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The history of using the Personal Computer (PC) in electronic control projects parallels the history of 

using the mainframe computer. In the past, when only mainframes were used, the processing power 

had to be time-shared among multiple users. With the advent of the microcomputer every user had a 

dedicated processor. However, engineers quickly realized that networking these dedicated systems 

using the mainframe as a networking hub, database storage, and coordinator allowed for more 

powerful computing than would be possible with the mainframe or the microcomputer alone.  

 

The early PC, with its parallel port, ISA bus, and serial port provided a viable controller for electronic 

hardware projects. However, programming hardware I/O on the PC has become progressively more 

complicated with each new version of the Windows OS. In addition, with the availability of powerful 

and easy-to-XVH�PLFURFRQWUROOHUV���&V��PDQ\�KREE\LVWV�KDYH�IRXQG�LW�D�ORW�HDVLHU�WR�XVH�WKHP�IRU�WKHLU�
projects and nowadays are only using the PC as a cross-compiler. 

 

Many researchers use the PC as a controller for their projects, often with a wireless connection to 

communicate to various systems on a mobile platform (see this web site for an example: 

mit.edu/whall/www/heli/paper/node3.html#SECTION00030000000000000000). The systems are 

RUJDQL]HG�ZLWK��&V�WR�KDQGOH�WKH�KDUGZDUH�OHYHO�WDVNV�DQG�WKH�3&�DFWLQJ�DV�WKH�$UWLILFLDO�,QWHOOLJHQFH�
(AI) processor and user interface node. Often, these projects are robotic in nature, but the methodology 

does not have to be limited to robotics. You can use the same strategy with any control project you 

wish.  

 

As a hobbyist you may think that the above is too complicated; we hope this article will convince you 

of the contrary. To demonstrate these principles this article discusses a project that emulates 

controlling the orientation of a saWHOOLWH��,W�VKRZV�KRZ�D�3&�DORQJ�ZLWK��&V�LQ�D�SVHXGR-networked 

arrangement can provide processing capabilities that are otherwise difficult to achieve. The programs 

developed for the project demonstrate that programming a PC can be easily accomplished with the 

right tools and strategies. The simulation portion of the project shows that incorporating a PC can 

SURYLGH�IXQFWLRQDOLWLHV�WKDW�ZRXOG�EH�LPSRVVLEOH�ZLWK�PRVW��&V�� 
 

Distributed Processing 

A control project can be thought of as a set of subtasks. Each subtask can be controlled by a dedicated 

�&�DORQJ�ZLWK�VRPH�DGGLWLRQDO�FLUFXLWU\��7KH�RYHUDOO�SURMHFW�LV�FRRUGLQDWHG�E\�D�PDVWHU�FRQWUROOHU�
�0&��WKDW�FRPPXQLFDWHV�ZLWK�WKH�YDULRXV��&V��7KH�0&�FRXOG�EH�D�3&�RU�MXVW�DQRWKHU��&��7KH�
distributed processing provided with this divide-and-conquer strategy, allows the MC to have less I/O 

pins than would have been required if it had to control all the sub-processes directly. Also due to 

concurrent processing�SURYLGHG�E\�WKH�YDULRXV��&V��PXOWLWDVNLQJ�FDQ�EH�UHDGLO\ implemented.  

 

Often you may find that there are modules available on the market that can control the various subtasks 

RI�\RXU�SURMHFW��:H�FDOO�WKHVH�PRGXOHV�+HOSHU�0RGXOHV��+0V���7KHVH�+0V�WKHPVHOYHV�DUH�RIWHQ��&V�
that use their own I/O pins and memory to accomplish their task and are capable of being controlled 

using a serial protocol (SPI, I
2
C, RS232 etc.). If you find that you need an HM that does not exist, you 

FDQ�GHVLJQ�RQH�XVLQJ�D��&�DQG�VXSSRUWLQJ�FLUFXLWU\� 
 

Incorporating A PC 

$�V\VWHP�RI��&V�FDQ�EH�YHU\�SRZHUIXO��EXW�LW�GRHV�KDYH�LWV�OLPLWDWLRQV��0RVW��&V�DUH�OLPLWHG�LQ�WKHLU�
ability to manipulate arrays and perform floating-point as well as other high-level math operations. 



Even simple multiplication and division are limited to 8 or 16 bits on mDQ\��&V��6LPSOH�SURMHFWV�PD\�
not require many mathematical calculations, but more complex projects that involve PID control or 

signal processing (DSP) for example, will usually require the processing power of a PC. Using a 

distributed processing strategy, the PC can become another element of the overall project or can act as 

the overall controller.  

 

Another advantage to using a PC in control projects is that with its graphics capabilities you can create 

an ergonomic user interface. Just as hardware HMs help in quickly and easily accomplishing subtasks, 

RobotBASIC, the language used on this project, provides many software HMs such as matrix 

mathematics, bitmap manipulations, and extended graphics operations for flicker free animation (see 

the help files for many more HMs). Using the graphics capabilities you can create an effective user 

interface and with the math and matrix operations you can program complex AI algorithms.  

 

Many hobbyists opt to avoid using the PC in their projects because the Window’s OS makes it very 

difficult to program I/O communications. RobotBASIC provides many HMs for sending and receiving 

data through the PC’s serial and parallel ports, or over Bluetooth wireless communications, thus 

eliminating this obstacle. 

 

Satellite Heading Control 

As mentioned earlier, we will model the control of an artificial satellite in order to illustrate the 

SULQFLSOHV�RI�GLVWULEXWHG�SURFHVVLQJ�XVLQJ��&V�DORQJ�ZLWK�WKH�3&��2QO\�KHDGLQJ��\DZ��FRQWURO�ZLOO�EH�
implemented (pitch and roll control follow along the same principles and can be implemented as 

separate systems). The project consists of a simulation of the satellite that can be controlled manually 

or automatically (using PID see later), and a real physical satellite model that can also be controlled 

manually or automatically using the same control program. Switching over from controlling the 

simulation to controlling the physical model or from manual to automatic control is accomplished with 

a click of a mouse button. 

 

In order to control a satellite's orientation in space, a terrestrial control station (TCS) needs to obtain 

information about the state of the satellite in order to calculate what actions to take (see Figure 1). This 

information is gathered and transmitted to the TCS by a master controller (MC) aboard the satellite 

from HMs that interrogate the appropriate transducers (sensors). The TCS uses the received data to 

calculate the necessary actuator settings (motor speeds and so on) and transmits them to the MC as 

well as displaying information to the operator of the system. The MC uses the received settings to 

command HMs to activate actuators in order to move the satellite to the desired state. A major 

advantage of this setup is that the HMs can operate concurrently and independently of each other. 
 

 
Figure 1: Satellite Control System 

PID Control 

To control the heading of the satellite two opposing retrorockets are used. One rocket is fired to start 

the satellite rotating. Since in space there is no friction or wind resistance, the second rocket has to be 

fired to stop the rotation. The burn rate of the fuel along with its energy value, determine the amount of 



force the rocket exerts. The control algorithm calculates the burn rate to use, the duration of the burn, 

as well as when to start the opposing rocket.  

 

The simplest form of control is proportional-control and is implemented as follows. The actual 

heading of the satellite is compared to the desired heading. The difference between the actual and the 

desired heading (the error) is used to determine the amount and direction of burn rate (force) needed in 

order to correct the error. This means that the bigger the error, the higher the burn rate required. In 

many systems this control method alone will not suffice.  

 

In a friction-free satellite, proportional control alone will generally overshoot the desired heading, 

causing the controller to reverse the force being applied resulting in an oscillation. There are four types 

of oscillations, as shown in Figure 2. In Figure 2(a) the satellite overshoots the desired heading but 

goes back and reaches the desired value (settles). In Figure 2(b) the same happens but after multiple 

oscillations that decrease in amplitude. In Figure 2(c) the satellite never settles at the required heading 

but continues to oscillate about that value with a constant amplitude. In Figure 2(d) an unstable 

situation occurs where the satellite oscillates about the desired heading with an ever-increasing 

amplitude. 

 

Obviously the responses in Figure 2(b, c, d) are always unacceptable. Some applications can accept a 

small amount of overshoot (Figure 2(a), perhaps to achieve a reduced overall settling time), while 

others cannot. An optimal behavior is shown in Figure 3(a). In this response the satellite reaches the 

desired heading as quickly as possible but without any overshoot or oscillation. In Figure 3(b) the 

settling time is a little longer (over damped). This may be required if we need to limit the acceleration 

the satellite is allowed to undergo due to equipment or other considerations. 

 

 
Figure 2: Types Of Undesirable Responses 

 
Figure 3: Desirable Responses 



 

To achieve the kind of response shown in Figure 3 the rate of change of the heading of the satellite and 

the accumulated error should be taken in consideration. Lets suppose that the error is small – that is the 

satellite is close to its desired destination. With proportional-control alone, a small force would be 

applied (small error) but still continuing to move the satellite toward the desired heading. However, if 

the speed of the movement is fast, the opposing rocket should be fired to slow down and prevent an 

overshoot. Since speed is the rate of change (derivative) of the position, this form of control is called 

derivative-control. 

 

Another aspect of the movement of the satellite that we need to consider is its accumulated error (over 

time). Summing the error over time is the calculus concept of integration and therefore this control 

method is called integral-control. If the error is very small, proportional-control alone might not cause 

enough force to actually move the satellite. Applying a force in relation to the sum of the error over 

time, no matter how small the error, would eventually command a force big enough to move the 

satellite to reduce the error. 

 

A system that utilizes all three of these control mechanisms is called a PID-Controller (proportional, 

integral, derivative). If the controller monitors the current position of the satellite it can calculate the 

rate of change (derivative) and a running sum (integral) of the error. These three pieces of information 

can be used to calculate the amount of burn rate (force) that should be applied and in what direction. 

 

The three control methods described above will contribute to the value of the burn rate but not in equal 

proportions. Three factors, KI, KP, and KD will be used to specify the proportion of each method. The 

behavior of the system (overshoot, oscillation, settling time, steady state error, and so forth) can be 

controlled by adjusting these three parameters. Calculus and convoluted mathematical methods are 

traditionally used to determine these factors, but if you have a good simulation (see later) you can 

determine the values by informed trial and error. 

 

The Satellite Model 

To model a satellite we used a disc of 1/4-in foam-board (found at many craft and office supply 

stores). The disc needed to be supported in such a manner to provide minimum friction. To rotate the 

disc we used balsa wood pieces mounted perpendicular to the foam-board so as to provide a surface for 

two fans (opposing) to blow over and thus generate the necessary torque. The fans where mounted 

apart from the wheel so as not to contribute more weight (and thus friction). The arrangement is shown 

in Figure 4.  See the YouTube video of the system at: http://www.youtube.com/watch?v=LwvspYFXJMM. 
 

 
Figure 4: Satellite Model 



To control the fans’ motors we used a Pololu module from Parallax Inc. (www.parallax.com). This 

module can be controlled using a TTL RS232 input to perform pulse wave modulated (PWM) bi-

directional control of one or two DC motors. We also added opto-isolation circuitry to provide noise 

free control (this was essential). The circuit schematic is shown in Figure 5. 

 

7R�PHDVXUH�WKH�DFWXDO�KHDGLQJ�RI�WKH�ZKHHO�ZH�XVHG�D�TXDGUDWXUH�HQFRGHU�WKDW�XWLOL]HV�D��&�DQG�WZR�
pairs of infrared transceivers as described in a previous article (see Figure 6). The wheel was cut to 

create 36 spokes (5º each) to provide blocking for the encoder’s infrared beams giving a resolution of 

2.5º. 

 

To coordinate the communication with the PC system (TCS) we used a Basic Stamp (BS2) as a MC 

(see Figure 7). The BS2 receives the voltage level for the fans (and direction) then commands the 

Pololu module with the required value. Afterwards, the BS2 interrogates the quadrature encoder to find 

out the quadrature count and sends it to the PC. For simplicity and lesser cost, the communication 

between the PC and BS2 was implemented using a wired serial line. This can be easily substituted with 

an EB500 module on the BS2 side and a USB Bluetooth module on the PC side. 

 

 
Figure 5: Fans’ Controller 

     
Figure 6: Quadrature Encoder                                   Figure 7: Master Controller. 

 

The Simulation 

Simulations are an indispensable part of a project such as this one. Design engineers use the simulation 

to hone their control algorithms and parameters. Cost engineers use the simulation to decide feasibility 

and costs. Training engineers use the simulation to train operators and to determine the optimum 

human-machine interface parameters. All this can be achieved long before the actual physical project is 

even started. 

 



To create a realistic simulation you need to use physics formulas and calculus to determine the 

behavior of the system. The values of importance are shown in Figure 8. The velocity coefficient 

(VCOF meters/second) multiplied by the Burn Rate (Firing kilograms/second) gives the force of the 

rocket. This multiplied by the Radius (position of rocket’s force from center of rotation in meters) 

gives the Torque applied. Dividing the Torque by the rotational inertia (J kilograms times meters 

VTXDUHG��JLYHV�WKH�URWDWLRQDO�DFFHOHUDWLRQ��.�UDGLDQV�SHU�VHFRQGV�VTXDUHG��DSSOLHG�WR�WKH�VDWHOOLWH��
InteJUDWLQJ�WKLV�YDOXH�RQFH�JLYHV�WKH�URWDWLRQDO�VSHHG�RI�WKH�VDWHOOLWH��&�UDGLDQV�SHU�VHFRQG���LQWHJUDWLQJ�
DJDLQ�JLYHV�WKH�FXUUHQW�KHDGLQJ�RI�WKH�VDWHOOLWH����UDGLDQV���7KH�UDGLDQV�YDOXH�RI�WKH�KHDGLQJ�LV�WKHQ�
converted to degrees for display purposes. All these values were calculated from the characteristics of 

the wheel and fans in order to make the simulation match the physical model. 

 

'XULQJ�WKH�FRQWURO�RI�WKH�VLPXODWLRQ�WKH�FXUUHQW�KHDGLQJ���LV�FDOFXODWHG��E\�LQWHJUDWLRQ��IURP�WKH�
calculated acceleration.�'XULQJ�FRQWURO�RI�WKH�SK\VLFDO�PRGHO�WKH�FXUUHQW�KHDGLQJ���LV�FDOFXODWHG�IURP�
WKH�TXDGUDWXUH�HQFRGHU�FRXQW��7KXV�WR�JHW�&�DQG�.��ZH�QHHG�WR�GLIIHUHQWLDWH� 
 

Integrating and differentiating are performed using discrete (digital) techniques, and the sampling 

interval (T seconds) becomes extremely important. The sampling rate must not be less than twice as 

fast as the maximum frequency of the system. The time between samplings (T) is constrained by the 

speed with which the PC can communicate with the MC on the model. The value that is used for the 

simulation is calculated for the speed of the BS2 processor. The behavior of the system is greatly 

affected by the PID factors and these in turn, are affected by the particular T used. 

 

 
Figure 8: The Simulation & Control Program 

 

The Control Program 

The control program provides an interface (Figure 8) to allow the user to command the firing of the 

fans (rockets) during the manual control process by using the arrow keys on the keyboard or the mouse 

buttons. During automatic control, the program allows the user to indicate the desired heading either 

by typing it as a number or by gradually increasing or decreasing the value by clicking the mouse on 

an up or down scroller next to the field. Also the field labeled “Simulation” allows the user to specify 

whether the control procedure should be applied to the simulated satellite or to the physical model. If 



this field is set to ‘N’ the program will use serial communications (wired or wireless) to command the 

physical model described above. 

 

The program also provides the user with the ability to modify the system’s specifications by changing 

the PID factors and the values of the SK\VLFDO�FKDUDFWHULVWLFV��2WKHU�ILHOGV�VKRZ�WKH�FXUUHQW�KHDGLQJ������
WKH�URWDWLRQDO�VSHHG��&���DFFHOHUDWLRQ��.���WKH�,7$(�YDOXH��VHH�ODWHU��DQG�ILULQJ��EXUQ�UDWH���$�JUDSK�
shows a visual history of the system’s response where the desired heading is drawn in red and the 

actual heading in blue along a time axis. This can be helpful in calculating the settling time and 

overshoot as well as giving a visual indication of the system’s response. Figures 2 to 11 are screen 

captures of this graph. 

 

The ITAE value is the integral over time of the absolute value of the error multiplied by time. This 

value provides a numerical measure for the effectiveness of the control system. Smaller numbers 

indicate a more effective system. This can be used (along with the response graph) during the 

determination of the PID factors to decide which factors are better. It can also be used to give a 

comparison reference between automatic and manual control effectiveness. 

 

There are three programs, the TCS program on the PC written in RobotBASIC and MC program 

written in PBasic as well as the Quadrature Encoder program in PBasic. The TCS program is too long 

to show in full here and only a part of it is listed in Figure 12 to illustrate how the calculations 

mentioned above are implemented in code. Figures 13 and 14 are listings of the MC and Quadrature 

Encoder programs respectively. You can download all the programs from www.RobotBASIC.com 

along with a copy of the RobotBASIC interpreter and numerous demo programs. The programs are 

well commented and should be very easy to study and understand. You do not need to have a physical 

model to be able to use the TCS program. The simulation is fun to use by itself and is very informative. 

You can experiment with changing the PID parameters to gain a feel for how they affect the system’s 

response. 

 

The values used in Figure 8 represent the characteristics of the model we built. If you build your own 

satellite model you will have to change the PID factors as well as the values of the physical 

characteristics. Of course, the physical characteristics only matter during the simulation, but to have a 

simulation that resembles your physical model you need to change the values so as to have a good 

representation of your physical model. The PID factors will also have to be changed if the model is 

different, but you can use the simulation to try different values and see how they affect the response 

and then try them on the real model. 

 

Conclusion 

Figures 9 and 10 show how the simulated system and the physical model (respectively) responded to 

commanded step and gradual heading changes. Figure 11 shows how during the control of the physical 

model, if a disturbance (e.g. moving the wheel by hand) is experienced, the control system manages to 

restore the wheel back to the desired heading. The slight jerkiness and lag in the response of the 

physical model is due to friction, which, of course, cannot be totally eliminated. 

 

We hope you can see how this project has been enhanced by using the PC as a controller. The user 

interface provided pertinent information for monitoring the status of the system, and the math 

capabilities facilitated programming of the necessary complex algorithms. With the right programming 

language and distributed processing, using a PC was not a difficult task and has provided a new level 

of hardware control methodology not often considered as viable by many hobbyists. 

 



 
Figure 9: Simulation Control Response 

 
Figure 10: Physical Model Control Response 

 
Figure 11: Disturbance Rejection Response 

 

MainProgram: //only some subroutines are shown 

  gosub SetUp 

  gosub Instructions 

  gosub MonitorInputs 

  gosub FinishUp 

End 

//===================================================================== 

CalcPID: //A0,A1,A2 are calculated from Ki,Kp,Kd in another subroutine 

   PID_output = A0*error+A1*PID_errorZ1+A2*PID_errorZ2+PID_outputZ1 

   PID_outputZ1 = PID_output 

   PID_errorZ2 = PID_errorZ1 

   PID_errorZ1 = error 

   BurnRate = Limit(PID_output,-5,5)  //limit to +/-5V 

Return 

//===================================================================== 

CalcError: 

   error = desired -actual 

   if abs(error) > Pi() then error = error - sign(error)*Pi(2) 

       //make the error <= 180 degrees 

Return 

//===================================================================== 

CalcResponse: //simulation response  

   //----Calc Theta, dTheta (W), ddTheta (Alpha) 

   Torque = BurnRate*VCOF*Radius 

   ddThetaZ1 = ddTheta 



    
   dThetaZ1 = dTheta 

   ThetaZ1 = Theta 

   ddTheta = Torque/J  //calc acceleration 

   dTheta = dThetaZ1+T/2*(ddTheta+ddThetaZ1) //integrate to get velocity 

   Theta = ThetaZ1+T/2*(dTheta+dThetaZ1)  //again to get heading 

   Alpha = ddTheta 

   W = dTheta 

   actual = frac((iactual+Theta)/Pi(2))*Pi(2) //limit heading to 0-359 deg 

   if actual < 0 then actual = actual+Pi(2) 

   aTheta = round(rtod(actual)) 

Return 

//===================================================================== 

CalcSatelliteResponse: //physical model response 

   if within(BurnRate,-0.3,0.3) then BurnRate = 0 //make a dead zone 

   if BurnRate < 0 

      CS_Speed =round(BurnRate/5.0*55-65) //left and right fans need  

   elseif BurnRate > 0                    //different voltage levels 

      CS_Speed =round(BurnRate/5.0*70+50) //to produce the same speeds 

   Else 

      CS_Speed = 0 

   Endif 

   CS_Sp = CS_Speed  

   if CS_Speed < 0 then CS_Sp = abs(CS_Speed) | 128 

   serout char(CS_Sp)  //send the voltage level (coded with direction) 

   serbytesin 2,CS_dAngle,CS_NoIn //receive the quadrature count 

   if CS_NoIn < 2                 //as two bytes 

      n=ErrMsg(Msgs[10],Msgs[0],MB_OK|MB_ERROR) 

      GoSub StopSatellite 

      CommsError = true 

      return 

   endif 

   CS_HB = ascii(substring(CS_dAngle,1,1)) //assemble the encoder count 

   CS_LB = ascii(substring(CS_dAngle,2,1)) 

   CS_dAngle = (CS_HB<<8)+CS_LB 

   if CS_HB & 128  //if negative do tow’s complement 

      CS_HB= ~CS_HB & 255  

      CS_LB = ~CS_LB & 255 

      CS_dAngle = -((CS_HB<< 8)+CS_LB+1) 

   endif    

   ddThetaZ1 = ddTheta 

   dThetaZ1 = dTheta 

   ThetaZ1 = Theta 

   Theta = CS_dAngle*dtor(2.5)    //heading = count * 2.5 degrees 

   dTheta = (Theta-ThetaZ1)/T     //differentiate to get omega 

   ddTheta = (dTheta-dThetaZ1)/T  //again to get alpha 

   Alpha = ddTheta 

   W = dTheta 

   actual = frac(Theta/Pi(2))*Pi(2) //make sure heading is 0-359 deg 

   if actual < 0 then actual = actual +pi(2) 

   aTheta = round(rtod(actual)) 

Return      

//===================================================================== 

Figure 12: Partial Listing Of The Control Program 

 



' {$STAMP BS2} 

' {$PBASIC 2.5} 

'~~~~~~~~~~~~~Master Controller ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

'============================================================= 

'=============    Variables         ========================== 

'============================================================= 

    ReceivePin    PIN 0 

    SendPin       PIN 1 

    MotorReset    PIN 2 

    MotorTx       PIN 3 

    QuadratureRx  PIN 15 

    QuadratureInt PIN 14 

    QuadratureRst PIN 13 

    QuadratureRdy PIN 12 

    dAngle        VAR Byte(2) 

    MotorSpeed    VAR Byte 

    oMotorSpeed   VAR Byte 

    Direction     VAR Nib 

'============================================================= 

'=============    MainProgram       ========================== 

'============================================================= 

Main: 

  GOSUB Initialize 

  DO 

    SERIN ReceivePin,84,[MotorSpeed] 

    IF MotorSpeed = 255 THEN GOTO Main  'reset 

    GOSUB SetMotors 

    GOSUB Quadrature 

    SEROUT SendPin,84, [dAngle(0),dAngle(1)] 

  LOOP 

END 

'============================================================= 

'========   Subroutines                   ==================== 

'============================================================= 

Initialize: 

  HIGH QuadratureInt   'No interrupt on quadrature 

  LOW  QuadratureRst 

  PAUSE 10 

  HIGH QuadratureRst  'Reset Quadrature 

  LOW  MotorReset 

  HIGH MotorReset  'reset motor 

  PAUSE 100 

  SEROUT MotorTx,84,[$80,0,0,0] 'motor 0 brake 

  PAUSE 20 

  MotorSpeed  = 0 

  oMotorSpeed = 0 

  Direction = 0 

  dAngle = 0 

RETURN 

'============================================================= 

SetMotors: 

  IF MotorSpeed.BIT7 = 1 THEN 

     SEROUT MotorTx,84,[$80,0,0,MotorSpeed & 127] 'backwards (ccw) 

  ELSEIF MotorSpeed = 0 THEN 

     SEROUT MotorTx,84,[$80,0,0,0] 'brake 

  ELSE 

     SEROUT MotorTx,84,[$80,0,1,MotorSpeed & 127] 'forward (cw) 

  ENDIF 

RETURN 

'============================================================= 

Quadrature: 

    LOW  QuadratureInt 

    DO WHILE (QuadratureRdy = 0) 

    LOOP 

    HIGH QuadratureInt 'interrupt the quadrature 

    SERIN QuadratureRx,84,[STR dAngle\2] 

RETURN 

'============================================================= 

Figure 12: The Master Controller Program in PBasic for the BS2. 



' {$STAMP BS2} 

' {$STAMP BS2} 

' {$PBASIC 2.5} 

'~~~~~~~~~~~~~Quadrature Controller~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

'============================================================= 

'=============    Variables         ========================== 

'============================================================= 

    Interrupt   PIN 0 

    SendPin     PIN 1 

    ResetPin    PIN 2 

    ReadyPin    PIN 3 

    LeftIR      PIN 15 

    RightIR     PIN 14 

    OldIRS      VAR Nib 

    IRS         VAR Nib 

    dA          VAR Nib 

    dAngle      VAR Word 

    HdAngle     VAR dAngle.HIGHBYTE 

    LdAngle     VAR dAngle.LOWBYTE 

    Error       VAR Bit 

    Direction   VAR Nib 

 

'============================================================= 

'=============    MainProgram       ========================== 

'============================================================= 

Main: 

  GOSUB Initialize 

  DO 

    GOSUB Quadrature 

    IF ResetPin = 0 THEN GOTO Main 

    IF Interrupt = 0 THEN 

       HIGH ReadyPin 

       GOSUB Quadrature 

       LOW ReadyPin 

       SEROUT SendPin,84, [HdAngle,LdAngle] 

    ENDIF 

  LOOP 

END 

'============================================================= 

'========   Subroutines                   ==================== 

'============================================================= 

Initialize: 

  OldIRS.BIT0 = RightIR 

  OldIRS.BIT1 = LeftIR 

  dAngle = 0 

  Direction = 0 

  LOW ReadyPin 

  INPUT Interrupt 

RETURN 

'============================================================= 

Quadrature: 

    Error = 0 

    dA = 0 

    IRS.BIT0 = RightIR 

    IRS.BIT1 = LeftIR 

    IF IRS <> OldIRS THEN 

      dA = 3 

      SELECT OldIRS 

        CASE 0 

           IF IRS = 2 THEN dA = 1 

           IF IRS = 1 THEN dA = 2 

        CASE 1 

           IF IRS = 0 THEN dA = 1 

           IF IRS = 3 THEN dA = 2 

        CASE 2 

           IF IRS = 3 THEN dA = 1 

           IF IRS = 0 THEN dA = 2 

        CASE 3 

           IF IRS = 1 THEN dA = 1 

           IF IRS = 2 THEN dA = 2 

      ENDSELECT 

      OldIRS = IRS 

    ENDIF 

    SELECT dA 

       CASE 1 



 

          dAngle = dAngle-1 

 

       CASE 2 

          dAngle = dAngle+1 

       CASE  3 

          Error = 1 

          IF Direction = 1 THEN dAngle = dAngle-1 

          IF Direction = 2 THEN dAngle = dAngle+1 

    ENDSELECT 

    IF dA <> 3 THEN Direction = dA 

RETURN 

'============================================================= 

Figure 12: The Quadrature Encoder Program in PBasic for the BS2. 
 

 


