how the robot responds to your changes very quickly.  

 

FollowLine: 

  while true 

    if rSense() & 1  

      rTurn 1 

      LastTurn = 1 //remember which direction we WERE turning 

    endif 

    if rSense() & 4 

      rTurn -1 

      LastTurn = -1 // remember which direction we WERE turning 

    endif 

    rForward 2  // since we don't care if we lose the line, 

                // move forward twice 

    if rSense()=0  

      rTurn 3*LastTurn // if we lose the line make a BIG  

    endif              // turn back towards it 

  wend 

Return 

Figure 7.7: This routine lets the robot find the line after it has lost it in a turn 

 

••  Very Sharp Turns 
The routine in Figure 7.6 stays on the line nicely and even handles 90-degree turns. 

However, if the line turns much more than 90 degrees, the robot can still lose the line. 

There are many ways to solve this problem. Figure 7.8 shows potential solution.  

 

The principle is that when one of the outside sensors AND the middle sensor are on 

simultaneously, the robot assumes that the line must be making a sharp turn. When 

this situation is detected, the robot moves forward so that its center is near the point 

where the line turns. The robot then turns until its outside sensor finds the line again. 
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Having done all this, the routine proceeds as before with the while-loops keeping the 

robot on the line in the same manner as in Figure 7.6. 

 

When you run the program you will see that the new algorithm does in fact handle 

very sharp turns. You will also see that this new turning behavior happens even on 

moderately sharp turns, making the robot correctly follow more complex lines. 

However, the robot’s movement is now somewhat erratic which may not be 

acceptable in some situations. 

 

There are many factors that can cause an algorithm to fail. The above algorithm, for 

example, will not work properly if the line width is reduced from four pixels to three. 

Any algorithm is only a potential solution until it has been thoroughly tested in a 

variety of expected environments. A robot’s ability to perform properly depends on 

the programmer’s ability to predict the situations the robot is likely to face. 

Subsequent chapters will explore this idea further. 

 

FollowLine: 

  while true 

    rForward 1 

    if rSense() = 3 

      rForward 20   //move the centre over the corner 

      while rSense() = 0   

        rTurn 1    //turn back to the line 

      wend 

    endif 

    if rSense() = 6 

      rForward 20   //move the centre over the corner 

      while rSense() = 0 

        rTurn –1   //turn back to the line 

      wend 

    endif 

    //-- reposition over the line 

    while rSense() & 1 

      rTurn 1 

    wend 

    while rSense() & 4 

      rturn -1 

    wend 

  wend 
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Return 

Figure 7.8: This routine deals with sharp turns in a unique way, allowing it to not 

only handle very sharp turns, but also acquire the line if it finds it while roaming 

randomly. 

 

7.4 Random Roaming With Line Following (Race-Track) 
This section has been left out 

 

7.5 Summary 
In this chapter you have: 

�� Been introduced to several algorithms for following a line. 

�� Seen how proper interpretation of the sensory data can improve the robot’s 

performance while carrying out complex tasks. 

�� Learned how arrays, Data and mPolygon can be used to draw more efficiently.  

�� Seen how an array is a more efficient way to store and manipulate data. 

�� Learned that some algorithms may work properly under certain environmental 

conditions but fail if these conditions are modified.  

Now, try to do the exercises in the next section. 

 

7.6 Exercises 
1) Run the programs in this chapter to see how they perform. Add debugging 

statements to help analyze the robot’s behavior, and find out why some of the 

algorithms fail on sharp turns. 

 

2) Try to determine the optimum values for the rForward and rTurn commands (as 

discussed in Section 7.3) for the routine in Figure 7.7. 

 

3) Choose your favorite algorithm from this chapter (or develop one of your own) 

and combine it with the DrawObjects subroutine in Figure 5.2 of Chapter 5 so that 

your robot can follow any line that the user draws. 

 

4) The routine in Figure 7.8 is particularly sensitive to the width of the line being 

followed. It works great if the line has a width of 4. Try other line widths and 

explain the behavior that occurs. Check to see if the line width affects any of the 

other algorithms in this chapter. 
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5) Modify the line-following algorithm of your choice so that the robot will check for 

objects that might block its path. When one is found, the robot should turn 180 

degrees and follow the line in the reverse direction. Try out the algorithm you 

develop with obstacles on the line. 

 

6) The line following algorithm given in Figure 7.9 works most of the time but it 

does not guarantee that the robot will keep going around the racetrack in the same 

direction. The way the algorithm works may cause the robot to back track. Can 

you write a new algorithm to prevent this? 

Hint: Some memory of the direction of travel may be necessary. 

 

7) The new main program in Figure 7.9 calls RoamAround then calls FollowLine. If 

FollowLine ever finishes as in Figure 7.5, then the main program will go to the 

next line, which is End. Convert the main program so that it will not end, but keep 

roaming then following a line then roaming and so on endlessly. 

Hint: Use a while loop. 
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Chapter 8 

Following A Wall 
 

There are occasions when it may become necessary for the robot to follow the contour 

of an object: 

¾�If a robot encounters an object while moving along an intended path, it might go 

around the object by navigating around the perimeter of the object. 

¾�A robot that delivers mail in an office environment, for example, might follow a 

wall down a hallway, visiting each office in turn to deposit its cargo and collect 

new mail.  

¾�A strategy for solving a maze of corridors is to keep following the walls around 

in one direction (left or right). 

 

In this chapter you will learn various strategies for enabling the robot to follow the 

perimeter of an object while staying close to it but not crashing into it or moving too far 

away. 

 

8.1 Constructing A Wall 
Before we can examine the algorithms we will need a relatively complex contour with 

which to test our strategies. Also we will need a base program, which we will use 

throughout with only a few changes to accommodate the various algorithms. 

 

The robot will start by moving forward until it encounters an obstacle. When it 

encounters an obstacle the robot will abandon the moving-forward behavior and start 

the wall-following behavior.  

 

Figure 8.1 shows a template with a main program and three subroutines. The main 

program calls the subroutines in order as they become needed and locates the robot on 

the screen. The line that sets the variable TurnDir will be needed in later sections and 

will be discussed there. We set the list of invisible colors and put the pen down. We put 

the pen down in order to leave a trail behind the robot while it is following the wall. 

This helps in observing the robot’s behavior and gauging the algorithms’ effectiveness 

(or lack thereof), as you will notice later. You have seen the pen feature in Chapter 4 

and will learn more about it in Chapters 10 and 11 (see Appendix C.9 for more details). 
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The first color on the list of invisible colors will be used by the pen to draw when it is 

lowered since no color was specified when the rPen command was issued. Similarly the 

second color will be the default color used by the rDFeel() function. We will use rDFeel() 

later in the chapter. 

 

MainProgram: 

   gosub DrawWall 

   rLocate 100,300,50 

   rInvisible Cyan,Red 

   rPen Down 

   gosub RoamAround 

   TurnDir = -1 

   gosub FollowWall 

End 

//========================================================== 

DrawWall: 

    ClearScr 

    LineWidth 4  

    Data Wall;-161, 177,  220, 124,  375, 155,  485, 275 

    Data Wall; 624, 300,  668, 370,  517, 412,  499, 320 

    Data Wall; 499, 321,  389, 387,  361, 311,  369, 283 

    Data Wall; 348, 235,  334, 275,  318, 223,  251, 319 

    Data Wall; 161, 177,  247,-193 

    MPolygon Wall,Blue 

Return 

//========================================================== 

RoamAround: 

  while not(rBumper()&4) 

    rForward 1 

  wend 

Return 

//========================================================== 

FollowWall:   

   //we will develop this later 

Return 

//========================================================== 

Figure 8.1: This code draws a wall for the robot to follow and starts it 

moving forward. 
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The subroutine DrawWall does exactly that using mPolygon and the array Wall created 

by the series of Data statements, as in Chapter 7. 

 

The subroutine RoamAround makes the robot move forward until it encounters an 

obstacle. When the robot encounters an obstacle the routine is terminated, which causes 

the program flow to go back to the main program, which then starts FollowWall. This 

subroutine is left empty for now. We will develop various wall following algorithms 

that will be substitutions for this routine. 

 

8.2 A Basic Algorithm 
In order to understand how the robot can follow a wall, imagine that you are blindfolded 

and are asked to stay close to a wall as you follow it to a desired destination. You would 

probably put out one hand (your right hand if the wall was on your right) to help you 

know that the wall is still there. As the distance between you and the wall becomes 

larger your hand will eventually stop touching the wall. You would then need to turn to 

your right and move forward to get closer to the wall again. If you find yourself getting 

closer to the wall you would have to bend your arm. To maintain your arm stretched out 

you will need to turn away from the wall to avoid running into it.  

 

Figure 8.2 shows one method for telling the robot how to achieve the above logic. 

Replace the FollowWall subroutine of Figure 8.1 with the one in Figure 8.2. 

 

FollowWall:   

  while true 

     // anything on right makes you turn left 

     while rFeel() & 3 

       rTurn -1 

     wend 

     rForward 1 

     rTurn 1 

  wend 

Return 

Figure 8.2: This code is a basic algorithm for following a wall. 

 

The outer while-loop makes the robot follow the wall forever. The inner while-loop turns 

the robot away from the wall as long as either of the infrared sensors on the right side of 

the robot can detect the wall. The robot then moves forward and turns back towards the 

wall. 
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••  Problems With The Basic Algorithm 

There are two shortcomings with this algorithm. If you look at Figure 8.3 you will see 

both of them. The first problem is that the robot tends to move in arcs around the wall 

rather than following it in a parallel line. The second problem is that the robot crashes 

into the first hard turn it encounters.  

 

 
Figure 8.3: Simple Algorithm Fails. 

 

Let us analyze why the logic failed. However before we can do this let us observe the 

infrared sensors while the algorithm is running. If you replace the rFeel() function 

with the rDFeel() function you will be able to observe the infrared beams while the 

robot is moving. Since no color is specified the second color on the invisible colors 

list (red) will be used to display the infrared beams (read about rDFeel() in Appendix 

C.9). 

 

Observing the infrared beams is a great help in analyzing what the robot sees, and can 

give real insight into why it fails in situations you think should work. Combining 

rDFeel() with Debug statements can help you figure out many complicated and 

puzzling situations. 

 

You will notice that the robot is moving in arcs due to the way infrared beams are 

tested. We are testing for either or both of the right beams (rFeel() & 3, 3 = 00011 in 
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binary). This means that the robot will turn away from the wall until the right hand 

beam is not sensing the wall, which is almost 90 degrees. The robot then forwards and 

turns. This forwarding and turning is the reason we get the arcs. The robot will move 

in an arc until it encounters the wall again and turn away 90 degrees and so on. 

 

The reason for the crash is that the 90 and 45 degrees right sensors did not sense the 

wall at the angle in the wall you can see in Figure 8.3. This means that the robot will 

continue forwarding. Unfortunately there is no way for the robot to know that there is 

still part of the wall ahead and thus will crash into it. 

 

••  Improving The Algorithm 

To prevent the robot from turning too far away from the wall we will ignore the 90 

degrees sensor. Also to give the robot the ability to see ahead of it we will test the 

front sensor. So instead of testing for rFeel()&3 we will test for rFeel()&6. Replace the 

value 3 with 6 (binary 00110) in Figure 8.2 and run the program again.  

 

As you can see from Figure 8.4, the robot does indeed follow the wall in a straight 

line. However if you look closely you will notice that the robot still tends to loop 

around sharp corners. This happens because the robot cannot turn fast enough to 

follow the sharp turn because it only turns one degree for every 1 pixel forward move. 

We will solve this problem shortly, but first lets examine a more critical problem. 

 

The robot does not crash at the first sharp bend in the wall but it does crash later on. 

The front infrared sensor failed to detect the sharp protrusion in the wall. If you use 

rDFeel() you will see that it just misses detecting the sharp v in the wall. So, even 

though testing the front sensor helped, it still fails to catch all situations.  

 

You already know how to solve this problem from previous chapters. If you test for 

the bumper sensor along with the front sensor you should be able to catch most of the 

awkward situations. 

 

••  Using The Bumpers 

We will show how to use the bumpers with the infrared sensors to follow a wall, but 

before we give the new code, let us consider what modifications are needed to change 

the behavior from following a wall on the right to following it on the left. 
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Figure 8.4: An improved Simple Algorithm. 

 

First we will need to change the sensors used. Second, we need to turn in the opposite 

direction. If the wall is too close to the left we turn right and we turn left if the robot is 

too far from the wall.  

 

However we want to be able to change between turning left or right easily without 

changing more than a variable in the program. This is why we have the line TurnDir = 

-1 in the main program in Figure 8.1. This variable acts as a switch. If it is –1 the 

robot will follow the wall to the left and if it is 1 the robot will follow the wall to the 

right. 

 

We will also have to add some code to allow for this switch. Figure 8.5 shows the 

algorithm that achieves all this. Notice that we now check to see if the front bumper is 

closed as well as checking for the infrared sensors. Also notice how we set the 

variable FN to be used in the rFeel() & FN statement. Remember if you are following 

the wall to the right then the right 45 degrees and front infrared sensors need to be 

considered (i.e. 00110 = 6), and if you follow the wall to the left then the left 45 

degrees and front sensors are to be tested (i.e. 01100 = 12). 

 

Run the program and try changing TurnDir to 1 and see how the robot now follows the 

wall to the right instead of to the left. 
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The program in Figure 8.5 performs reasonably well. As mentioned earlier though, the 

robot still arcs far away from the wall when it rounds a sharp corner. The algorithm 

can still be improved further. 

 

FollowWall:   

  if TurnDir > 0  

     FN = 6 

  else 

     FN = 12 

  endif 

  while true 

     while (rFeel()&FN) or (rBumper()&4) 

       rTurn -TurnDir 

     wend 

     rForward 1 

     rTurn TurnDir 

  wend 

Return 

Figure 8.5: This program turns away if the wall is seen by either the infrared 

sensor OR the bumper sensor. 

 

8.3 Staying Close on Sharp Corners 
This section has been left out 

8.4 A Different Approach 
This section has been left out 

 

8.5 Summary 
In this chapter you have: 

�� Learned how to make the robot follow a wall using a variety of algorithms and 

sensors. 

�� Seen the process of developing and debugging an algorithm. 

�� Discovered how unpredictable situations can arise and be difficult to analyze. 

�� Learned that programming a robot requires not only an understanding of the 

sensors but also the ability to deal with them using both logical and bit-wise 

operators. 

�� Learned about the extended rRange() function. 

�� Seen further uses for arrays, MPolygon and Data commands. 
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Now, try to do the exercises in the next section. 

 

8.6 Exercises 
1) Run the subroutines in this chapter to see how they perform. Try adding 

debugging statements to help you analyze the robot’s behavior.  

 

2) Try all the algorithms in this chapter with the wall given in Figure 8.10. Can you 

determine why some algorithms fail? If an algorithm does not fail can you see 

why it may be considered better or worse than another that also did not fail? 

  

3) In the algorithms of Figures 8.8 and 8.6 (modified as discussed) try changing the 

parameters to see how they affect the robot’s behavior. In Figure 8.8 how would 

you make the robot stay closer to the wall? What would be the minimum 

number to give RangeLimit? Why? 

Hint:  The rRange() function returns a value relative to the front. The front is in 

line with the robot’s center. So an rRange(90) value of 20 will mean that 

the object is almost touching the robot at its right side. 

 

4) Draw circles, rectangles and triangles and then test the algorithms with these 

types of simple objects. Which algorithms follow the contour faithfully (i.e. the 

robot draws a circle around a circle and a rectangle around a rectangle etc.)? 

With the algorithm of figure 8.8 you can specify exactly how far the robot will 

be. Try following the objects at various distances (closer and further). 

 


