
Using The PC In Hardware Control Projects
By John Blankenship and Samuel Mishal

The history of using the Personal Computer (PC) in electronic control projects parallels the history of

using the mainframe computer. In the past, when only mainframes were used, the processing power

had to be time-shared among multiple users. With the advent of the microcomputer every user had a

dedicated processor. However, engineers quickly realized that networking these dedicated systems

using the mainframe as a networking hub, database storage, and coordinator allowed for more

powerful computing than would be possible with the mainframe or the microcomputer alone.

The early PC, with its parallel port, ISA bus, and serial port provided a viable controller for electronic

hardware projects. However, programming hardware I/O on the PC has become progressively more

complicated with each new version of the Windows OS. In addition, with the availability of powerful

and easy-to-XVH�PLFURFRQWUROOHUV���&V��PDQ\�KREE\LVWV�KDYH�IRXQG�LW�D�ORW�HDVLHU�WR�XVH�WKHP�IRU�WKHLU�
projects and nowadays are only using the PC as a cross-compiler.

Many researchers use the PC as a controller for their projects, often with a wireless connection to

communicate to various systems on a mobile platform (see this web site for an example:

mit.edu/whall/www/heli/paper/node3.html#SECTION00030000000000000000). The systems are

RUJDQL]HG�ZLWK��&V�WR�KDQGOH�WKH�KDUGZDUH�OHYHO�WDVNV�DQG�WKH�3&�DFWLQJ�DV�WKH�$UWLILFLDO�,QWHOOLJHQFH�
(AI) processor and user interface node. Often, these projects are robotic in nature, but the methodology

does not have to be limited to robotics. You can use the same strategy with any control project you

wish.

As a hobbyist you may think that the above is too complicated; we hope this article will convince you

of the contrary. To demonstrate these principles this article discusses a project that emulates

controlling the orientation of a saWHOOLWH��,W�VKRZV�KRZ�D�3&�DORQJ�ZLWK��&V�LQ�D�SVHXGR-networked

arrangement can provide processing capabilities that are otherwise difficult to achieve. The programs

developed for the project demonstrate that programming a PC can be easily accomplished with the

right tools and strategies. The simulation portion of the project shows that incorporating a PC can

SURYLGH�IXQFWLRQDOLWLHV�WKDW�ZRXOG�EH�LPSRVVLEOH�ZLWK�PRVW��&V��

Distributed Processing

A control project can be thought of as a set of subtasks. Each subtask can be controlled by a dedicated

�&�DORQJ�ZLWK�VRPH�DGGLWLRQDO�FLUFXLWU\��7KH�RYHUDOO�SURMHFW�LV�FRRUGLQDWHG�E\�D�PDVWHU�FRQWUROOHU�
�0&��WKDW�FRPPXQLFDWHV�ZLWK�WKH�YDULRXV��&V��7KH�0&�FRXOG�EH�D�3&�RU�MXVW�DQRWKHU��&��7KH�
distributed processing provided with this divide-and-conquer strategy, allows the MC to have less I/O

pins than would have been required if it had to control all the sub-processes directly. Also due to

concurrent processing�SURYLGHG�E\�WKH�YDULRXV��&V��PXOWLWDVNLQJ�FDQ�EH�UHDGLO\ implemented.

Often you may find that there are modules available on the market that can control the various subtasks

RI�\RXU�SURMHFW��:H�FDOO�WKHVH�PRGXOHV�+HOSHU�0RGXOHV��+0V���7KHVH�+0V�WKHPVHOYHV�DUH�RIWHQ��&V�
that use their own I/O pins and memory to accomplish their task and are capable of being controlled

using a serial protocol (SPI, I
2
C, RS232 etc.). If you find that you need an HM that does not exist, you

FDQ�GHVLJQ�RQH�XVLQJ�D��&�DQG�VXSSRUWLQJ�FLUFXLWU\�

Incorporating A PC

$�V\VWHP�RI��&V�FDQ�EH�YHU\�SRZHUIXO��EXW�LW�GRHV�KDYH�LWV�OLPLWDWLRQV��0RVW��&V�DUH�OLPLWHG�LQ�WKHLU�
ability to manipulate arrays and perform floating-point as well as other high-level math operations.

Even simple multiplication and division are limited to 8 or 16 bits on mDQ\��&V��6LPSOH�SURMHFWV�PD\�
not require many mathematical calculations, but more complex projects that involve PID control or

signal processing (DSP) for example, will usually require the processing power of a PC. Using a

distributed processing strategy, the PC can become another element of the overall project or can act as

the overall controller.

Another advantage to using a PC in control projects is that with its graphics capabilities you can create

an ergonomic user interface. Just as hardware HMs help in quickly and easily accomplishing subtasks,

RobotBASIC, the language used on this project, provides many software HMs such as matrix

mathematics, bitmap manipulations, and extended graphics operations for flicker free animation (see

the help files for many more HMs). Using the graphics capabilities you can create an effective user

interface and with the math and matrix operations you can program complex AI algorithms.

Many hobbyists opt to avoid using the PC in their projects because the Window’s OS makes it very

difficult to program I/O communications. RobotBASIC provides many HMs for sending and receiving

data through the PC’s serial and parallel ports, or over Bluetooth wireless communications, thus

eliminating this obstacle.

Satellite Heading Control

As mentioned earlier, we will model the control of an artificial satellite in order to illustrate the

SULQFLSOHV�RI�GLVWULEXWHG�SURFHVVLQJ�XVLQJ��&V�DORQJ�ZLWK�WKH�3&��2QO\�KHDGLQJ��\DZ��FRQWURO�ZLOO�EH�
implemented (pitch and roll control follow along the same principles and can be implemented as

separate systems). The project consists of a simulation of the satellite that can be controlled manually

or automatically (using PID see later), and a real physical satellite model that can also be controlled

manually or automatically using the same control program. Switching over from controlling the

simulation to controlling the physical model or from manual to automatic control is accomplished with

a click of a mouse button.

In order to control a satellite's orientation in space, a terrestrial control station (TCS) needs to obtain

information about the state of the satellite in order to calculate what actions to take (see Figure 1). This

information is gathered and transmitted to the TCS by a master controller (MC) aboard the satellite

from HMs that interrogate the appropriate transducers (sensors). The TCS uses the received data to

calculate the necessary actuator settings (motor speeds and so on) and transmits them to the MC as

well as displaying information to the operator of the system. The MC uses the received settings to

command HMs to activate actuators in order to move the satellite to the desired state. A major

advantage of this setup is that the HMs can operate concurrently and independently of each other.

Figure 1: Satellite Control System

PID Control

To control the heading of the satellite two opposing retrorockets are used. One rocket is fired to start

the satellite rotating. Since in space there is no friction or wind resistance, the second rocket has to be

fired to stop the rotation. The burn rate of the fuel along with its energy value, determine the amount of

force the rocket exerts. The control algorithm calculates the burn rate to use, the duration of the burn,

as well as when to start the opposing rocket.

The simplest form of control is proportional-control and is implemented as follows. The actual

heading of the satellite is compared to the desired heading. The difference between the actual and the

desired heading (the error) is used to determine the amount and direction of burn rate (force) needed in

order to correct the error. This means that the bigger the error, the higher the burn rate required. In

many systems this control method alone will not suffice.

In a friction-free satellite, proportional control alone will generally overshoot the desired heading,

causing the controller to reverse the force being applied resulting in an oscillation. There are four types

of oscillations, as shown in Figure 2. In Figure 2(a) the satellite overshoots the desired heading but

goes back and reaches the desired value (settles). In Figure 2(b) the same happens but after multiple

oscillations that decrease in amplitude. In Figure 2(c) the satellite never settles at the required heading

but continues to oscillate about that value with a constant amplitude. In Figure 2(d) an unstable

situation occurs where the satellite oscillates about the desired heading with an ever-increasing

amplitude.

Obviously the responses in Figure 2(b, c, d) are always unacceptable. Some applications can accept a

small amount of overshoot (Figure 2(a), perhaps to achieve a reduced overall settling time), while

others cannot. An optimal behavior is shown in Figure 3(a). In this response the satellite reaches the

desired heading as quickly as possible but without any overshoot or oscillation. In Figure 3(b) the

settling time is a little longer (over damped). This may be required if we need to limit the acceleration

the satellite is allowed to undergo due to equipment or other considerations.

Figure 2: Types Of Undesirable Responses

Figure 3: Desirable Responses

To achieve the kind of response shown in Figure 3 the rate of change of the heading of the satellite and

the accumulated error should be taken in consideration. Lets suppose that the error is small – that is the

satellite is close to its desired destination. With proportional-control alone, a small force would be

applied (small error) but still continuing to move the satellite toward the desired heading. However, if

the speed of the movement is fast, the opposing rocket should be fired to slow down and prevent an

overshoot. Since speed is the rate of change (derivative) of the position, this form of control is called

derivative-control.

Another aspect of the movement of the satellite that we need to consider is its accumulated error (over

time). Summing the error over time is the calculus concept of integration and therefore this control

method is called integral-control. If the error is very small, proportional-control alone might not cause

enough force to actually move the satellite. Applying a force in relation to the sum of the error over

time, no matter how small the error, would eventually command a force big enough to move the

satellite to reduce the error.

A system that utilizes all three of these control mechanisms is called a PID-Controller (proportional,

integral, derivative). If the controller monitors the current position of the satellite it can calculate the

rate of change (derivative) and a running sum (integral) of the error. These three pieces of information

can be used to calculate the amount of burn rate (force) that should be applied and in what direction.

The three control methods described above will contribute to the value of the burn rate but not in equal

proportions. Three factors, KI, KP, and KD will be used to specify the proportion of each method. The

behavior of the system (overshoot, oscillation, settling time, steady state error, and so forth) can be

controlled by adjusting these three parameters. Calculus and convoluted mathematical methods are

traditionally used to determine these factors, but if you have a good simulation (see later) you can

determine the values by informed trial and error.

The Satellite Model

To model a satellite we used a disc of 1/4-in foam-board (found at many craft and office supply

stores). The disc needed to be supported in such a manner to provide minimum friction. To rotate the

disc we used balsa wood pieces mounted perpendicular to the foam-board so as to provide a surface for

two fans (opposing) to blow over and thus generate the necessary torque. The fans where mounted

apart from the wheel so as not to contribute more weight (and thus friction). The arrangement is shown

in Figure 4. See the YouTube video of the system at: http://www.youtube.com/watch?v=LwvspYFXJMM.

Figure 4: Satellite Model

To control the fans’ motors we used a Pololu module from Parallax Inc. (www.parallax.com). This

module can be controlled using a TTL RS232 input to perform pulse wave modulated (PWM) bi-

directional control of one or two DC motors. We also added opto-isolation circuitry to provide noise

free control (this was essential). The circuit schematic is shown in Figure 5.

7R�PHDVXUH�WKH�DFWXDO�KHDGLQJ�RI�WKH�ZKHHO�ZH�XVHG�D�TXDGUDWXUH�HQFRGHU�WKDW�XWLOL]HV�D��&�DQG�WZR�
pairs of infrared transceivers as described in a previous article (see Figure 6). The wheel was cut to

create 36 spokes (5º each) to provide blocking for the encoder’s infrared beams giving a resolution of

2.5º.

To coordinate the communication with the PC system (TCS) we used a Basic Stamp (BS2) as a MC

(see Figure 7). The BS2 receives the voltage level for the fans (and direction) then commands the

Pololu module with the required value. Afterwards, the BS2 interrogates the quadrature encoder to find

out the quadrature count and sends it to the PC. For simplicity and lesser cost, the communication

between the PC and BS2 was implemented using a wired serial line. This can be easily substituted with

an EB500 module on the BS2 side and a USB Bluetooth module on the PC side.

Figure 5: Fans’ Controller

Figure 6: Quadrature Encoder Figure 7: Master Controller.

The Simulation

Simulations are an indispensable part of a project such as this one. Design engineers use the simulation

to hone their control algorithms and parameters. Cost engineers use the simulation to decide feasibility

and costs. Training engineers use the simulation to train operators and to determine the optimum

human-machine interface parameters. All this can be achieved long before the actual physical project is

even started.

To create a realistic simulation you need to use physics formulas and calculus to determine the

behavior of the system. The values of importance are shown in Figure 8. The velocity coefficient

(VCOF meters/second) multiplied by the Burn Rate (Firing kilograms/second) gives the force of the

rocket. This multiplied by the Radius (position of rocket’s force from center of rotation in meters)

gives the Torque applied. Dividing the Torque by the rotational inertia (J kilograms times meters

VTXDUHG��JLYHV�WKH�URWDWLRQDO�DFFHOHUDWLRQ��.�UDGLDQV�SHU�VHFRQGV�VTXDUHG��DSSOLHG�WR�WKH�VDWHOOLWH��
InteJUDWLQJ�WKLV�YDOXH�RQFH�JLYHV�WKH�URWDWLRQDO�VSHHG�RI�WKH�VDWHOOLWH��&�UDGLDQV�SHU�VHFRQG���LQWHJUDWLQJ�
DJDLQ�JLYHV�WKH�FXUUHQW�KHDGLQJ�RI�WKH�VDWHOOLWH����UDGLDQV���7KH�UDGLDQV�YDOXH�RI�WKH�KHDGLQJ�LV�WKHQ�
converted to degrees for display purposes. All these values were calculated from the characteristics of

the wheel and fans in order to make the simulation match the physical model.

'XULQJ�WKH�FRQWURO�RI�WKH�VLPXODWLRQ�WKH�FXUUHQW�KHDGLQJ���LV�FDOFXODWHG��E\�LQWHJUDWLRQ��IURP�WKH�
calculated acceleration.�'XULQJ�FRQWURO�RI�WKH�SK\VLFDO�PRGHO�WKH�FXUUHQW�KHDGLQJ���LV�FDOFXODWHG�IURP�
WKH�TXDGUDWXUH�HQFRGHU�FRXQW��7KXV�WR�JHW�&�DQG�.��ZH�QHHG�WR�GLIIHUHQWLDWH�

Integrating and differentiating are performed using discrete (digital) techniques, and the sampling

interval (T seconds) becomes extremely important. The sampling rate must not be less than twice as

fast as the maximum frequency of the system. The time between samplings (T) is constrained by the

speed with which the PC can communicate with the MC on the model. The value that is used for the

simulation is calculated for the speed of the BS2 processor. The behavior of the system is greatly

affected by the PID factors and these in turn, are affected by the particular T used.

Figure 8: The Simulation & Control Program

The Control Program

The control program provides an interface (Figure 8) to allow the user to command the firing of the

fans (rockets) during the manual control process by using the arrow keys on the keyboard or the mouse

buttons. During automatic control, the program allows the user to indicate the desired heading either

by typing it as a number or by gradually increasing or decreasing the value by clicking the mouse on

an up or down scroller next to the field. Also the field labeled “Simulation” allows the user to specify

whether the control procedure should be applied to the simulated satellite or to the physical model. If

this field is set to ‘N’ the program will use serial communications (wired or wireless) to command the

physical model described above.

The program also provides the user with the ability to modify the system’s specifications by changing

the PID factors and the values of the SK\VLFDO�FKDUDFWHULVWLFV��2WKHU�ILHOGV�VKRZ�WKH�FXUUHQW�KHDGLQJ������
WKH�URWDWLRQDO�VSHHG��&���DFFHOHUDWLRQ��.���WKH�,7$(�YDOXH��VHH�ODWHU��DQG�ILULQJ��EXUQ�UDWH���$�JUDSK�
shows a visual history of the system’s response where the desired heading is drawn in red and the

actual heading in blue along a time axis. This can be helpful in calculating the settling time and

overshoot as well as giving a visual indication of the system’s response. Figures 2 to 11 are screen

captures of this graph.

The ITAE value is the integral over time of the absolute value of the error multiplied by time. This

value provides a numerical measure for the effectiveness of the control system. Smaller numbers

indicate a more effective system. This can be used (along with the response graph) during the

determination of the PID factors to decide which factors are better. It can also be used to give a

comparison reference between automatic and manual control effectiveness.

There are three programs, the TCS program on the PC written in RobotBASIC and MC program

written in PBasic as well as the Quadrature Encoder program in PBasic. The TCS program is too long

to show in full here and only a part of it is listed in Figure 12 to illustrate how the calculations

mentioned above are implemented in code. Figures 13 and 14 are listings of the MC and Quadrature

Encoder programs respectively. You can download all the programs from www.RobotBASIC.com

along with a copy of the RobotBASIC interpreter and numerous demo programs. The programs are

well commented and should be very easy to study and understand. You do not need to have a physical

model to be able to use the TCS program. The simulation is fun to use by itself and is very informative.

You can experiment with changing the PID parameters to gain a feel for how they affect the system’s

response.

The values used in Figure 8 represent the characteristics of the model we built. If you build your own

satellite model you will have to change the PID factors as well as the values of the physical

characteristics. Of course, the physical characteristics only matter during the simulation, but to have a

simulation that resembles your physical model you need to change the values so as to have a good

representation of your physical model. The PID factors will also have to be changed if the model is

different, but you can use the simulation to try different values and see how they affect the response

and then try them on the real model.

Conclusion

Figures 9 and 10 show how the simulated system and the physical model (respectively) responded to

commanded step and gradual heading changes. Figure 11 shows how during the control of the physical

model, if a disturbance (e.g. moving the wheel by hand) is experienced, the control system manages to

restore the wheel back to the desired heading. The slight jerkiness and lag in the response of the

physical model is due to friction, which, of course, cannot be totally eliminated.

We hope you can see how this project has been enhanced by using the PC as a controller. The user

interface provided pertinent information for monitoring the status of the system, and the math

capabilities facilitated programming of the necessary complex algorithms. With the right programming

language and distributed processing, using a PC was not a difficult task and has provided a new level

of hardware control methodology not often considered as viable by many hobbyists.

Figure 9: Simulation Control Response

Figure 10: Physical Model Control Response

Figure 11: Disturbance Rejection Response

MainProgram: //only some subroutines are shown

 gosub SetUp

 gosub Instructions

 gosub MonitorInputs

 gosub FinishUp

End

//===

CalcPID: //A0,A1,A2 are calculated from Ki,Kp,Kd in another subroutine

 PID_output = A0*error+A1*PID_errorZ1+A2*PID_errorZ2+PID_outputZ1

 PID_outputZ1 = PID_output

 PID_errorZ2 = PID_errorZ1

 PID_errorZ1 = error

 BurnRate = Limit(PID_output,-5,5) //limit to +/-5V

Return

//===

CalcError:

 error = desired -actual

 if abs(error) > Pi() then error = error - sign(error)*Pi(2)

 //make the error <= 180 degrees

Return

//===

CalcResponse: //simulation response

 //----Calc Theta, dTheta (W), ddTheta (Alpha)

 Torque = BurnRate*VCOF*Radius

 ddThetaZ1 = ddTheta

 dThetaZ1 = dTheta

 ThetaZ1 = Theta

 ddTheta = Torque/J //calc acceleration

 dTheta = dThetaZ1+T/2*(ddTheta+ddThetaZ1) //integrate to get velocity

 Theta = ThetaZ1+T/2*(dTheta+dThetaZ1) //again to get heading

 Alpha = ddTheta

 W = dTheta

 actual = frac((iactual+Theta)/Pi(2))*Pi(2) //limit heading to 0-359 deg

 if actual < 0 then actual = actual+Pi(2)

 aTheta = round(rtod(actual))

Return

//===

CalcSatelliteResponse: //physical model response

 if within(BurnRate,-0.3,0.3) then BurnRate = 0 //make a dead zone

 if BurnRate < 0

 CS_Speed =round(BurnRate/5.0*55-65) //left and right fans need

 elseif BurnRate > 0 //different voltage levels

 CS_Speed =round(BurnRate/5.0*70+50) //to produce the same speeds

 Else

 CS_Speed = 0

 Endif

 CS_Sp = CS_Speed

 if CS_Speed < 0 then CS_Sp = abs(CS_Speed) | 128

 serout char(CS_Sp) //send the voltage level (coded with direction)

 serbytesin 2,CS_dAngle,CS_NoIn //receive the quadrature count

 if CS_NoIn < 2 //as two bytes

 n=ErrMsg(Msgs[10],Msgs[0],MB_OK|MB_ERROR)

 GoSub StopSatellite

 CommsError = true

 return

 endif

 CS_HB = ascii(substring(CS_dAngle,1,1)) //assemble the encoder count

 CS_LB = ascii(substring(CS_dAngle,2,1))

 CS_dAngle = (CS_HB<<8)+CS_LB

 if CS_HB & 128 //if negative do tow’s complement

 CS_HB= ~CS_HB & 255

 CS_LB = ~CS_LB & 255

 CS_dAngle = -((CS_HB<< 8)+CS_LB+1)

 endif

 ddThetaZ1 = ddTheta

 dThetaZ1 = dTheta

 ThetaZ1 = Theta

 Theta = CS_dAngle*dtor(2.5) //heading = count * 2.5 degrees

 dTheta = (Theta-ThetaZ1)/T //differentiate to get omega

 ddTheta = (dTheta-dThetaZ1)/T //again to get alpha

 Alpha = ddTheta

 W = dTheta

 actual = frac(Theta/Pi(2))*Pi(2) //make sure heading is 0-359 deg

 if actual < 0 then actual = actual +pi(2)

 aTheta = round(rtod(actual))

Return

//===

Figure 12: Partial Listing Of The Control Program

' {$STAMP BS2}

' {$PBASIC 2.5}

'~~~~~~~~~~~~~Master Controller ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'===

'============= Variables ==========================

'===

 ReceivePin PIN 0

 SendPin PIN 1

 MotorReset PIN 2

 MotorTx PIN 3

 QuadratureRx PIN 15

 QuadratureInt PIN 14

 QuadratureRst PIN 13

 QuadratureRdy PIN 12

 dAngle VAR Byte(2)

 MotorSpeed VAR Byte

 oMotorSpeed VAR Byte

 Direction VAR Nib

'===

'============= MainProgram ==========================

'===

Main:

 GOSUB Initialize

 DO

 SERIN ReceivePin,84,[MotorSpeed]

 IF MotorSpeed = 255 THEN GOTO Main 'reset

 GOSUB SetMotors

 GOSUB Quadrature

 SEROUT SendPin,84, [dAngle(0),dAngle(1)]

 LOOP

END

'===

'======== Subroutines ====================

'===

Initialize:

 HIGH QuadratureInt 'No interrupt on quadrature

 LOW QuadratureRst

 PAUSE 10

 HIGH QuadratureRst 'Reset Quadrature

 LOW MotorReset

 HIGH MotorReset 'reset motor

 PAUSE 100

 SEROUT MotorTx,84,[$80,0,0,0] 'motor 0 brake

 PAUSE 20

 MotorSpeed = 0

 oMotorSpeed = 0

 Direction = 0

 dAngle = 0

RETURN

'===

SetMotors:

 IF MotorSpeed.BIT7 = 1 THEN

 SEROUT MotorTx,84,[$80,0,0,MotorSpeed & 127] 'backwards (ccw)

 ELSEIF MotorSpeed = 0 THEN

 SEROUT MotorTx,84,[$80,0,0,0] 'brake

 ELSE

 SEROUT MotorTx,84,[$80,0,1,MotorSpeed & 127] 'forward (cw)

 ENDIF

RETURN

'===

Quadrature:

 LOW QuadratureInt

 DO WHILE (QuadratureRdy = 0)

 LOOP

 HIGH QuadratureInt 'interrupt the quadrature

 SERIN QuadratureRx,84,[STR dAngle\2]

RETURN

'===

Figure 12: The Master Controller Program in PBasic for the BS2.

' {$STAMP BS2}

' {$STAMP BS2}

' {$PBASIC 2.5}

'~~~~~~~~~~~~~Quadrature Controller~~~~~~~~~~~~~~~~~~~~~~~~~~~

'===

'============= Variables ==========================

'===

 Interrupt PIN 0

 SendPin PIN 1

 ResetPin PIN 2

 ReadyPin PIN 3

 LeftIR PIN 15

 RightIR PIN 14

 OldIRS VAR Nib

 IRS VAR Nib

 dA VAR Nib

 dAngle VAR Word

 HdAngle VAR dAngle.HIGHBYTE

 LdAngle VAR dAngle.LOWBYTE

 Error VAR Bit

 Direction VAR Nib

'===

'============= MainProgram ==========================

'===

Main:

 GOSUB Initialize

 DO

 GOSUB Quadrature

 IF ResetPin = 0 THEN GOTO Main

 IF Interrupt = 0 THEN

 HIGH ReadyPin

 GOSUB Quadrature

 LOW ReadyPin

 SEROUT SendPin,84, [HdAngle,LdAngle]

 ENDIF

 LOOP

END

'===

'======== Subroutines ====================

'===

Initialize:

 OldIRS.BIT0 = RightIR

 OldIRS.BIT1 = LeftIR

 dAngle = 0

 Direction = 0

 LOW ReadyPin

 INPUT Interrupt

RETURN

'===

Quadrature:

 Error = 0

 dA = 0

 IRS.BIT0 = RightIR

 IRS.BIT1 = LeftIR

 IF IRS <> OldIRS THEN

 dA = 3

 SELECT OldIRS

 CASE 0

 IF IRS = 2 THEN dA = 1

 IF IRS = 1 THEN dA = 2

 CASE 1

 IF IRS = 0 THEN dA = 1

 IF IRS = 3 THEN dA = 2

 CASE 2

 IF IRS = 3 THEN dA = 1

 IF IRS = 0 THEN dA = 2

 CASE 3

 IF IRS = 1 THEN dA = 1

 IF IRS = 2 THEN dA = 2

 ENDSELECT

 OldIRS = IRS

 ENDIF

 SELECT dA

 CASE 1

 dAngle = dAngle-1

 CASE 2

 dAngle = dAngle+1

 CASE 3

 Error = 1

 IF Direction = 1 THEN dAngle = dAngle-1

 IF Direction = 2 THEN dAngle = dAngle+1

 ENDSELECT

 IF dA <> 3 THEN Direction = dA

RETURN

'===

Figure 12: The Quadrature Encoder Program in PBasic for the BS2.

