The RobotBASIC

Robot Operating System
(RROS)

User 6s Guil de

Simply the EASIEST way to build a robot!

John Blankenship

Copyright © 2012 by
John Blankenship

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system
without the prior written permissiaof the copyright owner.

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with

no intention éinfringement of the trademark.
Images of proprietary devices and sensors are reproduced with the permission of the manufacturing companies.

The information and projects in this book, including the RROS chip itself are provided for hobby and educational
purposes without warranty. Although care has been taken in the preparation of this book and all associated
software, neither the authors or publishers shall have any liability to any person or entity with respect to any
special, incidental or consequenti@s of profit, downtime, goodwill, or damage to or replacement of equipment
or property, or damage to persons, health or life, or any costs of recovering, reprogramming, or reproducing any
data, caused or alleged to be caused directly or indirectlyebpfbrmation contained in this book or its

associated web site.

TaABLE OF CONTENTS

Chapters

1- Why a RROS? 1
2 - Communicating with the RROS 9
3 - Small DC Drive Motors 19
4 - Servomotors 25
5 - Large Drive Motors 31
6 - Additional Motion Control Commands 35
7 - Steerable Robots 39
8 - Wheel Encoders 47
9 - Perimeter Sensor, Turret Ranger, Bat. Monitoring 53
10- Line Sensors 67
11- The Compass 69
12 - Beacon Detector 73
13- Arm Controller Expansion 91
14 - Custom Expansions 103
15- The RROS Robot Prototypes 109
16 - RROS Programming Examples 131
Appendices
A - Quick Reference: rCommand Parameters 151
B - Quick Reference: Hardware Configurations 163
C - The RROS with Arduino and Other Processors 169
D - Assembling the RB°CB 173
E - Assembling the RBD Rolot Chassis 187

F - Example with Practical Considerations 199

Preface

In order to intelligently handle a wide variety ofgen¢rie s ks, a robot 6s har
must include a diverse selection of sensors and I/O capabilities. In the past, building such a robo
has been a daunting task reserved for only those with significant knowledge and skill of both
electronics and lovievel microcontroller programming.

Now, for the price of an interface board alone, hobbyists can have a complete
hardware/software solution in the form of aj@4 IC preprogrammed with the RobotBASIC
Robot Operating System (RROS).

The RROS will ot only provide the physical interface needed for many motors and sensors, it
will also provide the software required to seamlessly interface with all supported devices using th
high-level RobotBASIC simulatebased commands and functions. This mearigiibaRROS not
only makes it easier than ever before to build a robot, it makes it easier to program one too.

Imagine being able to simply connect a compass to the RROS chip and then immediately
determine your robot 6s mimgicenmand suchasyle=wi t h a s
rCompass() . Imagine connecting infrared or ultrasonic sensors directly to the RROS chip and
being able to determine where obst @sombeg)s ar e
andrFeel().

Controlling your robbis just as easy as acquiring its sensory information. When commands
like rForward andrfun ar e used, your robot wondét just |
automatically ramping up and down when speeds are changed and using compass readings and
wheel encoder counts when possible and appropriate.

And these examples dondt begin to descri be
power é. of simplicity.

Chapter 1

Why a RROS?

Since the very beginning, we have had a vision for RobotBASIC that promoted programming as
well as building a robot. Whileuilding a robot is certainly a big part of hobby robotics, it is the
programmingof a robot that creates personality, intelligence, and the ability to create usable

applications. This distinction is similar
Historical Similarities

Il n the mid 7006s, i f vy oyou hadeorbeild your bwe coenputee elther n
on your own or from one of the several kits

time was spent soldering and troubleshooting that very little application programming was done.
Only after Appleand Radio Shack (among others) introduced fully assembled computers did the
emphasis move from building computers to programming thaftowing the development of

usable applications.

While fully assembled hardware was critical for this transitibare is another factor that
pl ayed a huge r o/dueouldbuyacompates,it @was the facsthat niaty geople
also had theamecomputer. This meant other people used the same video mapping hardware, th
same joystick, the same soundhgration hardware, etcetera, making it easy to share programming
creations with others. Perhaps more importantly, it created a growing market for selling practical
applications which further fueled the desire to create.

Games were certainly among tb&rly applications, but simple programs to balance your
checkbook soon found enough popularity to encourage the development of truly useful products
like word processors and spreadsheets. In the years that followed, computing moved from an
eccentric hobbyo the massive, indispensable industry that it is today.

Hobby robotics may or may not follow the same course, but if such a path is to have any
chance of happening, it is essential that building a robot become much easier. It is also crucial
thatthose developing robotic behaviors and applications be able to share their work with other
enthusiasts.

RobotBASIC, along with the RobotBASIC Robot Operating System (RROS) described in this
manu al all ows both of t hestatRobtBASICgtself. ftsa happe
powerful, fultfeatured, generglurpose language that has the ability to communicate with, and

1

Chapter 1: Why a RROS

control, external motors and sensors in a variety of ways. More importantly though, from a robot
hobbyi st 0s ptBASKhas art integrated Rébot ISimulator.

The RobotBASIC Simulator

The s i mu ldmmensionél appeararee and edsyse interface can sometimes mask its

true power from potential users because they do not expect something so simple to be effective.
An abundance of eagg-use sensors though, creates a platform faittmore capabilities than

most hobby robots. The plain truth is that you cannot give a robot any significant amount of
intelligence unless that robot has the ability to gather infoomabout its environmeiitand that
means it must not only have the right types of sensors, but also an appropriate number of each

type.
The RobotBASIC simulated robot has the following sensory capabilities:
T The ability to r egesoitknoves wieewarechaage s equiyed.s v ol t

1 An electronic compass so that it can determine its current orientation.

1 The ability to move and turn with a reasonable amount of accuracy (the simulator allows

you to set a level of random error so that it actiare realistic).

A GPS system that allows it to determine its location within a specific area.

A simple camera that allows it to identify objects of a ts@cified color.

A beacon detector that allows the robot to find and identify up to fifteen beacons

strategically placed within its environment.

1 Line sensors that allow the detection of dadfs as well as the ability to follow a path
defined by a line on the floor.

1 A turret mounted ranging sensor that allows the robot to identify the distance tamdhlls
other objects that might block its movement.

1 Two types of perimeter proximity sensors that provide the information needed to avoid
obstacles while navigating through an unknown environment.

= =4 =

It is important to know that the types of sensors availabléthe simulator, as well as the number
and placement of the sensors, were chosen very carefully. OuRbedkot Pr ogr ammer 0 ¢
BonanzaMcGraw-Hill), demonstrates that the chosen sensors as well as their number and
placement are adequate to implementréetsaof basic behaviors and goes on to show that the
basic behaviors can be combined to create significant applications.
Since the simulatordéds sensor configuration i
RobotBASIC, it is easy to create esawork for students and contests for robot clubs. As
power ful as the simulator is though, it canno

Real Robots

Our Bonanzabook also outlines the requirements for creating aweald robot that can be

controlled directly from RobotBASIC using the same programs used to control the simulator. The
availability of such a robot would allow dedicated hobbyists to share progranaigiorithms,

libraries of basic robotic behaviors, and even full blown applications that run on either the
simulation or a real robot.

The design specification for a RobotBASIC interface with a real robot is very unique in that it
allows for the usef nearly any type of sensors on the real robot as long as the information
acquired is mapped into the simulatords senso
navigating the simulated robot through a cluttered environment can also comneahdodot

2

Chapter 1: Why a RROS

over a wireless link to do the same thing. This greatly simplifieswedtl robot programming
because all of the intelligence can be programmed in-BalB€d higHevellanguage while all of

the lowlevel details of driving motors and readisgnsors are handled in a processor embedded in
the robot itself. Because of the wireless link, there are no programs to compile and no files to
downloadi when you make a change to your program you simply rerun it and watch the robot
react.

The praessor embedded in the real robot must provide the all the same sensory data to
RobotBASIC that the simulated robot does, and it must do so, no matter what type of sensors ar
used on the real robot. Letds exammuoué at boir §
perimeter sensing system. The simulated robot uses four bumper sensors spaced around the ro
that can detect when an obstacle is very close. There are also five sensors spaced around the fr
half of the robot that detect objects thag alightly further away. Finally, a turret mounted
ranging sensor measures distances to objects outside the range of the proximity sensors. Prope
utilization of these ten sensors along with a compass and a GPS provides more than enough
information for arobot to navigate an unknown environment.

A real robot has many options for obtaining the sensory information available on the simulator
It could, for example, use snagtion switches or IR sensors or even ultrasonic sensors to
determine whenobjgcs ar e near the robotds perimeter.
one or more cameras to determine if nearby obstacles exist and how close tbeaii@rebot
itself. Our objectivavas for a sensory system could gather the data for you nermdtat type of
sensors were available on the real robot. After the data was gathered, we wanted the system to
analyze it, organize it, and translate it i
Imagine the power of such a systémot anly would it make it easier to program a robot, it would
promote creativity and collaboration because it would make it easy to share programming
concepts and designs with others.

Creating such a system i s nothavamanyrséensoryal t &
options available to them. Some sensors are digital while others are analog and both types can
sometimes require specific timing or pulsing sequences for accurate readings. More sophisticate
sensors often have a complicated sefilimterface in order to handle the communication
necessary to both control the sensor and gather information from it.

Fortunately, the manufacturers and/or the retailers of sensors usually make detailed informatic
available on how to use their prodsictOften there is even example code provided for specific
processors. This means that anyone with a reasonable, sometimes even a modest, background
electronics and lovievel programming can handle the interfacing one specific type of sensor.
Unforturately, the task of interfacing numerous sensors so that they can all work together withou
conflict can be daunting. If you further consider that most of the sensory interactions must occur
while the robotés dri ve mobeoomssewnr reorelc@mplexy ¢ o

|l f such a system was availabl e, it would s
think that is enough. We feel that a complete solution should also have the ability to communicat
with external processore shat advanced hobbyists or even manufacturers of robotic parts can
create their own subsystems and seamlessly integrate them to work with all the other features. |
should be possible, for example, for an advanced user to create an external visrarthgtste
extracts meaningful sensory information from the images it collects and then make that
information available through the standard simulator commands and functions.

3

Chapter 1: Why a RROS

The RobotBASIC Robot Operating System

Such a system may seem impossible to achimueafter thousands of hours of work, we have
implemented a solution in the form of a RobotBASIC Robot Operating System (RROS). Just as
the Windowbés operating system manages the wvar
your r ob ot Theprogranssahatiruo ensaur PC do not care what video card you use or
what brand or size of hard drive you have. They do not care if you have a standard mouse or a
touch pad. The Windowdés OS will autoamaticall
video monitor, or an LCD screen or even a video projector even though each has a different
physical interface. Applications will receive identical signals whether you use a touch pad, a

mouse or even a touch screen. Our RROS will provide the sameftgpevice for your robot. It

will extract data from your robot dsomstemsor s,
what type of compatible sensors and motors you use.

Build Your Robot YOUR Way
This means you can build your rohmturway. twon o6t matter i f you wuse D
continuous rotation servomotors to drive your robot, because the RROS will automatically
generate the signay®ur motors need. The commands used to control the simulator can be used
to control a real robot powered bither DC motors or servomotors. Small DC motors (up to 1
amp) can be driven directly from the RROIEp without additional hardware. If larger motors are
needed, the RROS can control standardized external hardware so that even 30 amp motors can be
used.
Your robot can utilize an electronic compass and a beacon detector as well as numerous types
of IR sensors and ultrasonic sensors to handle object detection, distance ranging, line sensing,
even wheel encodingall without the need for any loveved programmingii n fact, you w
have to worry about the operation of the sensors at all.
The RROS is distributed as a 24 pin IC that allows many sensors and motosrectye
connected to the chipwithout any other parts. When additionaltgaare required, care has been
taken to minimize what is needed. This means that using the RROS is VERY economical because
most of the time you DO NOT have to purchase separate I/O botrddRROS handles
everything

Beginners
The end result is that ndsaanyone can now build a robot with all of the sensory and drive
capabilities of the RobotBASIC simulator and control that robot directly from the RobotBASIC
environment over a wired or wireless link. You can build anything from a small inexpensite robo
with only a few fundamatal capabilities to a large |fszed robot (complete with one or two
armg with wheel encoders, speech, vision, a positioning system (GPS or LPS), and more.

Building a robot has never been so easy. Early chapters in tihswilb discuss thenany
options available to you, explain what motors and sensors you can use and how to connect them to
the RROS chip. Programming a robot is easier now too. Algorithms can be tested and debugged
using the simulator, then immediatelgted on a real robot. As long as your programs control the
robot éds behavior usi ngloopentrslpboth thelsamulator and the réak r t
robot should respond in very similar manners. As the applications to be handled get more
compkx, programs developed on the simulator can require modification to makecthey for
realworld situations, but the overall development process can still be far shorter than developing

4

Chapter 1: Why a RROS

reatworld behavios from scratch. fie time to deglop applicationgan be even furtheeduced

if you prepare a library of basic behaviors, as discussed in Chapter 16.

Robot Building Simplified

Letds |l ook at an example just to show how
five proximity sensors arourttie front of the robot as shown in Figure 1.1.

.

Figure 1.1: The simulated robot has five proximity sensors.

Assume we wanted to build a real robot that uses five of the digital infrared sensors shown in
Figure 1.2. These units are inexpensive and egoubchased from cgmanies such as
Pololu.com. Pololalso sell lowcost motors and wheels making it easy to build your base
platform.

Once built, you could mount the infrared sensors (Figure 1.2) around the front of the robot as
shown in Figure 1.1.

Figure 1.2 This small IR sensor detects objects up to four inches away.

Once everything is physically constructed, the wiring necessary is shown in Figure 1.3. Notice
that you also need a Bluetodthnsceiver for the robgas well as a Bluetooth&B dongle for

your PCi unless your PC has built Bluetooth) and a 5V regulator. The extra items for the robot
are shown in Figures 1.4 through 1.6.

e

Chapter 1: Why a RROS

1 24 Power
+5V 2 23 (+7 to 13 volts)
RROCS
L vee XD 3 G 22
GND RXD 4 -
| 5 20
— 6 1%
BLUETCOTH 7 18
TRANSCEIVER
& 47 7805
9 16
10 15
11 14 I
12 55 13 sV
To To To To To
Pin Pin Pin Pin Pin
12 18 17 16 15
Left-most
IR Sensor
5V

Figure 1.4:This Bluetooth transceiver is available from agbpagd and others are available from many vendors.

Figure 1.5 This regulator reduces the battery voltage to 5V to power
sensors and various other components needed togbrolabt.

Chapter 1: Why a RROS

Figure 1.6 When you plug a Bluetooth adapterintoyfuc6s USB port , Robot BASI C
wirelesslywith the transceiver in Figure 1.4. There are no wirg®tw robot and no programs
to download. Just run yolobotBASIC progranon the PC and the robot responds.

Building a robot with the RROS chip really is this easy. And programming a robot is easier too.
You can read thproximity sensors using the commariekel and move the robot witlForward
andrTurn. The following stagment, for example, would move the robot forward only if none of
the sensors are triggered.

if NOT rFeel() then rForward 10

Just an Example

Remember, this is just an example configuration. The RROS chip supports both ultrasonic and |
ranging sensors, digital compass, beacon detection, wheel encoders, line sensors and much,
much more. It can handle both small and large DC motors and servomotors. The RROS provide
the physical interface for most of these devices as well as a software interfacekédmitraasy to

read the sensors and control the motors. It is important to realize that all sensors have advantag
and disadvantages for different situations. Read this entire manual to help you determine what
sensors might be best for your situation.

The RROS can seem a little complicated when you first start using it because there are so ma
options. Different kinds of sensors have to be connected to different pins because some sensors
are analog and others are digital. This manual compriseyg paaes because it address how to
wire so many different types of sensors with various optional configurations. Once you decide
what sensors (and motors) you wish to use though, the wiring is usually as simple as that shown
Figure 1.3.

And perhag more importantly, if you have learned to program a robot using our simulator,
nearly all of the simulator commands will work with your real robot.

This manual also spends many pages explaining how to calibrate motors and sensors so they
are much easr to use. Again, reading about such calibrations can seem overwhelming at times
but know that it is usually far easier than it seems. Plus, in most cases calibrations have to be dc
only once. Let 6s |l ook at an exampl e.

The commandrorward 40 makes the simulated robot move a distance equal to its diameter.
You will want to calibrate the RROS so that it can automatically move the REAL robot a distance
equal to | Tés diameter when you issue the s
specific robot, you never have to do them again unless you make physical changes.

7

Chapter 1: Why a RROS

The important thing to remember is that the RROS has been designed to allow you to utilize a
wide variety of motors and sensors, and yet do so with minimal effort.

Advanced Users

Even though everything is easier, donodot think
The RROS has been designed to interface with subsystems that advanced users can design (such
as the camera interface mentioned earlier). This nte@iRROS can grow with you when you

need it to. Later chapters in this book will supply information on how to create custom interfaces

for nearly any type of sensor and you will see details of how RobotBASIC can utilize the RROS to
control a robot arm.

Our next step is to connect the RROS chip to your PC and ensure that it can communicate
properly. Once that is accomplished we will move on to interfacing motors and sensors with the
RROS chip and learning how to best utilize them from the RobotBASI@onment. Finally, we
will see how the RROS can communicate with external expansions (such as an arm controller)
giving you the ability to not only expand t he
customized capabilities to handle trsnidpat perhaps only your robot needs.

Chapter 2

Communicating with the RROS

T he purpose of this chapter is to interface the RROS chip to your PC and confirm that it can
communicate with RobotBASIC. The RROS chip comes without the pins soldered to it, as showi
in Figure 2.1. This allows you to eliminate the pins and solder directly to the connecting points
enabling ultra small robot projects. For most situations thoyminwill probably want to solder

the pin strips to the chip, also as shown in Figure 2.1. This allows the chip to plug into a standar
socket or even a solderless prototyping breadboard. The RROS chip itself is a Baby Orangutan
processor, but it has ée modified for our use.

Figure 2.1 First, solder th pin headers to the RROS chip.

It is important to get the pins aligned correctly before soldering. An easy way to do this is to plac
the pins in the breadboard (see Figure 2.2), then placeitherdo the pins, then solder.

Chapter 2: Communicating with the RROS

Figure 2.2 Use the breadboard to align the pins for soldering.

Although the RROS chip assumes the standargi24ootprint, the RROS actually needs 2B9i
to handle all its functionsT he fA e xt r a 0 Ipeside Pio B3nYowcan séeat easily in the
upper right corner of the chip in Figure 2.1. We will refer to this pin as Pin 25. Notice also in
Figure 2.1 that a short wire (complete with breaatidaconnector pin) has been provided to make
connections easy when using a solderless breadboard. This wire comes with your RROS chip and
should be soldered to Pin 25

The RROS chip you receive is designed so that it cannot be read or reprograntheeddsy
but it can be upgraded by RobotBASIC with any future enhancements for a small handling charge.
The six pins next to Pin 25 are used for updating the chip, so do not solder anything to them.

The Communication Link
The typical communication between the RROS and RobotBASIC is usually handled over a 9600
baud wireless link, characteristically Bluetooth or Zigbee (but any serial wireless devices with
similar capabilities should work).

A wireless link is very corenient and certainly fast enough for many applications. It is also
worth mentioning that you can usevaed serial link (perhaps from a USB Serial EGngle). A
wired link isfaster than a wireless link and canprove performance for advanced applioas.
If you use a wired link, then the PC (laptop, netbook, etc.) running RobotBASIC must reside in the
robot itself. While this usually means the robot must be relatively large, there are many
advantages to this approach. For example, RobotBASIC weatlgihandle voice recognition,
voice synthesis, and vision as described in our bfaikdware Interfacing with RobotBASkKhd
Arlo: The Robot Yo u o (awilae Swmamers201%/ annAmazadn.com).
IMPORTANT : Wired links MUST be 5 volt, TTL level®OT the standard RS232 +12 volt
levels.

We will use Bluetooth communication with the robots in this book, with the PC end being
handled by an Abe USB dongle as shown in Figure 2.3. The RROS end of the communication can
be handled by any compatibleugtooth transceiver. We have had no problems with transceivers

1C

Chapter 2: Communicating with the RROS

on the RROS end, but have found some incompatibilities with theid®JSB transceivers,
especially those that wuse their own fAenhanc
The Abe dongle has always performed flawlessly no matter what transceiver we connected it to, :
it is our adapter of choice. You should not have problem with other adapters in most cases, but i
is important we mention the possibility. We will discuss & teatest your interface shortly.

Figure 2.3 We have found no incompatibilities
with the Abe Bluetooth USB transceiver.

Testing the Interface

Before we try to communicate with the RROS,
data cartransfer without error. There are only four connections to a typical Bluetooth transceiver
(refer to the documentation for your particular device).

Two pins are generally used to supply 5 volts (VCC) and ground (GND) to the transceiver.
Two additioral pins receive data (RXD) and transmit data (TXD). For testing purposes, we will
just connect RXD to TXD so that anything received by the device (from RobotBASIC) to be
transmitted back (to RobotBASIC). Figure 2.4 shows how to apply these connectimna us
solderless breadboard. Remember, the power terminals must connect to a 5 volt supply. If you
not have such a supply, three standarck batteries in series should be close enough, especially
for testing. Later chapters will discuss betteysvaf producing 5 volts fathe circuitsthat require
it.

Figure2.4:Ti e t he wireless transceiverds tr
and receive pins together for testing.

11

Chapter 2: Communicating with the RROS

The Testing Software
The program in Figure 2.5 shows a simple RobotBASIC program for testing the odcatimn
interface.
SetCommPort 49 // use YOUR port address here
tot=0
for i=0 to 255
SerialOut char(i)
repeat
SerBytesIn 1,x,n
until n=1
print i;ascii(x);
if i=ascii(x)
print "GOOD"
else
print "BAD"
tot = tot+1
endif
next
print "Total errors = ",tot
end
Figure 2.5 This program tests the communication interface.

When you insert your USB Bluetooth transceiver for the first time, it should automatically install
the appropriate Wi ndowbs dmote Bleetooth trangaeiver usiege d t o
the instructions that came with it (typically through the Bluetooth icon in your system tray or on
the Windowbés Contr ol Panel) . Generally, you
specified i n (ewcation. @neevhe pagridgss campletey time devices will connect
automatically each time the two devices see each other.

Once paired, ask Windowdéds to show you the BI
Bluetooth Icon) and you should see a windgimilar to Figure 2.6 which provides you with the
actual Port Address Windows assigned to YOUR device. You will need this address to establish
communication between the two transceivers.

The test program in Figure 2.5 starts by initializing théaspport assigned to your Bluetooth
connection. Aor-loop is used to send all possible byte combinations over the serial connection.
Since the transmit and receive pins on the remote device are tied together, the data sent out will be
immediately transitted back. When this byte is received by RobotBASIC, it is printed and
compared to the original transmission. If communication is working, you will have no errors.

linvor Properties 2] x|
General Services |

This Bluetooth device offers the following services. To use a
service, select the check box.

Serial port (SPP) ‘Dev B’ COM4S

Figure26. Wi ndowd6s can provide the Port Addr
used for your Bluetooth communtan link.

12

Chapter 2: Communicating with the RROS

Connecting to the RROS
As mentioned earlier, using a solderless breadboard is one of the easiest ways to wire your
circuits. We have created numerous robots for testing the RROS using this simple technique (se
Chapter 15). Even if you evemtily wish to permanently solder all the connections for your robot,
it is certainly suggested you utilize the breadboard approach until you have everything working
exactly the way you want it. We were always swapping sensors and trying different
configuraions with our prototypes so, to make rewiring of circuits easier, we generally used wires
that were longer than necessary which often caused our circuits to appear messy and disorganiz
Since most people will not need to use a variety of sensorgutdshe easier to create a
professional look even with a breadboard.

Figure 2.7 shows a schematic diagram showing how to connect your transceiver to the RROS
chip. Notice that our recommended power requirement$i@RROS chip is between 6 and 12
volts. Figure 2.8 shows the actual connection between the RROS chip and the transceiver using
breadboard.

1 24— Main Power (+6 to 13 volts)
+5V 2 23 =
| RROS -

vCcce TXD 3 — 22

GND RXD 2 ok

| S 20
= 6 1S
BLUETOOTH 7 18
TRANSCEIVER 8 17

S 16

10 15

11 14

12 55 13

Figure 2.7: This schematic diagram shows how to
connect a transceiver to the RROS chip.

13

Chapter 2: Communicating with the RROS

w d
Figure 2.8 When implemented, the schematic shown in Figure 2.7
will look like this. Note: No power is shown to the RROS chip.

Testing the RROS

Now that we have the communication aspect of our circuit implemented, we can move on to
confirm the RROS is operatiolnalo make using the RROS as easy as possible, we have provided
an include file calleckROScommands.bagavailable from the RROS TAB at RobotBASIC.org).

You should include this file in your programs as shown in Figure 2.9.

#include "RROScommands.bas"
main:

gosub InitMyRobot

/I 'your programs will be written here
end

InitMyRobot:
rCommport 49 // Use your Port address
rlocate 0,0
gosub InitCommands //found in the Include file
/I statements will be added here
// throughout the book
return
Figure 2.9 This is a template for programs that
you write for controlling a RRO®ased robot.

The program shown in Figure 2.9 is incomplete. It is only a basic template that you should use

when writingany program to control a RROGBased robot. Therpgram starts by including the

RROS command file that sets up many constants that will make RROS programming easier.
You should also see that there are two major sections to the template. Theaaigragram

that normally will control your robotThere is also a subroutine, that in this case is called

14

Chapter 2: Communicating with the RROS

InitMyRobot. As we proceed through this book we will show how to customize this subroutine to
initialize all the parameters appropriateyaurr o b ot . Letds discuss t hi

Your Initialization Subroutine

Remember, the RROS can handle many different types of motors and sensors. This means that
before you start using it to control your robot, yausttell it what motors and sensors you are

using. The commands to do this vgénerally reside in younitMyRobot subroutine. The

subroutine will also contain commands that can calibrate your particular hardware so that your
robot will operate as expected. All of these commands will be explained in detail as we proceed
through tle book.

Naming Your Routine
The name of your initialization subroutine is entirely up to you. If you have several robots using
different types of motors and/or sensors, then you will want to have several initializing
subroutines, one for each of your odd This will make it very easy to use the same program to
control any of your robots (or even the robots of others at a club meeting, for example). If you
create separate include files for each of your robots then any program you write can comtfol any
your robot by changing only a single line of code that calls the appropriate initialization
subroutine. This may seem complicated, but it will become clear as we proceed through the text
Often, in this text, we will make references to statemténaisshould be added to yousin
program or to younitialization subroutine. Early on, we will show these changes in detail, but as
we proceed we will assume that you know to add the commands properly. This will allow us to
minimize the space needear program listings because we will not be repeating code that has
already been shown and explained.
Now t hat you understand how RROS progr ams
demonstrate that the RROS is functional. The test progiiiralso serve to show you a simple
example of commanding the RROS to perform tasks for us.

Making Sounds
Sometimes it is valuable for your robot to be able to make some simple sound effects. For
example, it might issue some beeps to let someone Kmware in its way or it might want to
play a little tune to celebrate when it has accomplished some goal.

Because of this, we gave the RROS the ability to make soundsratrtbterobot. This ability
was never intended to produce high quality mosiany significant audio response such as a
voice. That can be done from the PC directly, and advanced robots needing such capabilities ar
probably be better served with an embedded PC anyway.

That said, we felt it would be nice to have some lichdeund generation capabilities built into
the RROS and we can use them now to confirm that the RROS is working.

Of course we will have to connect a sound transducer to the RROS chip as shown in Figure
2.10. We will actually alter this interface ancoming chapter, but for now, this will work fine.
You may use most any piezo buzzer. Be careful to match the positive/negative mirkings
on your buzzer to those in the schematic.

Try turning on the power to the RROS chip with the buzzechéd. You should hear a short
tone indicating that the RROS chip has become operational. If you do not hear this tone, turn off
the power and check your wiring carefully.

1t

Chapter 2: Communicating with the RROS

Power (+6 to 13 volts)

+
o
<

N

w

RROS 22
CHIP 21

vce TXD
GND RXD

Hr

Do W NP

BLUETOOTH
TRANSCEIVER 8 17

Piezo Buzzer

Figure 2.1Q Adding a piezo buzzer lets your robot make sounds.

N o w Imeke thesremote robot produce a simple tone. Add the following line taatie
program shown in Figure 2.9 (add the new line just beforenbestatement).

rCommand(PlaySound,LowTone)

When you run the modified program you will hear two sounds. fif$tewill be the same sound
generated when the RROS powers up. This sound also occurs when the RROS s initialized with
an rLocatcommand. The second sound heard will be a lower tone producedrbyrtineand You
can verify this by placing the commaaelay 200before yourCommandYou will then hear the
power up tone, followed by the low tone about two seconds later.

We will use theCommanextensively throughout this book to issue special commands to the
RROS. TheCommanwill always havewo 8-bit parameters. The first is the command code and
the second is used to qualify what is to be done. In this example, the first parameter is telling the
RROS to play a sound, and the second parameter specifies what sound to play. Try changing the
parametei.owTonto one of the options shown in Figure 2.10.

Parameter Description
Blipl drip/blip sound
Blip2 drip/blip
InitTone startup RROS tone
LowTone low tone
BeepBeep two quick beeps
BeepBeepBeep three quick beeps
Phasor a phasor sound
Sirenl a type of siren
Siren2 another siren
Siren3 still another siren

Figure 2.1Q These are the standard sounds for the RROS.

1€

Chapter 2: Communicating with the RROS

All of the parameters in Figure 2.10 are simply numeric values. You can see the actual numbers
that they represent by examining the assignments statements in #rO8eommands.bls fact,

all of the numeric codes usedr@ommandare summarized ia quickreference format in

Appendix A.

Playing Music

You can also play a particular note (C, D, E, F, G, A, or B) in one of three octaves using a
specifying parameter such ®g&iG HighA or LowG You can determine the length of each note by
ORing (]) it or ADDing it (+) with a length designatobgubleWhole Half or Quarte). This means
you can us e DRadmnanB # Sréate the notes for a song as shown in Figure 2.11.
This song is actually included RROScommands, s you can tryt without having to type it in.

Data Birthday; MidC|Quarter, MidC|Quarter

Data Birthday; MidD|Half, MidC+Whole, MidF+Half

Data Birthday; MidE+Half, Pause+Half

Data Birthday; MidC+Quarter, MidC+Quarter, MidD+Half Data Birthday; MidC+Whole, Mid&+Hailf,

Data Birthday; Pause+Half

Data Birthday; MidC+Quarter, MidC+Quarter, HighC+Half Data Birthday; MidA+Half, MidF+Half, MidE+Half
Data Birthday; MidD+Whole, Pause+Half

Data Birthday; MidB+Quarter,MidB+Quarter,MidA+Half

Data Birthday; MidF+Half,Midéatf, MidF+Whole

Data Birthday; 0 // each song must end with a zero

Figure 2.11 These notes play Happy Birthday. Notice that
you can use either the + or | symbol to combine terms.

The subroutine needed to play a song is also includeH@$commands.b¥Ou can play th@irthday
song by adding the following commands to ymai program.
mcopy Birthday,CurrentSong
gosub PlayMySong
The subroutine@layMySonwill play the song stored in the arravrrentSongThemcopyline (above)
copies the notes stored in the arBathdayinto CurrentSongThe second line calls the subroutine
PlayCurrentSobg actually play the notes.
Remember, the sound abilities of the RROS are not intended to be of high quality, matrthey
provide your robot with some basic sound effects to quickly and easily give it some personality.
Play with the sound commands to get comfortable with usiagmandswith the RROS.
When you are ready, move on to the next chapter where we wilkstac ont r ol | i ng vy
motors to produce movement.

17

18

Chapter 3

Small DC Drive Motors

No robot is complete without some movement capabilities, and that generally means motors. Tt
RROS has &en designed to handle the requirements of almost any application. Small robots can
be made that are powered by either DC motors or servomotors. Large robots can be powered b
| arge DC motors that require uplDComotd @ptioa.mp s

Small DC Motors
Figure 3.1 shows the robot we used for prototyping the RROS DC motors routines. It also
demonstrates several sensor options, but that will be the subject of a later chapter.

Figure 3.1 The drive system for thi®bot is two small DC motors.

The motors used are shown in Figure 3.2, which is a bottom view of the robot. The motors have
200:1 ratio gearbox with a 90° output shaft. They can be purchased from Pololu.com (item #112:

19

Chapter 3: Small D@rive Motor

which also offers wheels thatate directly to the motors. These motors are ideal because their
low current requirements allow the RROS chip to drive them directly. More on this shortly.

Figure 3.2 Small DC motors provide motion for the robot in Figure 3.1.

Figure 3.2 also showane of two 3gang battery holders used to provide power for this robot. The
six batteries in series provides power for the RROS chip itself (Pins 23 and 24 as shown in Figure
2.7 in Chapter 2). Figure 3.2 also shows a haade encoder disk on the whéiéle encoder

itself is mounted to the right of the wheel). The encode system will be discussed in Chapter 7.
The motors are driven from the main voltage applied to the RROS chip.

The robotdés main body parts aroaganudigheweightyo m f o
available from most craft stores. The motors are attached to balsa wood blocks (which are glued
to the foam board) with small screws.

It is possible that you do not have your robot assembled at this time but that is noemprobl
You can test your motors by simply connecting them to the RROS chip. Connect the two wires
for your robotés LEFT motor to the RROS pins
and 22. Motors connected directly to the RROS chip like thig beismall (drawing less than 1
amp each). Larger motors will be discussed in a later chapter.

You may need to reverse the connections to either or both of your motors based on how it is
mounted etc. Reverse the connections if the motor runs batkwaen you expect it to run
forward.

Any motor (large DC, small DC, or servo) will not receive power unless the RROS has been
properly told of its existence. This is done withraemmand as shown below.Note: This
command should be placed in theMyRobot subroutine discussed back in Figure 2§DTE:
TheMotorSetup should be done FIRST before sensors are setup.

rCommand(MotorSetup, Param)

2C

Chapter 3: Small DOrive Motor

The value of the lowest three bits in the paramedesm tells the RROS which motors are being
used. When we are using small DC motors as in this example, the parameter should be zero; the
are other codes for other motor types.

To make the RROS easier to use, the include file mentioned earlier sets up variables that
represent various RROS optiorisor example, instead of using a fixed numeric value#oam,
you can just useMALLDdine this.

rCommand(MotorSetup, SMALLDC)

If your robot does not use wheel encoders (these will be discussed in Chapter 7) then this one
parameter is all you needf your robot has encoders, then you can OR or ADD another parameter
(ENCODERsas shown in the two examples below.

rCommand(MotorSetup,SMALLDC+ENCODERS)
rCommand(MotorSetup, SMALLDC|ENCODERS)

Either the + sign or the OR symbol (|) may be used. Since we have not discussed wheel
encoders yet, we will proceed assuming your motors do not have encoding capabilities.
Controlling the Simulator

For those readers that might not be familiar withRh@e b ot BASI1 C si mul at or ,
simple program that controls the simulated robot. Enter the program shown in Figure 3.3 into
RobotBASIC.

main:

rLocate 400,300 // initializes the robot

rForward 120

rTurn 90

rForward 120

end
Figure 3.3 This program moves the simulated robot.

If you run the program in Figure 3.3, the simulated robot will be initialized near the center of the
screen and then move forward a distance equal to three times its diameter (the default simulated
robot is approxirately 40 pixels in diameter). The robot will then turn right 90° and move

forward another 120 pixels before stoppidote: Chapter 16 provides detailed RROS
programming examples.

Controlling the Real Robot
Ideally, the program in Figure 3.3 can be usedontrol the real robot and have it respond in a
very similar manner to the simulated robot. In the long run, this is certainly an achievable goal,

especially when the robotds movements are b
(closedloop control). For example, we could program the simulated robot to move forward until
it finds a wall, then use its sensors to #df

control a real robot, then the results will be very similar ag fmthe sensors used on both robots
have similar placements etc.

We can modify the program in Figure 3.3 so that it controls a real robot by using the technique
discuss in Chapter 2, Figure 2.9. An example modification is shown in Figure 3.4.

#Include "RROScommands.bas"
Main:

21

Chapter 3: Small DOrive Motor

gosub InitMyRobot
rForward 120
rTurn 90
rForward 120
end
Figure 3.4 This modified version of Figure 3.3 will
control the real robot instead of the simulator.

For the most part, the change made in Figure 3.4 compared to Figure 3.3 is that the robot is being
initialized by theinitMyRobot subroutine instead of just arbcate statement. Of course you must
have thanitMyRobot subroutine (as discussed in Chagteand include theROScommands.bafile.

Since programs like the one in Figure 3.4 do not use sensory information to affect the robots
movements (opeloop control) the actions of the real robot will not necessarily mimic the
simulator accurately.For example, the real robot might not move in a perfectly straight line when
looking for a wall. While it is not essential that the real robot and the simulated robot track each
ot her s mo v e me n t-lsop eortralestuded; it isvaleable tbt@nesame level of
similarity in order to increase the value of developing programs with the simulator. This can be
accomplished in two ways.

First, the simulator can be made to react much more like a real robot. The corampand
forexamplewi ' | add up to 10% random error to the s
use the simulator to create algorithms and behaviors that better deal witlorkebs$ituations.

Second, we can fineine the real robot so that its movements havitleserror as possible. In
Chapter 7, we will examine how wheel encoders can provide feedback so that we have a closed
loop system that can help keep the robot moving a straight line and make turns more accurately.

In many cases though, the addit@b expense and work of adding wheel encoders is not

necessary. As | o nlgop maemert is reasanably clasetdtbat adbtbe o p e n
simulator, then sensoityased behaviors should operate properly. Because of this, we added
commands to theROS to allow theusertofilreune t he robot dés open | oo

first at how we can ensure that the robot moves in a relatively straight line when asked to do so.

Improving Open-Loop Control

The reason a robot might not move in a straliglet is that the two drive motors are not evenly
matched. If one motor is more efficient electrically or if that motor has less friction, then that
motor will turn slightly faster than the other motor (even when they are told to move at the same
speed) casing the robot to drift to one side when it is commanded to move forward (or
backward). If, for example, your robot drifts to the left when it moves forward, you can use the
following command to slow down the right wheel by 5%.

rCommand(SetReducForwRigh5)

Similarly, if the robot was drifting hard to the right, we could slow the left wheel by 10% with this
command.

rCommand(SetReducForwLeft,10)

Two other rCommand parametegetReducBackRighandSetReducBackLejt can be used to slow
down a designatewheel when the robot is going backward. The ability to establish different
percentages of slowdown for forward and backward movements is important because many

22

Chapter 3: Small DOrive Motor

motors have slightly different physical characteristics depending on their direction @fmotat
Notice that these commands only let you slow down one of the nmiot@ger speed one up.

You should experiment with your robot and determine exactly whatdinieg is needed to
make your robot move in a relatively straight line. The commgod determine to be necessary
should be placed in theitMyRobot subroutine discussed in Figure 2.9, Chapter 2. This will force
your robotdos mowvementvyery be mei meprogram i s
you should have separatetializing routines for each of them (each aptly named for the
corresponding robot). The ability #include the appropriate initializadn routine in your
programamakes it easy to use any program you write with any of your robots.

Evenifyourrobt uses wheel encoders, the RROSOSs
enhanced if the normal operation of the motors has been balanced as discussed above.

Fine-Tuning Turns

You can al so ¢ o n-toopaurning/nmvements.olftyautusieshonomaraurnm

90, for example, the simulator turns 90° to the right. If your real robot does not turn the proper
amount you can vary two parameters to make this happen as shown below.

rCommand(SetRotationTime, 10)
rCommand(SetSlowDownSpeed, 30)

If your robot is turning too much (more than 90°, for example) you can decrease the rotation time
or slow down the speedNote: The RROS allows control over three speeds (the naspesEd a
slowdownspeed and aslowdown2-speedl to fine-tune movementsThe slowdownspeed is
used when a robot without wheel encoders is asked to move a specific distance or to turn a spec
amount. Both speeds are set as a percentage of maximum, with 100 being the fastest possible
speed using the following commands.

rCommand(SetSpeed, 80)

rCommand(SetSlowDownSpeed, 60)
In general, to calibrate turns, you should set the slownspeed to some modest speed, then
adjust the time to get a 90° turn. Once you get close to the proper movement by setting the
rotation time,you should expect to have to make minor adjustments to thedsloarspeed in
order to make the turn accurate. This is true because you have more control over the speed thai
you do the time (this will make more sense when you actually try tefime yaur robot).

Fine-Tuning Linear Movements

Next you should calibrate your r obraward4s, fof i ne
exampl e, it owi || move a distance equal to t
robot shoud move a distance equal to its diameter when given the same command. You-can fine
tune the linear motion using this command.

rCommand(SetMoveTime,10)

Just adjust the value used until the robot m@amsoximatelythe right distance. This should
generdly be doneafteradjusting for turns as it is not as important to have accurate forward
movements as it is accurate turns. Just as with turns, robots without wheel encoders will
automatically make specifi€orward movements using theow-down-speed

If you have read any of our other books, you know that the vast majority of the time, your robo
is only commanded to move forward one pixel at a time or turn one degree at a time. These

23

Chapter 3: Small DOrive Motor

movement uses thepeedparameter (rather than thiew-down-speed). Normally, the speed should
be set to something a little larger than the sttown-speed.

For most situations, you want the main speed to be as fast as possible, but not so fast that the
robot moves a significant amount before sensorscanberead t he r obot 6s behav
example, if your robot is following a line on the floor (as described in some of our books) but it is
moving so fast that it looses the line before the line sensors can be read, then you would need to
reduce the maispeed parameter. There are more sophisticated ways of handling this using a
TurnStyle parameter.TurnStyles will be addressed in a later chapter.

Additional Fine-Tuning

It is important to realize that the real robot will normally usestie=d parametewhen executing

an rForward 1 or rTurn 1 command. Typically, you should set the value of speed so that the robot

moves only a very small amount for either of these commands. Let's look at a general example to

see why this is important. Suppose you waagramming the robot to follow a line and that the

robot reads the line sensors and either moves forward or turns left or right based on the readings.
If the robot moves too far before reading the sesmagain, then it can easilysle the line.

When your robot is performing an activity of this nature, it is vital to set the speed parameter to an

appropriate value. Of course, a smart robot can use alternative measures to allow it to reliably

follow a line at a faster pacéNote: Line following examples will be discussed later in this book.

Easier Than You Think

All of the above can sound very complicated but it is important to remember that you only have to
perform finetuning one time (for each of your robots). Once you have experimenteduamt fo

the appropriate values, just place all the necessanymandsinto your initialization subroutine

and forget about them unless you change things about your robot that might alter its movement
characteristics. This could include installing new motors, changing the wheel size, etc.

There will be many other finuning options available to you throughout this text. All
appropriate commands should be added to your initialization subroutine. When you have
everything exactly how you want it, you can copy and paste the subroutine into a program file of
its own and ave it. This will allow you to easily merge it (see the FILE menu}jmnalude it in
any of your programs.

Including the file is often the best overall solution because it allows you to simply include the
initialization file for the robot you aresing at the time. This makes it very easy to use the same
program with different robots you own, or even with other RobotBASIC compatible robots at a
school or club meeting.

Ramping
The RROS will automatical l y c goarrapa wiltnathdve mot o r

jerky starts and stops. You can make the robot start and stop quicker by increasing the parameter
above 1 (which is the default for small DC motors) in the following command.

rCommand(SetMotorRamp, parameter)

This command is available no matter what type of motors are used to power your robot. You
should experiment with different parameters to find what works best for your robot. In general, it
is preferred to use therfgest parameter that does not cause your robot to jerk or rock when
starting and stopping.

24

Chapter 1: Why a RROS

Chapter 4

Servomotors

| n the previous chapter we interfaced small DC madoestly to the RROS chip. For those that
might prefer to use continuous rotation servomotors to power your robot, we added appropriate
RROS support. Figure 4.1 shows an early version of the prototype robot we used to test the

servomotor routines.

Figure 4.1 This robot was used to teébie RROS servomotor routines.

The robot in Figure 4.1 is a heavily modified Boe Bot from Parallax. It was chosen primarily
because it uses servomotors and we had it
25

a

Chapter 4: Servomotors

aluminum chassis is small and square, so we topped it with a round piece of foam board to make it
look more like our simulated robot. More details on the construction of this project are provided
inourbookRobot Programmer 6s Bonanza

Figure 4.2 Servonotors attach to the aluminum Boe Bot
chassis which is topped with a round foam board cutout.

Standard Servomotors

The angular position of the output shaft of standard servomotors is controlled by the width of a
pulse sent to them. The pulse width nofgnednges from 1ms to 2ms in order to position the

output shaft over a 180° range. A pulse width of 1500 microseconds should position the shaft near
the center of its travel range. The frequency of the controlling pulse may vary, but in order to
achievesmooth movement with a reasonable torque, the servo should be pulsed approximately 50
times per second.

Continuous Rotation Servomotors
Special continuous rotation servos can be purchased from many sources and used to power your
robot. The speed of thes®tors (rather than their position) is controlled by the width of the
pulses sent to them. A 1500 microsecond pulse should stop the motor. As the width of the pulse
increases the motor will increase its speed in one directitatreases in the pulsedth will
increase the motorés speed in the opposite di
The RROS will handle all the details associated with servomotor control so that all the
commands we used in Chapter 3 to control and initialize DC motors will work equally well with
servonotors. There are some additional complications associated witinsators, so our RROS
hasa few special commands to fitene how they operate. Any new commands needed should be
placed in the initialization subroutine just as we did with DC motors.
Servomotors have three connections to them. Often the wires from the servomotor are red,
black and yellow. In that case, the black wire is ground, the red wire should be connected to +4.5
to 5 volts and the yellow wire is for the control signal. Sames the black wire is brown or grey

26

Chapter 4: Servomotors

and the red wire is orange. If your servo has a standard connector, the center wire should alway
be for power with the darker of the two remaining wires being ground. If you have any doubt
which pins are which, reféo the vendor that sold you the device. As with most electronics,
improper connections can cause damage.

Most servomotors can operate on-8.%olts without problems, but you should check the
specifications for your devices. Our test robot is p@ddyy six rechargeable AA cells in series to
get an appropriate voltage for the RROS chip. Since this voltage is too high for most servomotor
you could tap into the supply at 3 or 4 cells to get a reduced voltage for the servomotors, or you
could use & volt regulator. This later approach is necessary if your robot is powered from a
single 12 volt battery rather than a group of individual cells.

Figure 4.3 shows a 7805, 5V regulator that makes it easy to generate a regulated voltage
capable of diezering an amp of current. In order to operate properly, the input voltage to the
regulator must generally be at least 7 volts, sometimes higher. If lower voltages are used, the
output voltage may only be 4.5 volts or so. Often the 5V devices discunsggs document will
work fine at this voltage, but there is no guarantee that erroneous problems will not occur if, for
example, you power your robot with a 6V -gell battery.

Figure 4.3 Regulators such as this 7805 gmoduce 5 volts for drivingervomotors.

The center terminal of the regulator is ground (connect to the black servomotor wires and to the
ground pin on the RROS chip itself). The higher voltage (your 12V battery for example) is
applied to the lefhand terminal as pictured in kigg 4.3. The righhand terminal becomes the

5V source and should be connected to the red leads on your servomotors. This should leave on
control [yellow] lead free on each of your servomotors. The control wire for the left motor should
connecttoth®ROS chi p, Pin 1. Connect the right
also connect a resistor (approximately 5K) between each of the above pins and the 5V supply as
shown in Figure 4.4.

It is worth mentioning here that companies like Parallagrdérge DC motors that can be
controlled with pulses just like standard continuous rotation servomotors. We used these motors
on our lifesized Arlo robot that is discussed later in this book.

Motor Setup for Servomotors
Of course, we must tell the RR@Isat we are using servomotors. We can do that with the
statement below.

rCommand(MotorSetup, SERVOMOTORS)
27

Chapter 4: Servomotors

You can also USsSERVOMOTORS+ENCODER8Ncoders are present (see Chapter 7), just as we did
with DC motors.

24 Power (+6 to 13 volts)
23
RROS 22
CHIP 21
20
19
18
17
16
15

14 |
Sv

25 13

W =15 s W N

7805

= W
(]

[
[

[
N

Right Servo CTL W
Left Servo CTL W

SK

Servo Power

Figure 4.4 The RROS chip cadrive servomotors just as easily as DC motors.

You should set thepeed SlowDownSpeed RotationTimes, ReducForwLeft etcetera just as described
in Chapter 3 for DC motorgut before you do sgyou should make sure the control pulses for
your servomotorare calibrated properly.

Cali brating t hd&esStatev omot or 6s At

When your servomotegpowered robot is at rest, the RROS chip will send normally a 1500

microsecond pulse to each motor about 50 times per second. Unfortunately, all servomotors are

notexactly alike, and you are I|likely to find th

width to make the motors stop moving completely. This is such a common problem with

servomotors that the RROS has the option to just quit pulsing a motortvigienppose to be

OFF (this is the default condition). While this does ensure the motors do not turn, even slightly,

when they are suppose to be OFF, it is important that we find the true center position for the

control pulse if the RROS is to conttbke motors accurately. This is a very important concept. |If

the atrest pulses are not truly causing the servomotors to stop, then there will be a slight bias for

one wheel over the other when the robot is asked to move. Calibratingrést pilse ca make

ot her commands work better. Letds see how we
We can tell the RROS to continue to pulse the servomotors even when they are in an off state

by placing the following command in the initialization subroutine. NSending a zero for the

second parameter will cause the RROS to return to the normal default state of not pulsing the

motors when they supposed to be stopped.

rCommand(CalibServoDrive,1)

This command allows you to calibrate the servomotors that drivergbat. After issuing this
command you should expect your robot to drift slightly even when no movement commands are

28

Chapter 4: Servomotors

sent to it. In order to correct this situation, watch your robot and determine if either or both of the
motors are moving. If they argou can alter the width of the-egst pulse being sent to them with
these commands.

rCommand(SetLeftStopOffset,128)
rCommand(SetRightStopOffset,128)

Notice there is a command for each wheel. The parameter 128 is the default. Making that numb
largerasmaller (62 55) wi |l | al t er t hrestspeed (anel svpnbuallgthen g n
direction of that motor when slowing it down). Once you find the values that make your robot
remain stationary (or at least as stationary as possible) when not cdathtarmove, you can

remove thecalibServoDrivecommand to ensure that the motors remain perfectly still when the

robot is at rest.

Calibrating the Servomotors Speed
Most standard servomotors move their output shaft to nearly the same position far Sirsill
pulses. Of course, the position is negeactlythe same. The same inconsistency exists with
continuousrotation servomotors, that is, the same pulse width does NOT produce the exactly the
same speeds for both motors. Theoretically, forexampl a ser vomot or 6s mo\
direction should be as described below.

1500 microseconds stopped

1750 microseconds half speed
2000 microseconds full speed

While most servos will probably function somewhat appropriately at the 1500 and 2000 limits, the
speed does not usually change linearly. For example, a particular brand of motor might reach 9C
of its full speed at 1700 microseconds. If the pulse is increased above 1700, the motor will
continue to increase, but the change will be small. In swelse, it would be better for the RROS

to assume that the controlling pulse should only vary from 1500 to 1700 so that changes made tc
t he motor 6s sSpEaandSlowhaviSpesd &itl cause reaSonable changes to the
robot 6s act ubowingro@rmmand allows yot to alterfthe maximum (and minimum)
pulse width used to control your motors.

rCommand(SetDriveServoWidth,50)

The parameter 50 represents the default pulse width (50% of normal maximum), and was chosel
because it seemed to wdrkst with the motors we tested. You can shorten the pulse with smaller
numbers or lengthen it with larger ones. It is not expected that this command will be needed for
most motors, but we wanted to provide ways to ensure RROS compatibility regardhess of
characteristics of your chosen motof3ne nice thing about this command is that it increases or
decreaseboththe Speed and the SlowDownSpeed simultaneously (as well as otherelpéedi
parameters to be discussed later in the text).

Dependig on how you mount your motors, they may move in the opposite direction from what
you expect (. You can reverse the directions of both of your servomotors using:

rCommand(SetDriveServoDir, 0)

A parameter of 1 will return the motor directions to their default conditiddaote: This command
is necessary for servomotors because you cannot reverse their direction by just reverse their lea
as you can with DC motors.

28

Chapter 4: Servomotors

After you determine the @popriate calibration parameters for your servomotors, place the
proper commands in an initialization subroutine aptly named for your servomotor powered robot
so that you camerge it with or #include it in your programs. Utilizing the appropriate
initialization subroutine should allow the standard motor commands to work properly whether you
are using small DC motors or servomotors. In the next chapter we will examine how to extend
this compatibility to much larger DC motors.

3C

Chapter 5

Large Drive Motors

Previous chapters have demonstrated how the RROS can handle all the details associated with
small DC or servomotors. In fact, the RROS chip has the hardwaréntalpower both of these
small motortypes. We wanted the RROS to be able to control nargied motors though, when

the need arises. We could have built a much larger RROS chip, but that would have added
significantly to the price and would not have been needed for many applications. Because of tha
we chose to provide the ability to conttalger motors by allowing the RROS to interface with

any of the RoboClaw motor controllers from BASIC MICRO as pictured in Figure 5.1.

Figure 5.1 RoboClaw controllers allothe RROS to control large motors.

RoboClaw controllers were selected becaudgdbeir high quality and the variety of products.
RoboClaw controllers are currently available that can handle 5, 15, even 30 amps of current for
each of two motors. Any of these, or even older models of their controllers, should work find with
the RROS.Some models might have slightly different connectors or DIP switch settings, so refer
to your RoboClaw documentation to ensure you interface everything properly.

One of the great things about the RoboClaw controllers is that they can be controlleght
several modes including analog, RC, and serial. The most efficient method for our RROS is to u
i's serial so we must set up the RoboCl awbs
properly. To make this discussion easier to follow, refex drawing of a RoboClaw in Figure 5.2

31

Chapter 5: Large Drive Motors

Figure 5.2 This drawing can make interfacing
to the RROS easier to understand.

Setting the DIP Switches

Notice in Figure 5.2, a DIP switch in the upper center of the board. The settings on this switch
allow you to configure how the board operates. We need to move switches 2 and 4 to the left,
making them ON. This selecBmple Serialat 9600baud. If you are using special batteries
(such as Lithium) refer to the RoboClaw documentation as there are aaldsiiatth setting to
monitor and protect special batteries.

Connecting the Motors
The top of the board (Figure 5.2) has several screw terminals for connecting your motors and the
power for them. You should connect the leads from your robots RIGHT roattee terminals
|l abeled M1A and M1B (upper |l eft corner of the
connect to M2A and M2B. As with small DC motors, if the motors rotate in reverse compared to
what is expected, just reverse the leads.

The main powr for your motors (probably the battery powering the RROS) should connect to
B+ andB- (at the top of the board in Figure 5.Rote: If you use a separate battery for your
motors, you must tie thB- terminal to the ground terminal on the RROS chip (refer to the
RoboClaw documentation).

Connecting the Control Lines

The serial data used to control the RoboClaw must connect teténmiBial connector called S1

as shown in the lower middle of Figur@5.0nly two of the three terminals are actually used for

our configuration. The upper terminal (as viewed in Figure 5.2) is the ground terminal and should
connect to the RROS chip ground. The lower of the three pins (again, as viewed in Figure 5.2) is
the control signal and should be connected to Pin 21 of the RROS chip.

32

