
Using The PC In Hardware Control Projects
By John Blankenship and Samuel Mishal

The history of using the Personal Computer (PC) in electronic control projects parallels the history of
using the mainframe computer. In the past, when only mainframes were used, the processing power
had to be time-shared among multiple users. With the advent of the microcomputer every user had a
dedicated processor. However, engineers quickly realized that networking these dedicated systems
using the mainframe as a networking hub, database storage, and coordinator allowed for more
powerful computing than would be possible with the mainframe or the microcomputer alone.

The early PC, with its parallel port, ISA bus, and serial port provided a viable controller for electronic
hardware projects. However, programming hardware I/O on the PC has become progressively more
complicated with each new version of the Windows OS. In addition, with the availability of powerful
and easy-to-use microcontrollers (μCs) many hobbyists have found it a lot easier to use them for their
projects and nowadays are only using the PC as a cross-compiler.

Many researchers use the PC as a controller for their projects, often with a wireless connection to
communicate to various systems on a mobile platform (see this web site for an example:
mit.edu/whall/www/heli/paper/node3.html#SECTION00030000000000000000). The systems are
organized with μCs to handle the hardware level tasks and the PC acting as the Artificial Intelligence
(AI) processor and user interface node. Often, these projects are robotic in nature, but the methodology
does not have to be limited to robotics. You can use the same strategy with any control project you
wish.

As a hobbyist you may think that the above is too complicated; we hope this article will convince you
of the contrary. To demonstrate these principles this article discusses a project that emulates
controlling the orientation of a satellite. It shows how a PC along with μCs in a pseudo-networked
arrangement can provide processing capabilities that are otherwise difficult to achieve. The programs
developed for the project demonstrate that programming a PC can be easily accomplished with the
right tools and strategies. The simulation portion of the project shows that incorporating a PC can
provide functionalities that would be impossible with most μCs.

Distributed Processing
A control project can be thought of as a set of subtasks. Each subtask can be controlled by a dedicated
μC along with some additional circuitry. The overall project is coordinated by a master controller
(MC) that communicates with the various μCs. The MC could be a PC or just another μC. The
distributed processing provided with this divide-and-conquer strategy, allows the MC to have less I/O
pins than would have been required if it had to control all the sub-processes directly. Also due to
concurrent processing provided by the various μCs, multitasking can be readily implemented.

Often you may find that there are modules available on the market that can control the various subtasks
of your project. We call these modules Helper Modules (HMs). These HMs themselves are often μCs
that use their own I/O pins and memory to accomplish their task and are capable of being controlled
using a serial protocol (SPI, I2C, RS232 etc.). If you find that you need an HM that does not exist, you
can design one using a μC and supporting circuitry.

Incorporating A PC
A system of μCs can be very powerful, but it does have its limitations. Most μCs are limited in their
ability to manipulate arrays and perform floating-point as well as other high-level math operations.

Even simple multiplication and division are limited to 8 or 16 bits on many μCs. Simple projects may
not require many mathematical calculations, but more complex projects that involve PID control or
signal processing (DSP) for example, will usually require the processing power of a PC. Using a
distributed processing strategy, the PC can become another element of the overall project or can act as
the overall controller.

Another advantage to using a PC in control projects is that with its graphics capabilities you can create
an ergonomic user interface. Just as hardware HMs help in quickly and easily accomplishing subtasks,
RobotBASIC, the language used on this project, provides many software HMs such as matrix
mathematics, bitmap manipulations, and extended graphics operations for flicker free animation (see
the help files for many more HMs). Using the graphics capabilities you can create an effective user
interface and with the math and matrix operations you can program complex AI algorithms.

Many hobbyists opt to avoid using the PC in their projects because the Window’s OS makes it very
difficult to program I/O communications. RobotBASIC provides many HMs for sending and receiving
data through the PC’s serial and parallel ports, or over Bluetooth wireless communications, thus
eliminating this obstacle.

Satellite Heading Control
As mentioned earlier, we will model the control of an artificial satellite in order to illustrate the
principles of distributed processing using μCs along with the PC. Only heading (yaw) control will be
implemented (pitch and roll control follow along the same principles and can be implemented as
separate systems). The project consists of a simulation of the satellite that can be controlled manually
or automatically (using PID see later), and a real physical satellite model that can also be controlled
manually or automatically using the same control program. Switching over from controlling the
simulation to controlling the physical model or from manual to automatic control is accomplished with
a click of a mouse button.

In order to control a satellite's orientation in space, a terrestrial control station (TCS) needs to obtain
information about the state of the satellite in order to calculate what actions to take (see Figure 1). This
information is gathered and transmitted to the TCS by a master controller (MC) aboard the satellite
from HMs that interrogate the appropriate transducers (sensors). The TCS uses the received data to
calculate the necessary actuator settings (motor speeds and so on) and transmits them to the MC as
well as displaying information to the operator of the system. The MC uses the received settings to
command HMs to activate actuators in order to move the satellite to the desired state. A major
advantage of this setup is that the HMs can operate concurrently and independently of each other.

Figure 1: Satellite Control System
PID Control
To control the heading of the satellite two opposing retrorockets are used. One rocket is fired to start
the satellite rotating. Since in space there is no friction or wind resistance, the second rocket has to be
fired to stop the rotation. The burn rate of the fuel along with its energy value, determine the amount of

force the rocket exerts. The control algorithm calculates the burn rate to use, the duration of the burn,
as well as when to start the opposing rocket.

The simplest form of control is proportional-control and is implemented as follows. The actual
heading of the satellite is compared to the desired heading. The difference between the actual and the
desired heading (the error) is used to determine the amount and direction of burn rate (force) needed in
order to correct the error. This means that the bigger the error, the higher the burn rate required. In
many systems this control method alone will not suffice.

In a friction-free satellite, proportional control alone will generally overshoot the desired heading,
causing the controller to reverse the force being applied resulting in an oscillation. There are four types
of oscillations, as shown in Figure 2. In Figure 2(a) the satellite overshoots the desired heading but
goes back and reaches the desired value (settles). In Figure 2(b) the same happens but after multiple
oscillations that decrease in amplitude. In Figure 2(c) the satellite never settles at the required heading
but continues to oscillate about that value with a constant amplitude. In Figure 2(d) an unstable
situation occurs where the satellite oscillates about the desired heading with an ever-increasing
amplitude.

Obviously the responses in Figure 2(b, c, d) are always unacceptable. Some applications can accept a
small amount of overshoot (Figure 2(a), perhaps to achieve a reduced overall settling time), while
others cannot. An optimal behavior is shown in Figure 3(a). In this response the satellite reaches the
desired heading as quickly as possible but without any overshoot or oscillation. In Figure 3(b) the
settling time is a little longer (over damped). This may be required if we need to limit the acceleration
the satellite is allowed to undergo due to equipment or other considerations.

Figure 2: Types Of Undesirable Responses

Figure 3: Desirable Responses

To achieve the kind of response shown in Figure 3 the rate of change of the heading of the satellite and
the accumulated error should be taken in consideration. Lets suppose that the error is small – that is the
satellite is close to its desired destination. With proportional-control alone, a small force would be
applied (small error) but still continuing to move the satellite toward the desired heading. However, if
the speed of the movement is fast, the opposing rocket should be fired to slow down and prevent an
overshoot. Since speed is the rate of change (derivative) of the position, this form of control is called
derivative-control.

Another aspect of the movement of the satellite that we need to consider is its accumulated error (over
time). Summing the error over time is the calculus concept of integration and therefore this control
method is called integral-control. If the error is very small, proportional-control alone might not cause
enough force to actually move the satellite. Applying a force in relation to the sum of the error over
time, no matter how small the error, would eventually command a force big enough to move the
satellite to reduce the error.

A system that utilizes all three of these control mechanisms is called a PID-Controller (proportional,
integral, derivative). If the controller monitors the current position of the satellite it can calculate the
rate of change (derivative) and a running sum (integral) of the error. These three pieces of information
can be used to calculate the amount of burn rate (force) that should be applied and in what direction.

The three control methods described above will contribute to the value of the burn rate but not in equal
proportions. Three factors, KI, KP, and KD will be used to specify the proportion of each method. The
behavior of the system (overshoot, oscillation, settling time, steady state error, and so forth) can be
controlled by adjusting these three parameters. Calculus and convoluted mathematical methods are
traditionally used to determine these factors, but if you have a good simulation (see later) you can
determine the values by informed trial and error.

The Satellite Model
To model a satellite we used a disc of 1/4-in foam-board (found at many craft and office supply
stores). The disc needed to be supported in such a manner to provide minimum friction. To rotate the
disc we used balsa wood pieces mounted perpendicular to the foam-board so as to provide a surface for
two fans (opposing) to blow over and thus generate the necessary torque. The fans where mounted
apart from the wheel so as not to contribute more weight (and thus friction). The arrangement is shown
in Figure 4. See the YouTube video of the system at: http://www.youtube.com/watch?v=LwvspYFXJMM.

Figure 4: Satellite Model

To control the fans’ motors we used a Pololu module from Parallax Inc. (www.parallax.com). This
module can be controlled using a TTL RS232 input to perform pulse wave modulated (PWM) bi-
directional control of one or two DC motors. We also added opto-isolation circuitry to provide noise
free control (this was essential). The circuit schematic is shown in Figure 5.

To measure the actual heading of the wheel we used a quadrature encoder that utilizes a μC and two
pairs of infrared transceivers as described in a previous article (see Figure 6). The wheel was cut to
create 36 spokes (5º each) to provide blocking for the encoder’s infrared beams giving a resolution of
2.5º.

To coordinate the communication with the PC system (TCS) we used a Basic Stamp (BS2) as a MC
(see Figure 7). The BS2 receives the voltage level for the fans (and direction) then commands the
Pololu module with the required value. Afterwards, the BS2 interrogates the quadrature encoder to find
out the quadrature count and sends it to the PC. For simplicity and lesser cost, the communication
between the PC and BS2 was implemented using a wired serial line. This can be easily substituted with
an EB500 module on the BS2 side and a USB Bluetooth module on the PC side.

Figure 5: Fans’ Controller

Figure 6: Quadrature Encoder Figure 7: Master Controller.

The Simulation
Simulations are an indispensable part of a project such as this one. Design engineers use the simulation
to hone their control algorithms and parameters. Cost engineers use the simulation to decide feasibility
and costs. Training engineers use the simulation to train operators and to determine the optimum
human-machine interface parameters. All this can be achieved long before the actual physical project is
even started.

To create a realistic simulation you need to use physics formulas and calculus to determine the
behavior of the system. The values of importance are shown in Figure 8. The velocity coefficient
(VCOF meters/second) multiplied by the Burn Rate (Firing kilograms/second) gives the force of the
rocket. This multiplied by the Radius (position of rocket’s force from center of rotation in meters)
gives the Torque applied. Dividing the Torque by the rotational inertia (J kilograms times meters
squared) gives the rotational acceleration (α radians per seconds squared) applied to the satellite.
Integrating this value once gives the rotational speed of the satellite (ω radians per second), integrating
again gives the current heading of the satellite (θ radians). The radians value of the heading is then
converted to degrees for display purposes. All these values were calculated from the characteristics of
the wheel and fans in order to make the simulation match the physical model.

During the control of the simulation the current heading θ is calculated (by integration) from the
calculated acceleration. During control of the physical model the current heading θ is calculated from
the quadrature encoder count. Thus to get ω and α, we need to differentiate.

Integrating and differentiating are performed using discrete (digital) techniques, and the sampling
interval (T seconds) becomes extremely important. The sampling rate must not be less than twice as
fast as the maximum frequency of the system. The time between samplings (T) is constrained by the
speed with which the PC can communicate with the MC on the model. The value that is used for the
simulation is calculated for the speed of the BS2 processor. The behavior of the system is greatly
affected by the PID factors and these in turn, are affected by the particular T used.

Figure 8: The Simulation & Control Program

The Control Program
The control program provides an interface (Figure 8) to allow the user to command the firing of the
fans (rockets) during the manual control process by using the arrow keys on the keyboard or the mouse
buttons. During automatic control, the program allows the user to indicate the desired heading either
by typing it as a number or by gradually increasing or decreasing the value by clicking the mouse on
an up or down scroller next to the field. Also the field labeled “Simulation” allows the user to specify
whether the control procedure should be applied to the simulated satellite or to the physical model. If

this field is set to ‘N’ the program will use serial communications (wired or wireless) to command the
physical model described above.

The program also provides the user with the ability to modify the system’s specifications by changing
the PID factors and the values of the physical characteristics. Other fields show the current heading (θ),
the rotational speed (ω), acceleration (α), the ITAE value (see later) and firing (burn rate). A graph
shows a visual history of the system’s response where the desired heading is drawn in red and the
actual heading in blue along a time axis. This can be helpful in calculating the settling time and
overshoot as well as giving a visual indication of the system’s response. Figures 2 to 11 are screen
captures of this graph.

The ITAE value is the integral over time of the absolute value of the error multiplied by time. This
value provides a numerical measure for the effectiveness of the control system. Smaller numbers
indicate a more effective system. This can be used (along with the response graph) during the
determination of the PID factors to decide which factors are better. It can also be used to give a
comparison reference between automatic and manual control effectiveness.

There are three programs, the TCS program on the PC written in RobotBASIC and MC program
written in PBasic as well as the Quadrature Encoder program in PBasic. The TCS program is too long
to show in full here and only a part of it is listed in Figure 12 to illustrate how the calculations
mentioned above are implemented in code. Figures 13 and 14 are listings of the MC and Quadrature
Encoder programs respectively. You can download all the programs from www.RobotBASIC.com
along with a copy of the RobotBASIC interpreter and numerous demo programs. The programs are
well commented and should be very easy to study and understand. You do not need to have a physical
model to be able to use the TCS program. The simulation is fun to use by itself and is very informative.
You can experiment with changing the PID parameters to gain a feel for how they affect the system’s
response.

The values used in Figure 8 represent the characteristics of the model we built. If you build your own
satellite model you will have to change the PID factors as well as the values of the physical
characteristics. Of course, the physical characteristics only matter during the simulation, but to have a
simulation that resembles your physical model you need to change the values so as to have a good
representation of your physical model. The PID factors will also have to be changed if the model is
different, but you can use the simulation to try different values and see how they affect the response
and then try them on the real model.

Conclusion
Figures 9 and 10 show how the simulated system and the physical model (respectively) responded to
commanded step and gradual heading changes. Figure 11 shows how during the control of the physical
model, if a disturbance (e.g. moving the wheel by hand) is experienced, the control system manages to
restore the wheel back to the desired heading. The slight jerkiness and lag in the response of the
physical model is due to friction, which, of course, cannot be totally eliminated.

We hope you can see how this project has been enhanced by using the PC as a controller. The user
interface provided pertinent information for monitoring the status of the system, and the math
capabilities facilitated programming of the necessary complex algorithms. With the right programming
language and distributed processing, using a PC was not a difficult task and has provided a new level
of hardware control methodology not often considered as viable by many hobbyists.

Figure 9: Simulation Control Response

Figure 10: Physical Model Control Response

Figure 11: Disturbance Rejection Response

MainProgram: //only some subroutines are shown
 gosub SetUp
 gosub Instructions
 gosub MonitorInputs
 gosub FinishUp
End
//===
CalcPID: //A0,A1,A2 are calculated from Ki,Kp,Kd in another subroutine
 PID_output = A0*error+A1*PID_errorZ1+A2*PID_errorZ2+PID_outputZ1
 PID_outputZ1 = PID_output
 PID_errorZ2 = PID_errorZ1
 PID_errorZ1 = error
 BurnRate = Limit(PID_output,-5,5) //limit to +/-5V
Return
//===
CalcError:
 error = desired -actual
 if abs(error) > Pi() then error = error - sign(error)*Pi(2)
 //make the error <= 180 degrees
Return
//===
CalcResponse: //simulation response
 //----Calc Theta, dTheta (W), ddTheta (Alpha)
 Torque = BurnRate*VCOF*Radius
 ddThetaZ1 = ddTheta

 dThetaZ1 = dTheta
 ThetaZ1 = Theta
 ddTheta = Torque/J //calc acceleration
 dTheta = dThetaZ1+T/2*(ddTheta+ddThetaZ1) //integrate to get velocity
 Theta = ThetaZ1+T/2*(dTheta+dThetaZ1) //again to get heading
 Alpha = ddTheta
 W = dTheta
 actual = frac((iactual+Theta)/Pi(2))*Pi(2) //limit heading to 0-359 deg
 if actual < 0 then actual = actual+Pi(2)
 aTheta = round(rtod(actual))
Return
//===
CalcSatelliteResponse: //physical model response
 if within(BurnRate,-0.3,0.3) then BurnRate = 0 //make a dead zone
 if BurnRate < 0
 CS_Speed =round(BurnRate/5.0*55-65) //left and right fans need
 elseif BurnRate > 0 //different voltage levels
 CS_Speed =round(BurnRate/5.0*70+50) //to produce the same speeds
 Else
 CS_Speed = 0
 Endif
 CS_Sp = CS_Speed
 if CS_Speed < 0 then CS_Sp = abs(CS_Speed) | 128
 serout char(CS_Sp) //send the voltage level (coded with direction)
 serbytesin 2,CS_dAngle,CS_NoIn //receive the quadrature count
 if CS_NoIn < 2 //as two bytes
 n=ErrMsg(Msgs[10],Msgs[0],MB_OK|MB_ERROR)
 GoSub StopSatellite
 CommsError = true
 return
 endif
 CS_HB = ascii(substring(CS_dAngle,1,1)) //assemble the encoder count
 CS_LB = ascii(substring(CS_dAngle,2,1))
 CS_dAngle = (CS_HB<<8)+CS_LB
 if CS_HB & 128 //if negative do tow’s complement
 CS_HB= ~CS_HB & 255
 CS_LB = ~CS_LB & 255
 CS_dAngle = -((CS_HB<< 8)+CS_LB+1)
 endif
 ddThetaZ1 = ddTheta
 dThetaZ1 = dTheta
 ThetaZ1 = Theta
 Theta = CS_dAngle*dtor(2.5) //heading = count * 2.5 degrees
 dTheta = (Theta-ThetaZ1)/T //differentiate to get omega
 ddTheta = (dTheta-dThetaZ1)/T //again to get alpha
 Alpha = ddTheta
 W = dTheta
 actual = frac(Theta/Pi(2))*Pi(2) //make sure heading is 0-359 deg
 if actual < 0 then actual = actual +pi(2)
 aTheta = round(rtod(actual))
Return
//===

Figure 12: Partial Listing Of The Control Program

' {$STAMP BS2}
' {$PBASIC 2.5}
'~~~~~~~~~~~~~Master Controller ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'===
'============= Variables ==========================
'===
 ReceivePin PIN 0
 SendPin PIN 1
 MotorReset PIN 2
 MotorTx PIN 3
 QuadratureRx PIN 15
 QuadratureInt PIN 14
 QuadratureRst PIN 13
 QuadratureRdy PIN 12
 dAngle VAR Byte(2)
 MotorSpeed VAR Byte
 oMotorSpeed VAR Byte
 Direction VAR Nib
'===
'============= MainProgram ==========================
'===
Main:
 GOSUB Initialize
 DO
 SERIN ReceivePin,84,[MotorSpeed]
 IF MotorSpeed = 255 THEN GOTO Main 'reset
 GOSUB SetMotors
 GOSUB Quadrature
 SEROUT SendPin,84, [dAngle(0),dAngle(1)]
 LOOP
END
'===
'======== Subroutines ====================
'===
Initialize:
 HIGH QuadratureInt 'No interrupt on quadrature
 LOW QuadratureRst
 PAUSE 10
 HIGH QuadratureRst 'Reset Quadrature
 LOW MotorReset
 HIGH MotorReset 'reset motor
 PAUSE 100
 SEROUT MotorTx,84,[$80,0,0,0] 'motor 0 brake
 PAUSE 20
 MotorSpeed = 0
 oMotorSpeed = 0
 Direction = 0
 dAngle = 0
RETURN
'===
SetMotors:
 IF MotorSpeed.BIT7 = 1 THEN
 SEROUT MotorTx,84,[$80,0,0,MotorSpeed & 127] 'backwards (ccw)
 ELSEIF MotorSpeed = 0 THEN
 SEROUT MotorTx,84,[$80,0,0,0] 'brake
 ELSE
 SEROUT MotorTx,84,[$80,0,1,MotorSpeed & 127] 'forward (cw)
 ENDIF
RETURN
'===
Quadrature:
 LOW QuadratureInt
 DO WHILE (QuadratureRdy = 0)
 LOOP
 HIGH QuadratureInt 'interrupt the quadrature
 SERIN QuadratureRx,84,[STR dAngle\2]
RETURN
'===

Figure 12: The Master Controller Program in PBasic for the BS2.

' {$STAMP BS2}
' {$STAMP BS2}
' {$PBASIC 2.5}
'~~~~~~~~~~~~~Quadrature Controller~~~~~~~~~~~~~~~~~~~~~~~~~~~
'===
'============= Variables ==========================
'===
 Interrupt PIN 0
 SendPin PIN 1
 ResetPin PIN 2
 ReadyPin PIN 3
 LeftIR PIN 15
 RightIR PIN 14
 OldIRS VAR Nib
 IRS VAR Nib
 dA VAR Nib
 dAngle VAR Word
 HdAngle VAR dAngle.HIGHBYTE
 LdAngle VAR dAngle.LOWBYTE
 Error VAR Bit
 Direction VAR Nib

'===
'============= MainProgram ==========================
'===
Main:
 GOSUB Initialize
 DO
 GOSUB Quadrature
 IF ResetPin = 0 THEN GOTO Main
 IF Interrupt = 0 THEN
 HIGH ReadyPin
 GOSUB Quadrature
 LOW ReadyPin
 SEROUT SendPin,84, [HdAngle,LdAngle]
 ENDIF
 LOOP
END
'===
'======== Subroutines ====================
'===
Initialize:
 OldIRS.BIT0 = RightIR
 OldIRS.BIT1 = LeftIR
 dAngle = 0
 Direction = 0
 LOW ReadyPin
 INPUT Interrupt
RETURN
'===
Quadrature:
 Error = 0
 dA = 0
 IRS.BIT0 = RightIR
 IRS.BIT1 = LeftIR
 IF IRS <> OldIRS THEN
 dA = 3
 SELECT OldIRS
 CASE 0
 IF IRS = 2 THEN dA = 1
 IF IRS = 1 THEN dA = 2
 CASE 1
 IF IRS = 0 THEN dA = 1
 IF IRS = 3 THEN dA = 2
 CASE 2
 IF IRS = 3 THEN dA = 1
 IF IRS = 0 THEN dA = 2
 CASE 3
 IF IRS = 1 THEN dA = 1
 IF IRS = 2 THEN dA = 2
 ENDSELECT
 OldIRS = IRS
 ENDIF
 SELECT dA
 CASE 1

 dAngle = dAngle-1

 CASE 2
 dAngle = dAngle+1
 CASE 3
 Error = 1
 IF Direction = 1 THEN dAngle = dAngle-1
 IF Direction = 2 THEN dAngle = dAngle+1
 ENDSELECT
 IF dA <> 3 THEN Direction = dA
RETURN
'===

Figure 12: The Quadrature Encoder Program in PBasic for the BS2.

