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Preface 
 

In order to intelligently handle a wide variety of generic tasks, a robotôs hardware configuration 

must include a diverse selection of sensors and I/O capabilities. In the past, building such a robot 

has been a daunting task reserved for only those with significant knowledge and skill of both 

electronics and low-level microcontroller programming. 

     Now, for the price of an interface board alone, hobbyists can have a complete 

hardware/software solution in the form of a 24-pin IC preprogrammed with the RobotBASIC 

Robot Operating System (RROS). 

     The RROS will not only provide the physical interface needed for many motors and sensors, it 

will also provide the software required to seamlessly interface with all supported devices using the 

high-level RobotBASIC simulator-based commands and functions.  This means that the RROS not 

only makes it easier than ever before to build a robot, it makes it easier to program one too. 

     Imagine being able to simply connect a compass to the RROS chip and then immediately 

determine your robotôs orientation with a single programming command such as angle = 

rCompass() .  Imagine connecting infrared or ultrasonic sensors directly to the RROS chip and 

being able to determine where obstacles are that might block your robotôs path using rBumper()  

and rFeel().  

     Controlling your robot is just as easy as acquiring its sensory information.  When commands 

like rForward  and rTurn  are used, your robot wonôt just respond, it will respond intelligently, 

automatically ramping up and down when speeds are changed and using compass readings and 

wheel encoder counts when possible and appropriate. 

     And these examples donôt begin to describe the power of the RROS.  Read on to find the real 

poweré. of simplicity. 
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Chapter 1 

 

 

Why a RROS? 
 

 

 

 

 

Since the very beginning, we have had a vision for RobotBASIC that promoted programming as 

well as building a robot.   While building a robot is certainly a big part of hobby robotics, it is the 

programming of a robot that creates personality, intelligence, and the ability to create usable 

applications.  This distinction is similar to the personal computer revolution of the 1970ôs. 
 

Historical Similarities  

In the mid 70ôs, if you were interested in computing, you had to build your own computer, either 

on your own or from one of the several kits that were available.  So much of the early hobbyistôs 

time was spent soldering and troubleshooting that very little application programming was done.  

Only after Apple and Radio Shack (among others) introduced fully assembled computers did the 

emphasis move from building computers to programming them ï allowing the development of 

usable applications. 

     While fully assembled hardware was critical for this transition, there is another factor that 

played a huge role.  It wasnôt just that you could buy a computer, it was the fact that many people 

also had the same computer.  This meant other people used the same video mapping hardware, the 

same joystick, the same sound generation hardware, etcetera, making it easy to share programming 

creations with others. Perhaps more importantly, it created a growing market for selling practical 

applications which further fueled the desire to create. 

     Games were certainly among the early applications, but simple programs to balance your 

checkbook soon found enough popularity to encourage the development of truly useful products 

like word processors and spreadsheets.  In the years that followed, computing moved from an 

eccentric hobby to the massive, indispensable industry that it is today. 

     Hobby robotics may or may not follow the same course, but if such a path is to have any 

chance of happening,  it is essential that building a robot become much easier.  It is also crucial 

that those developing robotic behaviors and applications be able to share their work with other 

enthusiasts. 

     RobotBASIC, along with the RobotBASIC Robot Operating System (RROS) described in this 

manual allows both of these things to happen.  Letôs look first at RobotBASIC itself.  It is a 

powerful, full-featured, general-purpose language that has the ability to communicate with, and 
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control, external motors and sensors in a variety of ways.  More importantly though, from a robot 

hobbyistôs perspective, RobotBASIC has an integrated Robot Simulator. 
 

The RobotBASIC Simulator 

The simulatorôs two-dimensional appearance and easy-to-use interface can sometimes mask its 

true power from potential users because they do not expect something so simple to be effective.  

An abundance of easy-to-use sensors though, creates a platform with far more capabilities than 

most hobby robots.  The plain truth is that you cannot give a robot any significant amount of 

intelligence unless that robot has the ability to gather information about its environment ï and that 

means it must not only have the right types of sensors, but also an appropriate number of each 

type. 

     The RobotBASIC simulated robot has the following sensory capabilities: 

¶ The ability to read its own batteryôs voltage so it knows when a recharge is required. 

¶ An electronic compass so that it can determine its current orientation. 

¶ The ability to move and turn with a reasonable amount of accuracy (the simulator allows 

you to set a level of random error so that it actions are realistic). 

¶ A GPS system that allows it to determine its location within a specific area. 

¶ A simple camera that allows it to identify objects of a user-specified color. 

¶ A beacon detector that allows the robot to find and identify up to fifteen beacons 

strategically placed within its environment. 

¶ Line sensors that allow the detection of drop-offs as well as the ability to follow a path 

defined by a line on the floor. 

¶ A turret mounted ranging sensor that allows the robot to identify the distance to walls and 

other objects that might block its movement. 

¶ Two types of perimeter proximity sensors that provide the information needed to avoid 

obstacles while navigating through an unknown environment.  
 

It is important to know that the types of sensors available on the simulator, as well as the number 

and placement of the sensors, were chosen very carefully.  Our book Robot Programmerôs 

Bonanza (McGraw-Hill), demonstrates that the chosen sensors as well as their number and 

placement are adequate to implement a variety of basic behaviors and goes on to show that the 

basic behaviors can be combined to create significant applications.   

     Since the simulatorôs sensor configuration is available to everyone through free copies of 

RobotBASIC, it is easy to create coursework for students and contests for robot clubs.    As 

powerful as the simulator is though, it cannot replace the joy giving ñlifeò to a real robot. 
 

Real Robots 

Our Bonanza book also outlines the requirements for creating a real-world robot that can be 

controlled directly from RobotBASIC using the same programs used to control the simulator.  The 

availability of such a robot would allow dedicated hobbyists to share programming algorithms, 

libraries of basic robotic behaviors, and even full blown applications that run on either the 

simulation or a real robot. 

     The design specification for a RobotBASIC interface with a real robot is very unique in that it 

allows for the use of nearly any type of sensors on the real robot as long as the information 

acquired is mapped into the simulatorôs sensory format.  When this is done, a program capable of 

navigating the simulated robot through a cluttered environment can also command a real robot 
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over a wireless link to do the same thing.  This greatly simplifies real-world robot programming 

because all of the intelligence can be programmed in a PC-based high-level-language while all of 

the low-level details of driving motors and reading sensors are handled in a processor embedded in 

the robot itself.  Because of the wireless link, there are no programs to compile and no files to 

download ï when you make a change to your program you simply rerun it and watch the robot 

react.   

     The processor embedded in the real robot must provide the all the same sensory data to 

RobotBASIC that the simulated robot does, and it must do so, no matter what type of sensors are 

used on the real robot.  Letôs examine this idea in more detail by looking at the simulatorôs 

perimeter sensing system.  The simulated robot uses four bumper sensors spaced around the robot 

that can detect when an obstacle is very close.  There are also five sensors spaced around the front 

half of the robot that detect objects that are slightly further away.  Finally, a turret mounted 

ranging sensor measures distances to objects outside the range of the proximity sensors.  Proper 

utilization of these ten sensors along with a compass and a GPS provides more than enough 

information for a robot to navigate an unknown environment. 

     A real robot has many options for obtaining the sensory information available on the simulator. 

It could, for example, use snap-action switches or IR sensors or even ultrasonic sensors to 

determine when objects are near the robotôs perimeter.  A more sophisticated robot might utilize 

one or more cameras to determine if nearby obstacles exist and how close they are to the robot 

itself.  Our objective was for a sensory system could gather the data for you no matter what type of 

sensors were available on the real robot.  After the data was gathered, we wanted the system to 

analyze it, organize it, and translate it into a form compatible with RobotBASICôs simulated robot.  

Imagine the power of such a system ï not only would it make it easier to program a robot, it would 

promote creativity and collaboration because it would make it easy to share programming 

concepts and designs with others. 

     Creating such a system is not a trivial task.  Todayôs robot enthusiasts have many sensory 

options available to them.  Some sensors are digital while others are analog and both types can 

sometimes require specific timing or pulsing sequences for accurate readings.  More sophisticated 

sensors often have a complicated serial I2C interface in order to handle the communication 

necessary to both control the sensor and gather information from it. 

     Fortunately, the manufacturers and/or the retailers of sensors usually make detailed information 

available on how to use their products.  Often there is even example code provided for specific 

processors.  This means that anyone with a reasonable, sometimes even a modest, background in 

electronics and low-level programming can handle the interfacing one specific type of sensor.  

Unfortunately, the task of interfacing numerous sensors so that they can all work together without 

conflict can be daunting.  If you further consider that most of the sensory interactions must occur 

while the robotôs drive motors are being controlled, the problem becomes even more complex.  

     If such a system was available, it would satisfy the needs of most hobbyists, but we still donôt 

think that is enough.  We feel that a complete solution should also have the ability to communicate 

with external processors so that advanced hobbyists or even manufacturers of robotic parts can 

create their own subsystems and seamlessly integrate them to work with all the other features.  It 

should be possible, for example, for an advanced user to create an external vision system that 

extracts meaningful sensory information from the images it collects and then make that 

information available through the standard simulator commands and functions.  
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The RobotBASIC Robot Operating System 

Such a system may seem impossible to achieve, but after thousands of hours of work, we have 

implemented a solution in the form of a RobotBASIC Robot Operating System (RROS).  Just as 

the Windowôs operating system manages the various devices utilized on a PC, our RROS manages 

your robotôs resources.  The programs that run on your PC do not care what video card you use or 

what brand or size of hard drive you have.  They do not care if you have a standard mouse or a 

touch pad.  The Windowôs OS will automatically format an application programôs output to a 

video monitor, or an LCD screen or even a video projector even though each has a different 

physical interface.  Applications will receive identical signals whether you use a touch pad, a 

mouse or even a touch screen.  Our RROS will provide the same type of service for your robot.  It 

will extract data from your robotôs sensors, and it will control your robotôs motors ï no matter 

what type of compatible sensors and motors you use. 
 

Build Your Robot YOUR Way 

This means you can build your robot your way.  It wonôt matter if you use DC motors or 

continuous rotation servomotors to drive your robot, because the RROS will automatically 

generate the signals your motors need.  The commands used to control the simulator can be used 

to control a real robot powered by either DC motors or servomotors.  Small DC motors (up to 1 

amp) can be driven directly from the RROS chip without additional hardware. If larger motors are 

needed, the RROS can control standardized external hardware so that even 30 amp motors can be 

used. 

     Your robot can utilize an electronic compass and a  beacon detector as well as numerous types 

of IR sensors and ultrasonic sensors to handle object detection, distance ranging, line sensing, 

even wheel encoding ï all without the need for any low-level programming ï in fact, you wonôt 

have to worry about the operation of the sensors at all.   

     The RROS is distributed as a 24 pin IC that allows many sensors and motors to be directly 

connected to the chip without any other parts.  When additional parts are required, care has been 

taken to minimize what is needed.  This means that using the RROS is VERY economical because 

most of the time you DO NOT have to purchase separate I/O boards ï the RROS handles 

everything 
 

Beginners 

The end result is that nearly anyone can now build a robot with all of the sensory and drive 

capabilities of the RobotBASIC simulator and control that robot directly from the RobotBASIC 

environment over a wired or wireless link.  You can build anything from a small inexpensive robot 

with only a few fundamental capabilities to a large life-sized robot (complete with one or two 

arms) with wheel encoders, speech, vision, a positioning system (GPS or LPS), and more. 

     Building a robot has never been so easy. Early chapters in this book will discuss the many 

options available to you, explain what motors and sensors you can use and how to connect them to 

the RROS chip.  Programming a robot is easier now too.  Algorithms can be tested and debugged 

using the simulator, then immediately tested on a real robot.  As long as your programs control the 

robotôs behavior using sensory data (rather than open-loop control), both the simulator and the real 

robot should respond in very similar manners.  As the applications to be handled get more 

complex, programs developed on the simulator can require modification to make them ready for 

real-world situations, but the overall development process can still be far shorter than developing 
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real-world behaviors from scratch.  The time to develop applications can be even further reduced 

if you prepare a library of basic behaviors, as discussed in Chapter 16. 
 

Robot Building Simplified 

Letôs look at an example just to show how easy building a robot can be.  The simulated robot has 

five proximity sensors around the front of the robot as shown in Figure 1.1. 

 

 
Figure 1.1: The simulated robot has five proximity sensors. 

 

Assume we wanted to build a real robot that uses five of the digital infrared sensors shown in 

Figure 1.2.  These units are inexpensive and can be purchased from companies such as 

Pololu.com.  Pololu also sell low-cost motors and wheels making it easy to build your base 

platform. 

     Once built, you could mount the infrared sensors (Figure 1.2) around the front of the robot as 

shown in Figure 1.1. 

 

 
Figure 1.2: This small IR sensor detects objects up to four inches away. 

 

Once everything is physically constructed, the wiring necessary is shown in Figure 1.3.  Notice 

that you also need a Bluetooth transceiver for the robot (as well as a Bluetooth USB dongle for 

your PC ï unless your PC has built-in Bluetooth) and a 5V regulator. The extra items for the robot 

are shown in Figures 1.4 through 1.6. 
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Figure 1.3: The IR sensors as well as the motors and other necessary components wire directly to the RROS chip. 

 
 

 
Figure 1.4: This Bluetooth transceiver is available from our webpage ï and others are available from many vendors. 

 

 
Figure 1.5: This regulator reduces the battery voltage to 5V to power 

 sensors and various other components needed to build a robot. 



Chapter 1: Why a RROS 

 7 

 

 
Figure 1.6: When you plug a Bluetooth adapter into your PCôs USB port, RobotBASIC can communicate  

wirelessly with the transceiver in Figure 1.4. There are no wires to your robot and no programs 

 to download.  Just run your RobotBASIC program on the PC and the robot responds. 

 

Building a robot with the RROS chip really is this easy.  And programming a robot is easier too.  

You can read the proximity sensors using the command rFeel and move the robot with rForward  

and rTurn .   The following statement, for example, would move the robot forward only if none of 

the sensors are triggered. 
 

if NOT rFeel() then rForward 10 
 

Just an Example 

Remember, this is just an example configuration.  The RROS chip supports both ultrasonic and IR 

ranging sensors, a digital compass, beacon detection, wheel encoders, line sensors and much, 

much more.  It can handle both small and large DC motors and servomotors.  The RROS provides 

the physical interface for most of these devices as well as a software interface that makes it easy to 

read the sensors and control the motors.  It is important to realize that all sensors have advantages 

and disadvantages for different situations.  Read this entire manual to help you determine what 

sensors might be best for your situation. 

     The RROS can seem a little complicated when you first start using it because there are so many 

options.  Different kinds of sensors have to be connected to different pins because some sensors 

are analog and others are digital.  This manual comprises many pages because it address how to 

wire so many different types of sensors with various optional configurations.  Once you decide 

what sensors (and motors) you wish to use though, the wiring is usually as simple as that shown in 

Figure 1.3. 

     And perhaps more importantly, if you have learned to program a robot using our simulator, 

nearly all of the simulator commands will work with your real robot. 

     This manual also spends many pages explaining how to calibrate motors and sensors so they 

are much easier to use. Again, reading about such calibrations can seem overwhelming at times 

but know that it is usually far easier than it seems.  Plus, in most cases calibrations have to be done 

only once.  Letôs look at an example. 

     The command rForward 40 makes the simulated robot move a distance equal to its diameter.  

You will want to calibrate the RROS so that it can automatically move the REAL robot a distance 

equal to ITôs diameter when you issue the same command.  Once these calibrations are done for a 

specific robot, you never have to do them again unless you make physical changes. 
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     The important thing to remember is that the RROS has been designed to allow you to utilize a 

wide variety of motors and sensors, and yet do so with minimal effort. 
 

Advanced Users 

Even though everything is easier, donôt think for a moment this is a system only for beginners.  

The RROS has been designed to interface with subsystems that advanced users can design (such 

as the camera interface mentioned earlier).  This means the RROS can grow with you when you 

need it to.  Later chapters in this book will supply information on how to create custom interfaces 

for nearly any type of sensor and you will see details of how RobotBASIC can utilize the RROS to 

control a robot arm. 

     Our next step is to connect the RROS chip to your PC and ensure that it can communicate 

properly.  Once that is accomplished we will move on to interfacing motors and sensors with the 

RROS chip and learning how to best utilize them from the RobotBASIC environment. Finally, we 

will see how the RROS can communicate with external expansions (such as an arm controller) 

giving you the ability to not only expand the RROSôs capabilities but the ability to create totally 

customized capabilities to handle things that perhaps only your robot needs.
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Chapter 2 

 

 

 

Communicating with the RROS 

 

 

The purpose of this chapter is to interface the RROS chip to your PC and confirm that it can 

communicate with RobotBASIC.  The RROS chip comes without the pins soldered to it, as shown 

in Figure 2.1.  This allows you to eliminate the pins and solder directly to the connecting points 

enabling ultra small robot projects.  For most situations though, you will probably want to solder 

the pin strips to the chip, also as shown in Figure 2.1.  This allows the chip to plug into a standard 

socket or even a solderless prototyping breadboard.  The RROS chip itself is a Baby Orangutan 

processor, but it has been modified for our use. 

 
 

 
Figure 2.1: First, solder the pin headers to the RROS chip. 

 

It is important to get the pins aligned correctly before soldering.  An easy way to do this is to place 

the pins in the breadboard (see Figure 2.2), then place the chip onto the pins, then solder. 
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Figure 2.2: Use the breadboard to align the pins for soldering. 

 

Although the RROS chip assumes the standard 24-pin footprint, the RROS actually needs 25 pins 

to handle all its functions.  The ñextraò pin can be found beside Pin 13. You can see it easily in the 

upper right corner of the chip in Figure 2.1. We will refer to this pin as Pin 25.  Notice also in 

Figure 2.1 that a short wire (complete with breadboard connector pin) has been provided to make 

connections easy when using a solderless breadboard.  This wire comes with your RROS chip and 

should be soldered to Pin 25 

     The RROS chip you receive is designed so that it cannot be read or reprogrammed by the user 

but it can be upgraded by RobotBASIC with any future enhancements for a small handling charge.  

The six pins next to Pin 25 are used for updating the chip, so do not solder anything to them. 
 

The Communication Link 

The typical communication between the RROS and RobotBASIC is usually handled over a 9600 

baud wireless link, characteristically Bluetooth or Zigbee (but any serial wireless devices with 

similar capabilities should work).   

     A wireless link is very convenient and certainly fast enough for many applications.  It is also 

worth mentioning that you can use a wired serial link (perhaps from a USB Serial PC dongle).  A 

wired link is faster than a wireless link and can improve performance for advanced applications.  

If you use a wired link, then the PC (laptop, netbook, etc.) running RobotBASIC must reside in the 

robot itself.  While this usually means the robot must be relatively large, there are many 

advantages to this approach.  For example, RobotBASIC can directly handle voice recognition, 

voice synthesis, and vision as described in our books Hardware Interfacing with RobotBASIC and 

Arlo: The Robot Youôve Always Wanted (available Summer 2015 on Amazon.com). 

IMPORTANT : Wired links MUST be 5 volt, TTL levels, NOT the standard RS232 ±12 volt 

levels. 

     We will use Bluetooth communication with the robots in this book, with the PC end being 

handled by an Abe USB dongle as shown in Figure 2.3.  The RROS end of the communication can 

be handled by any compatible Bluetooth transceiver.   We have had no problems with transceivers 
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on the RROS end, but have found some incompatibilities with the PC-side USB transceivers, 

especially those that use their own ñenhancedò drivers instead of the standard Windowôs drivers.  

The Abe dongle has always performed flawlessly no matter what transceiver we connected it to, so 

it is our adapter of choice.  You should not have problem with other adapters in most cases, but it 

is important we mention the possibility.  We will discuss a way to test your interface shortly. 

 
Figure 2.3: We have found no incompatibilities  

with the Abe Bluetooth USB transceiver. 

 

Testing the Interface 

Before we try to communicate with the RROS, letôs test the wireless interface itself to ensure that 

data can transfer without error.  There are only four connections to a typical Bluetooth transceiver 

(refer to the documentation for your particular device). 

     Two pins are generally used to supply 5 volts (VCC) and ground (GND) to the transceiver.  

Two additional pins receive data (RXD) and transmit data (TXD).  For testing purposes, we will 

just connect RXD to TXD so that anything received by the device (from RobotBASIC) to be 

transmitted back (to RobotBASIC).  Figure 2.4 shows how to apply these connections using a 

solderless breadboard.  Remember, the power terminals must connect to a 5 volt supply.  If you do 

not have such a supply, three standard C-cell batteries in series should be close enough, especially 

for testing.  Later chapters will discuss better ways of producing 5 volts for the circuits that require 

it. 

 
Figure 2.4: Tie the wireless transceiverôs transmit  

and receive pins together for testing.  
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The Testing Software 

The program in Figure 2.5 shows a simple RobotBASIC program for testing the communication 

interface. 
 

SetCommPort 49  // use YOUR port address here 
tot=0  
for i=0 to 255  
  SerialOut char(i) 
  repeat 
    SerBytesIn 1,x,n 
  until n=1  
  print i;ascii(x);  
  if i=ascii(x)  
    print "GOOD" 
  else 
    print "BAD" 
    tot = tot+1  
  endif 
next  
print "Total errors = ",tot  
end 

Figure 2.5: This program tests the communication interface. 

 

When you insert your USB Bluetooth transceiver for the first time, it should automatically install 

the appropriate Windowôs driver.  You need to pair it to your remote Bluetooth transceiver using 

the instructions that came with it (typically through the Bluetooth icon in your system tray or on 

the Windowôs Control Panel).  Generally, you will have to enter the key (password) that was 

specified in your deviceôs documentation.  Once the pairing is complete, the devices will connect 

automatically each time the two devices see each other. 

     Once paired, ask Windowôs to show you the Bluetooth Devices available (again using the 

Bluetooth Icon) and you should see a window similar to Figure 2.6 which provides you with the 

actual Port Address Windows assigned to YOUR device.  You will need this address to establish 

communication between the two transceivers. 

     The test program in Figure 2.5 starts by initializing the serial port assigned to your Bluetooth 

connection.  A for-loop is used to send all possible byte combinations over the serial connection.  

Since the transmit and receive pins on the remote device are tied together, the data sent out will be 

immediately transmitted back.  When this byte is received by RobotBASIC, it is printed and 

compared to the original transmission.  If communication is working, you will have no errors.   
 

 
Figure 2.6: Windowôs can provide the Port Address  

used for your Bluetooth communication link. 
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Connecting to the RROS 

As mentioned earlier, using a solderless breadboard is one of the easiest ways to wire your 

circuits.  We have created numerous robots for testing the RROS using this simple technique (see 

Chapter 15).  Even if you eventually wish to permanently solder all the connections for your robot, 

it is certainly suggested you utilize the breadboard approach until you have everything working 

exactly the way you want it.  We were always swapping sensors and trying different 

configurations with our prototypes so, to make rewiring of circuits easier, we generally used wires 

that were longer than necessary which often caused our circuits to appear messy and disorganized.  

Since most people will not need to use a variety of sensors, it should be easier to create a 

professional look even with a breadboard. 

     Figure 2.7 shows a schematic diagram showing how to connect your transceiver to the RROS 

chip. Notice that our recommended power requirements for the RROS chip is between 6 and 12 

volts.  Figure 2.8 shows the actual connection between the RROS chip and the transceiver using a 

breadboard.   

 

 

 

 

 
Figure 2.7: This schematic diagram shows how to  

connect a transceiver to the RROS chip. 
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Figure 2.8: When implemented, the schematic shown in Figure 2.7  

will look like this.  Note: No power is shown to the RROS chip.  

 

Testing the RROS 

Now that we have the communication aspect of our circuit implemented, we can move on to 

confirm the RROS is operational.  To make using the RROS as easy as possible, we have provided 

an include file called RROScommands.bas (available from the RROS TAB at RobotBASIC.org). 

You should include this file in your programs as shown in Figure 2.9. 
 

#include "RROScommands.bas" 
main: 
  gosub InitMyRobot 
  // your programs will be written here  
end 
 
InitMyRobot: 
  rCommport 49  // Use your Port address 
  rlocate 0,0 
  gosub InitCommands //found in the Include file 
  // statements will be added here 
  // throughout the book  
return  

Figure  2.9: This is a template for programs that 

you write for controlling a RROS-based robot. 
 
 

The program shown in Figure 2.9 is incomplete.  It is only a basic template that you should use 

when writing any program to control a RROS-based robot.  The program starts by including the 

RROS command file that sets up many constants that will make RROS programming easier. 

     You should also see that there are two major sections to the template.  There is a main program 

that normally will control your robot.  There is also a subroutine, that in this case is called 
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InitMyRobot.  As we proceed through this book we will show how to customize this subroutine to 

initialize all the parameters appropriate for your robot. Letôs discuss this idea before moving on. 
 

Your Initialization Subroutine  

Remember, the RROS can handle many different types of motors and sensors.  This means that 

before you start using it to control your robot, you must tell it what motors and sensors you are 

using.   The commands to do this will generally reside in your InitMyRobot subroutine.  The 

subroutine will also contain commands that can calibrate your particular hardware so that your 

robot will operate as expected.  All of these commands will be explained in detail as we proceed 

through the book. 
 

Naming Your Routine 

The name of your initialization subroutine is entirely up to you.  If you have several robots using 

different types of motors and/or sensors, then you will want to have several initializing 

subroutines, one for each of your robots.  This will make it very easy to use the same program to 

control any of your robots (or even the robots of others at a club meeting, for example).  If you 

create separate include files for each of your robots then any program you write can control any of 

your robot by changing only a single line of code that calls the appropriate initialization 

subroutine.  This may seem complicated, but it will become clear as we proceed through the text. 

     Often, in this text, we will make references to statements that should be added to your main 

program or to your Initialization  subroutine.  Early on, we will show these changes in detail, but as 

we proceed we will assume that you know to add the commands properly.  This will allow us to 

minimize the space needed for program listings because we will not be repeating code that has 

already been shown and explained. 

     Now that you understand how RROS programs will be organized, letôs create a test program to 

demonstrate that the RROS is functional.  The test program will also serve to show you a simple 

example of commanding the RROS to perform tasks for us. 
 

Making Sounds 

Sometimes it is valuable for your robot to be able to make some simple sound effects.  For 

example, it might issue some beeps to let someone know they are in its way or it might want to 

play a little tune to celebrate when it has accomplished some goal. 

     Because of this, we gave the RROS the ability to make sounds at the remote robot.  This ability 

was never intended to produce high quality music or any significant audio response such as a 

voice.  That can be done from the PC directly, and advanced robots needing such capabilities are 

probably be better served with an embedded PC anyway. 

     That said, we felt it would be nice to have some limited sound generation capabilities built into 

the RROS and we can use them now to confirm that the RROS is working.  

     Of course we will have to connect a sound transducer to the RROS chip as shown in Figure 

2.10.  We will actually alter this interface in a coming chapter, but for now, this will work fine.  

You may use most any piezo buzzer.  Be careful to match the positive/negative markings (if any) 

on your buzzer to those in the schematic. 

     Try turning on the power to the RROS chip with the buzzer attached.  You should hear a short 

tone indicating that the RROS chip has become operational.  If you do not hear this tone, turn off 

the power and check your wiring carefully. 
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Figure 2.10: Adding a piezo buzzer lets your robot make sounds. 

 

Now letôs make the remote robot produce a simple tone.  Add the following line to the Main 

program shown in Figure 2.9 (add the new line just before the END statement). 
 

rCommand(PlaySound,LowTone) 
 

When you run the modified program you will hear two sounds.  The first will be the same sound 

generated when the RROS powers up.  This sound also occurs when the RROS is initialized with 

an rLocate command.  The second sound heard will be a lower tone produced by the rCommand.  You 

can verify this by placing the command delay 2000 before your rCommand.  You will then hear the 

power up tone, followed by the low tone about two seconds later. 

     We will use the rCommand extensively throughout this book to issue special commands to the 

RROS.  The rCommand will always have two 8-bit parameters.  The first is the command code and 

the second is used to qualify what is to be done.  In this example, the first parameter is telling the 

RROS to play a sound, and the second parameter specifies what sound to play.  Try changing the 

parameter LowTone to one of the options shown in Figure 2.10. 

 

Parameter Description 
Blip1 drip/blip sound 
Blip2 drip/blip 
InitTone startup RROS tone 
LowTone low tone 
BeepBeep two quick beeps 
BeepBeepBeep three quick beeps 
Phasor a phasor sound 
Siren1 a type of siren 
Siren2 another siren 
Siren3 still another siren 

 

                                         Figure 2.10: These are the standard sounds for the RROS. 
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All of the parameters in Figure 2.10 are simply numeric values.  You can see the actual numbers 

that they represent by examining the assignments statements in the file RROScommands.bas.  In fact, 

all of the numeric codes used in rCommands are summarized in a quick-reference format in 

Appendix A. 

 
 

Playing Music 

You can also play a particular note (C, D, E, F, G, A, or B) in one of three octaves using a 

specifying parameter such as MidC, HighA, or LowG.  You can determine the length of each note by 

ORing ( | ) it or ADDing it (+) with a length designator (Double, Whole, Half, or Quarter).  This means 

you can use RobotBASICôs DATA command to create the notes for a song as shown in Figure 2.11.  

This song is actually included in RROScommands.bas, so you can try it without having to type it in. 
 
 
 
 
Data Birthday; MidC|Quarter, MidC|Quarter 
Data Birthday; MidD|Half, MidC+Whole, MidF+Half 
Data Birthday; MidE+Half, Pause+Half 
Data Birthday; MidC+Quarter, MidC+Quarter, MidD+Half Data Birthday; MidC+Whole, MidG+Half, MidF+Half 
Data Birthday; Pause+Half 
Data Birthday; MidC+Quarter, MidC+Quarter, HighC+Half Data Birthday; MidA+Half, MidF+Half, MidE+Half 
Data Birthday; MidD+Whole, Pause+Half 
Data Birthday; MidB+Quarter,MidB+Quarter,MidA+Half 
Data Birthday; MidF+Half,MidG+Half,MidF+Whole 
Data Birthday; 0  // each song must end with a zero 

Figure 2.11: These notes play Happy Birthday. Notice that  

you can use either the + or | symbol to combine terms. 

 

The subroutine needed to play a song is also included in RROScommands.bas.  You can play the Birthday 

song by adding the following commands to your Main program. 
 

   mcopy Birthday,CurrentSong 
   gosub PlayMySong 
 

The subroutine PlayMySong will play the song stored in the array CurrentSong.  The mcopy line (above) 

copies the notes stored in the array Birthday into CurrentSong.  The second line calls the subroutine 

PlayCurrentSong to actually play the notes. 

     Remember, the sound abilities of the RROS are not intended to be of high quality, but they can 

provide your robot with some basic sound effects to quickly and easily give it some personality. 

     Play with the sound commands to get comfortable with using rCommands with the RROS.  

When you are ready, move on to the next chapter where we will start controlling your robotôs 

motors to produce movement. 
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Chapter 3 

 

 

Small DC Drive Motors 
 

 

 

No robot is complete without some movement capabilities, and that generally means motors.  The 

RROS has been designed to handle the requirements of almost any application.  Small robots can 

be made that are powered by either DC motors or servomotors.  Large robots can be powered by 

large DC motors that require up to 30 amps each.  Letôs look first at the small DC motor option. 
 

Small DC Motors 

Figure 3.1 shows the robot we used for prototyping the RROS DC motors routines.  It also 

demonstrates several sensor options, but that will be the subject of a later chapter. 
 
 

 
Figure 3.1: The drive system for this robot is two small DC motors. 

 

The motors used are shown in Figure 3.2, which is a bottom view of the robot.  The motors have a 

200:1 ratio gearbox with a 90º output shaft.  They can be purchased from Pololu.com (item #1120) 
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which also offers wheels that mate directly to the motors.  These motors are ideal because their 

low current requirements allow the RROS chip to drive them directly.  More on this shortly. 
 

 
Figure 3.2: Small DC motors provide motion for the robot in Figure 3.1. 

 

Figure 3.2 also shows one of two 3-gang battery holders used to provide power for this robot.  The 

six batteries in series provides power for the RROS chip itself (Pins 23 and 24 as shown in Figure 

2.7 in Chapter 2).  Figure 3.2 also shows a hand-made encoder disk on the wheel (the encoder 

itself is mounted to the right of the wheel).  The encode system will be discussed in Chapter 7.  

The motors are driven from the main voltage applied to the RROS chip. 

     The robotôs main body parts are made from foam board (which is both strong and light weight) 

available from most craft stores.  The motors are attached to balsa wood blocks (which are glued 

to the foam board) with small screws. 

     It is possible that you do not have your robot assembled at this time but that is not a problem.  

You can test your motors by simply connecting them to the RROS chip.  Connect the two wires 

for your robotôs LEFT motor to the RROS pins 1 and 2 and the wires for right motor to pins 21 

and 22.  Motors connected directly to the RROS chip like this must be small (drawing less than 1 

amp each).  Larger motors will be discussed in a later chapter. 

     You may need to reverse the connections to either or both of your motors based on how it is 

mounted etc.  Reverse the connections if the motor runs backwards when you expect it to run 

forward. 

     Any motor (large DC, small DC, or servo) will not receive power unless the RROS has been 

properly told of its existence.  This is done with an rCommand as shown below.   Note: This 

command should be placed in the InitMyRobot subroutine discussed back in Figure 2.9.  NOTE:  

The MotorSetup should be done FIRST before sensors are setup. 
 

rCommand(MotorSetup, Param) 
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The value of the lowest three bits in the parameter Param  tells the RROS which motors are being 

used.  When we are using small DC motors as in this example, the parameter should be zero; there 

are other codes for other motor types. 

     To make the RROS easier to use, the include file mentioned earlier sets up variables that 

represent various RROS options.  For example, instead of using a fixed numeric value for Param, 

you can just use SMALLDC line this. 
 

rCommand(MotorSetup, SMALLDC) 
 

If your robot does not use wheel encoders (these will be discussed in Chapter 7) then this one 

parameter is all you need.  If your robot has encoders, then you can OR or ADD another parameter 

(ENCODERS) as shown in the two examples below. 
 

rCommand(MotorSetup,SMALLDC+ENCODERS) 

rCommand(MotorSetup,SMALLDC|ENCODERS) 
 

Either the + sign or the OR symbol ( | )  may be used.  Since we have not discussed wheel 

encoders yet, we will proceed assuming your motors do not have encoding capabilities.  

Controlling the Simulator 

For those readers that might not be familiar with the RobotBASIC simulator, letôs start with a 

simple program that controls the simulated robot.  Enter the program shown in Figure 3.3 into 

RobotBASIC. 
 

main: 
  rLocate 400,300  // initializes the robot 
  rForward 120 
  rTurn 90 
  rForward 120 
end 

Figure 3.3: This program moves the simulated robot. 

 

If you run the program in Figure 3.3, the simulated robot will be initialized near the center of the 

screen and then move forward a distance equal to three times its diameter (the default simulated 

robot is approximately 40 pixels in diameter).  The robot will then turn right 90º and move 

forward another 120 pixels before stopping.  Note: Chapter 16 provides detailed RROS 

programming examples. 
 

Controlling the Real Robot 

Ideally, the program in Figure 3.3 can be used to control the real robot and have it respond in a 

very similar manner to the simulated robot.  In the long run, this is certainly an achievable goal, 

especially when the robotôs movements are being governed by information obtained from sensors 

(closed-loop control).  For example, we could program the simulated robot to move forward until 

it finds a wall, then use its sensors to ñfeelò its way along the wall.  If the same program is used to 

control a real robot, then the results will be very similar as long as the sensors used on both robots 

have similar placements etc. 

     We can modify the program in Figure 3.3 so that it controls a real robot by using the techniques 

discuss in Chapter 2, Figure 2.9.  An example modification is shown in Figure 3.4. 

 
 

#Include "RROScommands.bas" 
Main: 
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  gosub InitMyRobot 
  rForward 120 
  rTurn 90 
  rForward 120 
end 

Figure 3.4: This modified version of Figure 3.3 will  

control the real robot instead of the simulator. 

 

For the most part, the change made in Figure 3.4 compared to Figure 3.3 is that the robot is being 

initialized by the InitMyRobot subroutine instead of just an rLocate statement.  Of course you must 

have the InitMyRobot subroutine (as discussed in Chapter 2) and include the RROScommands.bas file. 

     Since programs like the one in Figure 3.4 do not use sensory information to affect the robots 

movements (open-loop control) the actions of the real robot will not necessarily mimic the 

simulator accurately.   For example, the real robot might not move in a perfectly straight line when 

looking for a wall.  While it is not essential that the real robot and the simulated robot track each 

otherôs movements exactly when open-loop control is used, it is valuable to obtain some level of 

similarity in order to increase the value of developing programs with the simulator.  This can be 

accomplished in two ways. 

      First, the simulator can be made to react much more like a real robot.  The command rSlip 10, 

for example will add up to 10% random error to the simulated robotôs movements. This letôs you 

use the simulator to create algorithms and behaviors that better deal with real-world situations. 

     Second, we can fine-tune the real robot so that its movements have as little error as possible.  In 

Chapter 7, we will examine how wheel encoders can provide feedback so that we have a closed-

loop system that can help keep the robot moving a straight line and make turns more accurately. 

     In many cases though, the additional expense and work of adding wheel encoders is not 

necessary.  As long as the real robotôs open-loop movement is reasonably close to that of the 

simulator, then sensory-based behaviors should operate properly.  Because of this, we added 

commands to the RROS to allow the user to fine-tune the robotôs open loop movement.  Letôs look 

first at how we can ensure that the robot moves in a relatively straight line when asked to do so. 
 

Improving Open-Loop Control 

The reason a robot might not move in a straight line is that the two drive motors are not evenly 

matched.  If one motor is more efficient electrically or if that motor has less friction, then that 

motor will turn slightly faster than the other motor (even when they are told to move at the same 

speed) causing the robot to drift to one side when it is commanded to move forward (or 

backward).  If, for example, your robot drifts to the left when it moves forward, you can use the 

following command to slow down the right wheel by 5%. 
 

rCommand(SetReducForwRight,5) 
 

Similarly, if the robot was drifting hard to the right, we could slow the left wheel by 10% with this 

command. 
 

rCommand(SetReducForwLeft,10) 
 

Two other rCommand parameters (SetReducBackRight and SetReducBackLeft) can be used to slow 

down a designated wheel when the robot is going backward.  The ability to establish different 

percentages of slowdown for forward and backward movements is important because many 
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motors have slightly different physical characteristics depending on their direction of rotation.  

Notice that these commands only let you slow down one of the motors ï never speed one up.  

     You should experiment with your robot and determine exactly what fine-tuning is needed to 

make your robot move in a relatively straight line.  The commands you determine to be necessary 

should be placed in the InitMyRobot subroutine discussed in Figure 2.9, Chapter 2.  This will force 

your robotôs movements to be fine-tuned every time a program is run.  If you have several robotôs 

you should have separate initializing routines for each of them (each aptly named for the 

corresponding robot).  The ability to #include the appropriate initialization routine in your 

programs makes it easy to use any program you write with any of your robots. 

     Even if your robot uses wheel encoders, the RROSôs ability to compensate for drift will be 

enhanced if the normal operation of the motors has been balanced as discussed above. 
 

Fine-Tuning Turns 

You can also control your robotôs open-loop turning movements.  If you use the command rTurn 

90, for example, the simulator turns 90º to the right.  If your real robot does not turn the proper 

amount you can vary two parameters to make this happen as shown below. 
 

rCommand(SetRotationTime, 10) 
rCommand(SetSlowDownSpeed, 30) 

 

If your robot is turning too much (more than 90º, for example) you can decrease the rotation time 

or slow down the speed.  Note: The RROS allows control over three speeds (the normal speed, a 

slow-down-speed, and a slow-down-2-speed) to fine-tune movements.  The slow-down-speed is 

used when a robot without wheel encoders is asked to move a specific distance or to turn a specific 

amount.  Both speeds are set as a percentage of maximum, with 100 being the fastest possible 

speed using the following commands. 
 

rCommand(SetSpeed, 80) 
rCommand(SetSlowDownSpeed, 60) 

 

In general, to calibrate turns, you should set the slow-down-speed to some modest speed, then 

adjust the time to get a 90º turn.  Once you get close to the proper movement by setting the 

rotation time, you should expect to have to make minor adjustments to the slow-down-speed in 

order to make the turn accurate.  This is true because you have more control over the speed than 

you do the time (this will make more sense when you actually try to fine-tune your robot). 
 

Fine-Tuning Linear Movements 

Next you should calibrate your robotôs linear motion.  If you tell the simulation to rForward 40, for 

example, it will move a distance equal to the simulated robotôs default diameter.  Ideally, your real 

robot should move a distance equal to its diameter when given the same command.  You can fine-

tune the linear motion using this command. 
 

rCommand(SetMoveTime,10) 
 

Just adjust the value used until the robot moves approximately the right distance.  This should 

generally be done after adjusting for turns as it is not as important to have accurate forward 

movements as it is accurate turns.  Just as with turns, robots without wheel encoders will 

automatically make specific rForward  movements using the slow-down-speed.   
     If you have read any of our other books, you know that the vast majority of the time, your robot 

is only commanded to move forward one pixel at a time or turn one degree at a time.  These 
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movement uses the speed parameter (rather than the slow-down-speed). Normally, the speed should 

be set to something a little larger than the slow-down-speed. 

     For most situations, you want the main speed to be as fast as possible, but not so fast that the 

robot moves a significant amount before sensors can be read and the robotôs behavior altered.  For 

example, if your robot is following a line on the floor (as described in some of our books) but it is 

moving so fast that it looses the line before the line sensors can be read, then you would need to 

reduce the main speed parameter.  There are more sophisticated ways of handling this using a 

TurnStyle parameter.  TurnStyles will be addressed in a later chapter. 
 

Additional Fine-Tuning 

It is important to realize that the real robot will normally use the speed parameter when executing 

an rForward 1 or rTurn 1 command.  Typically, you should set the value of speed so that the robot 

moves only a very small amount for either of these commands.  Let's look at a general example to 

see why this is important.  Suppose you were programming the robot to follow a line and that the 

robot reads the line sensors and either moves forward or turns left or right based on the readings.   

     If the robot moves too far before reading the sensors again, then it can easily lose the line.  

When your robot is performing an activity of this nature, it is vital to set the speed parameter to an 

appropriate value.  Of course, a smart robot can use alternative measures to allow it to reliably 

follow a line at a faster pace.  Note: Line following examples will be discussed later in this book. 
 

Easier Than You Think 

All of the above can sound very complicated but it is important to remember that you only have to 

perform fine-tuning one time (for each of your robots).  Once you have experimented and found 

the appropriate values, just place all the necessary rCommands into your initialization subroutine 

and forget about them unless you change things about your robot that might alter its movement 

characteristics.  This could include installing new motors, changing the wheel size, etc. 

     There will be many other fine-tuning options available to you throughout this text.  All 

appropriate commands should be added to your initialization subroutine.  When you have 

everything exactly how you want it, you can copy and paste the subroutine into a program file of 

its own and save it.  This will allow you to easily merge it (see the FILE menu), or #include it in 

any of your programs.   

     Including the file is often the best overall solution because it allows you to simply include the 

initialization file for the robot you are using at the time.  This makes it very easy to use the same 

program with different robots you own, or even with other RobotBASIC compatible robots at a 

school or club meeting. 
 

Ramping 

The RROS will automatically change each motorôs speed slowly so that your robot will not have 

jerky starts and stops.  You can make the robot start and stop quicker by increasing the parameter 

above 1 (which is the default for small DC motors) in the following command. 
 

rCommand(SetMotorRamp, parameter) 
 

This command is available no matter what type of motors are used to power your robot.  You 

should experiment with different parameters to find what works best for your robot.  In general, it 

is preferred to use the largest parameter that does not cause your robot to jerk or rock when 

starting and stopping.
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Chapter 4 

 

 

Servomotors 
 

 

 

 

In the previous chapter we interfaced small DC motors directly to the RROS chip.  For those that 

might prefer to use continuous rotation servomotors to power your robot, we added appropriate 

RROS support.  Figure 4.1 shows an early version of the prototype robot we used to test the 

servomotor routines. 

 

 
Figure 4.1: This robot was used to test the RROS servomotor routines. 

 

The robot in Figure 4.1 is a heavily modified Boe Bot from Parallax.  It was chosen primarily 

because it uses servomotors and we had it available from a previous project. The Boe Botôs 
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aluminum chassis is small and square, so we topped it with a round piece of foam board to make it 

look more like our simulated robot.  More details on the construction of this project are provided 

in our book Robot Programmerôs Bonanza.  

 

 
Figure 4.2: Servomotors attach to the aluminum Boe Bot  

chassis which is topped with a round foam board cutout. 

 

Standard Servomotors 

The angular position of the output shaft of standard servomotors is controlled by the width of a 

pulse sent to them.  The pulse width normally ranges from 1ms to 2ms in order to position the 

output shaft over a 180º range.  A pulse width of 1500 microseconds should position the shaft near 

the center of its travel range.  The frequency of the controlling pulse may vary, but in order to 

achieve smooth movement with a reasonable torque, the servo should be pulsed approximately 50 

times per second. 
 

Continuous Rotation Servomotors 

Special continuous rotation servos can be purchased from many sources and used to power your 

robot.  The speed of these motors (rather than their position) is controlled by the width of the 

pulses sent to them.  A 1500 microsecond pulse should stop the motor.  As the width of the pulse 

increases the motor will increase its speed in one direction ï decreases in the pulse width will 

increase the motorôs speed in the opposite direction. 

     The RROS will handle all the details associated with servomotor control so that all the 

commands we used in Chapter 3 to control and initialize DC motors will work equally well with 

servomotors.  There are some additional complications associated with servomotors, so our RROS 

has a few special commands to fine-tune how they operate.  Any new commands needed should be 

placed in the initialization subroutine just as we did with DC motors. 

     Servomotors have three connections to them.  Often the wires from the servomotor are red, 

black and yellow.  In that case, the black wire is ground, the red wire should be connected to +4.5 

to 5 volts and the yellow wire is for the control signal.  Sometimes the black wire is brown or grey 
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and the red wire is orange.  If your servo has a standard connector, the center wire should always 

be for power with the darker of the two remaining wires being ground.  If you have any doubt 

which pins are which, refer to the vendor that sold you the device.  As with most electronics, 

improper connections can cause damage. 

     Most servomotors can operate on 4.5-6 volts without problems, but you should check the 

specifications for your devices.  Our test robot is powered by six rechargeable AA cells in series to 

get an appropriate voltage for the RROS chip.  Since this voltage is too high for most servomotors, 

you could tap into the supply at 3 or 4 cells to get a reduced voltage for the servomotors, or you 

could use a 5 volt regulator.  This later approach is necessary if your robot is powered from a 

single 12 volt battery rather than a group of individual cells.  

     Figure 4.3 shows a 7805, 5V regulator that makes it easy to generate a regulated voltage 

capable of delivering an amp of current.   In order to operate properly, the input voltage to the 

regulator must generally be at least 7 volts, sometimes higher.  If lower voltages are used, the 

output voltage may only be 4.5 volts or so.  Often the 5V devices discussed in this document will 

work fine at this voltage, but there is no guarantee that erroneous problems will not occur if, for 

example, you power your robot with a 6V gel-cell battery. 

 
Figure 4.3: Regulators such as this 7805 can produce 5 volts for driving servomotors.  

 

The center terminal of the regulator is ground (connect to the black servomotor wires and to the 

ground pin on the RROS chip itself).  The higher voltage (your 12V battery for example) is 

applied to the left-hand terminal as pictured in Figure 4.3.  The right-hand terminal becomes the 

5V source and should be connected to the red leads on your servomotors.  This should leave one 

control [yellow] lead free on each of your servomotors.  The control wire for the left motor should 

connect to the RROS chip, Pin 1.  Connect the right motorôs control wire to Pin 21.  You MUST 

also connect a resistor (approximately 5K) between each of the above pins and the 5V supply as 

shown in Figure 4.4. 

 

It is worth mentioning here that companies like Parallax offer large DC motors that can be 

controlled with pulses just like standard continuous rotation servomotors.  We used these motors 

on our life-sized Arlo robot that is discussed later in this book. 
 

Motor Setup for Servomotors 

Of course, we must tell the RROS that we are using servomotors.  We can do that with the 

statement below. 
 

rCommand(MotorSetup, SERVOMOTORS) 
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You can also use SERVOMOTORS+ENCODERS if encoders are present (see Chapter 7), just as we did 

with DC motors. 

 
Figure 4.4: The RROS chip can drive servomotors just as easily as DC motors. 

 

You should set the Speed, SlowDownSpeed, RotationTimes, ReducForwLeft, etcetera just as described 

in Chapter 3 for DC motors, but before you do so, you should make sure the control pulses for 

your servomotors are calibrated properly. 
 

Calibrating the Servomotorôs At-Rest State 

When your servomotor-powered robot is at rest, the RROS chip will send normally a 1500 

microsecond pulse to each motor about 50 times per second.  Unfortunately, all servomotors are 

not exactly alike, and you are likely to find that your servoôs will need a slightly different pulse 

width to make the motors stop moving completely.  This is such a common problem with 

servomotors that the RROS has the option to just quit pulsing a motor when it is suppose to be 

OFF (this is the default condition).  While this does ensure the motors do not turn, even slightly, 

when they are suppose to be OFF, it is important that we find the true center position for the 

control pulse if the RROS is to control the motors accurately.  This is a very important concept.  If 

the at-rest pulses are not truly causing the servomotors to stop, then there will be a slight bias for 

one wheel over the other when the robot is asked to move.  Calibrating the at-rest pulse can make 

other commands work better.  Letôs see how we can calibrate the servomotors.  

     We can tell the RROS to continue to pulse the servomotors even when they are in an off state 

by placing the following command in the initialization subroutine. Note: Sending a zero for the 

second parameter will cause the RROS to return to the normal default state of not pulsing the 

motors when they supposed to be stopped. 
 

rCommand(CalibServoDrive,1) 
 

This command allows you to calibrate the servomotors that drive your robot.  After issuing this 

command you should expect your robot to drift slightly even when no movement commands are 
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sent to it.  In order to correct this situation, watch your robot and determine if either or both of the 

motors are moving.  If they are, you can alter the width of the at-rest pulse being sent to them with 

these commands. 
 

rCommand(SetLeftStopOffset,128) 
rCommand(SetRightStopOffset,128) 

 

Notice there is a command for each wheel. The parameter 128 is the default.  Making that number 

larger or smaller (0-255) will alter the corresponding motorôs at-rest speed (and eventually the 

direction of that motor when slowing it down).  Once you find the values that make your robot 

remain stationary (or at least as stationary as possible) when not commanded to move, you can 

remove the CalibServoDrive command to ensure that the motors remain perfectly still when the 

robot is at rest.   
 

Calibrating the Servomotors Speed 

Most standard servomotors move their output shaft to nearly the same position for similar sized 

pulses.  Of course, the position is never exactly the same.  The same inconsistency exists with 

continuous-rotation servomotors, that is, the same pulse width does NOT produce the exactly the 

same speeds for both motors.  Theoretically, for example, a servomotorôs movement in one 

direction should be as described below. 
 

1500 microseconds stopped 
1750 microseconds half speed 
2000 microseconds full speed 
 

While most servos will probably function somewhat appropriately at the 1500 and 2000 limits, the 

speed does not usually change linearly.  For example, a particular brand of motor might reach 90% 

of its full speed at 1700 microseconds.  If the pulse is increased above 1700, the motor will 

continue to increase, but the change will be small.  In such a case, it would be better for the RROS 

to assume that the controlling pulse should only vary from 1500 to 1700 so that changes made to 

the motorôs speed parameters (Speed and SlowDownSpeed) will cause reasonable changes to the 

robotôs actual motion.  The following command allows you to alter the maximum (and minimum) 

pulse width used to control your motors.  
 

rCommand(SetDriveServoWidth,50) 
 

The parameter 50 represents the default pulse width (50% of normal maximum), and was chosen 

because it seemed to work best with the motors we tested.  You can shorten the pulse with smaller 

numbers or lengthen it with larger ones.  It is not expected that this command will be needed for 

most motors, but we wanted to provide ways to ensure RROS compatibility regardless of the 

characteristics of your chosen motors.  One nice thing about this command is that it increases or 

decreases both the Speed and the SlowDownSpeed simultaneously (as well as other speed-related 

parameters to be discussed later in the text). 

     Depending on how you mount your motors, they may move in the opposite direction from what 

you expect (. You can reverse the directions of both of your servomotors using: 
 

rCommand(SetDriveServoDir, 0) 
 

A parameter of 1 will return the motor directions to their default condition.  Note: This command 

is necessary for servomotors because you cannot reverse their direction by just reverse their leads 

as you can with DC motors. 
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     After you determine the appropriate calibration parameters for your servomotors, place the 

proper commands in an initialization subroutine aptly named for your servomotor powered robot 

so that you can merge it with or #include it in your programs.   Utilizing the appropriate 

initialization subroutine should allow the standard motor commands to work properly whether you 

are using small DC motors or servomotors.  In the next chapter we will examine how to extend 

this compatibility to much larger DC motors. 
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Chapter 5 

 

 

Large Drive Motors 
 

 

 

Previous chapters have demonstrated how the RROS can handle all the details associated with 

small DC or servomotors.  In fact, the RROS chip has the hardware built-in to power both of these 

small motor types.  We wanted the RROS to be able to control much larger motors though, when 

the need arises.  We could have built a much larger RROS chip, but that would have added 

significantly to the price and would not have been needed for many applications.  Because of that, 

we chose to provide the ability to control larger motors by allowing the RROS to interface with 

any of the RoboClaw motor controllers from BASIC MICRO as pictured in Figure 5.1. 

 
Figure 5.1: RoboClaw controllers allow the RROS to control large motors. 

 

RoboClaw controllers were selected because of their high quality and the variety of products.  

RoboClaw controllers are currently available that can handle 5, 15, even 30 amps of current for 

each of two motors.  Any of these, or even older models of their controllers, should work find with 

the RROS.  Some models might have slightly different connectors or DIP switch settings, so refer 

to your RoboClaw documentation to ensure you interface everything properly. 

     One of the great things about the RoboClaw controllers is that they can be controlled through 

several modes including analog, RC, and serial.  The most efficient method for our RROS is to use 

is serial so we must set up the RoboClawôs configuration DIP switches and connect everything 

properly.  To make this discussion easier to follow, refer to a drawing of a RoboClaw in Figure 5.2 
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Figure 5.2: This drawing can make interfacing  

to the RROS easier to understand. 

Setting the DIP Switches 

Notice in Figure 5.2, a DIP switch in the upper center of the board.  The settings on this switch 

allow you to configure how the board operates.  We need to move switches 2 and 4 to the left, 

making them ON.  This selects Simple Serial at 9600 baud.  If you are using special batteries 

(such as  Lithium) refer to the RoboClaw documentation as there are additional switch setting to 

monitor and protect special batteries. 
 

Connecting the Motors 

The top of the board (Figure 5.2) has several screw terminals for connecting your motors and the 

power for them.  You should connect the leads from your robots RIGHT motor to the terminals 

labeled M1A and M1B (upper left corner of the Figure).  Your robotôs LEFT motor should 

connect to M2A and M2B.  As with small DC motors, if the motors rotate in reverse compared to 

what is expected, just reverse the leads. 

     The main power for your motors (probably the battery powering the RROS) should connect to 

B+ and B- (at the top of the board in Figure 5.2.  Note: If you use a separate battery for your 

motors, you must tie the B- terminal to the ground terminal on the RROS chip (refer to the 

RoboClaw documentation). 
 

Connecting the Control Lines 

The serial data used to control the RoboClaw must connect to the 3-terminal connector called S1 

as shown in the lower middle of Figure 5.2.  Only two of the three terminals are actually used for 

our configuration.  The upper terminal (as viewed in Figure 5.2) is the ground terminal and should 

connect to the RROS chip ground.  The lower of the three pins (again, as viewed in Figure 5.2) is 

the control signal and should be connected to Pin 21 of the RROS chip.   


