
Page 1 of 20

Teaching Beginner And Advanced

Programming With RobotBASIC

ne of the many powerful features of RobotBASIC is its ability to grow progressively with the

requirements of programmers as their skills evolve. This makes RB an ideal educational language for

students as well as for teachers. RobotBASIC is also an ideal tool for achieving advanced projects since it

has functionalities that provide powerful abilities while remaining nearly effortless to use.

Students nowadays are often frustrated and disheartened, despite having access to programming languages

and tools far more powerful than anything in the past. In fact, it is precisely this power that thwarts today’s

students because it is often inseparable from complexities that make it difficult to progress from simple to

advanced topics in gradual easy steps.

It is like being thrown in the deep end of the pool. Some may not be adversely affected by this style for

teaching swimming. Most, however, will be irredeemably traumatized by the experience.

Viewed from the perspective of students (or the self-taught) it is easy to see why programming courses (and

books) about today’s languages are often confusing and discouraging. Due to the nature of these languages,

it is not possible to teach them without having to delve into topics such as variable typing and scoping and in

many cases even object instantiating and program modularization. You cannot escape having to learn about

include libraries and even pointers and principles of what compilers do. All these topics, of course, are

introduced before the student has even learned what a program is or why you need variables and modules.

This document will demonstrate that, despite being a powerful programming language, RobotBASIC avoids

the aforementioned problems while also providing features that allow the learning process to be filled with

gripping, relevant and meaningful projects very early on in the learning process.

 1- The Beginner Advantage:

RB is a language with which beginner programmers get immediate feedback on ideas and actions without

having to overcome a steep initial hurdle before they can start creating interesting projects.

Because RB has versatility and flexibility without compromising on ability, a teacher will find that it is an

ideal programming language for implementing pseudo code with a syntax that, in itself, can be used as

pseudo code. To illustrate the fact, let’s look at the following scenario.

To introduce students to the concepts of acquiring input from the user and printing the results of an action

on the screen you come up with a simple example and write on the board in normal English the steps in

Pseudo Code 1 below.

O

Teaching Beginner And Advanced Programming With RobotBASIC

Page 2 of 20

Ask the user to Input his/her Name

Ask the user to Input his/her BirthYear

Calculate the user's Age using the BirthYear

Print on the screen "Hello " then the user’s Name

Print on the screen "You are " then the user’s Age then " Years Old"

End the program

Pseudo Code 1

The above pseudo code is extremely comprehendible. It might be a little too verbose for practical usage,

however, students can immediately see the correlation between it and the following RB implementation:

Input "What is your name: ",Name

Input "What year were you born: ",BirthYear

Age = Year(Now())-BirthYear

Print "Hello ",Name

Print "You are ",Age," years old"

End

Program 1: Notice the line-by-line correlation with Pseudo Code 1.

It is generally not necessary to explain to students the above RB code after having been introduced to

Pseudo Code 1. Besides, after a few examples, the teacher can even bypass the more verbose style and start

using RB’s syntax as the pseudo code due to the non-cryptic nature of the language.

Students can run RobotBASIC.exe from a USB Flash Drive without any installation or dependence on a

particular machine. After that they would type the above program in the IDE’s editor and then click RUN

for an immediate result. Students will be able to use the program and observe its actions and will quickly

appreciate how an idea has become a concrete running program with very little effort.

Notice the lack of any extraneous syntax that would only serve to confound and befuddle the student at

this stage of learning. Consider the C++ implementation in Program 2 below. It performs the exact same

action as Program 1. Which code would you, as a teacher, rather present to your students as an

implementation of the earlier pseudo code? Which code do you think your students would have a

better chance of understanding? Which do you think has better correlation to the pseudo code?

With the RB implementation, the student does not need (at this stage) to contend with totally meaningless

(and only serves to confuse) concept of variable typing. With the C++ implementation the student has to

struggle with, and the teacher has to try to explain, the advanced concept of arrays (for a string). Students

will only be bewildered by the amount of #include files that were necessary to make the program work, not

to mention the confusion the whole concept will cause in the first place.

It is hardly necessary to go on pointing out the reasons Program 2 is not a good introduction for a novice

programmer. However, ponder this final point. Which code do you think your students are more likely

to be able to emulate and reproduce by themselves? This aspect is extremely important for self-taught

programmers. Many people may take on programming by themselves without official courses or having an

instructor. RobotBASIC is an ideal language for the self-taught programmer because its syntax is easy to

learn and its facilities allow for achieving powerful projects early on in the learning process.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 3 of 20

#pragma hdrstop

#include <condefs.h>

#include <iostream.h>

#include <conio.h>

#include <time.h>

#pragma argsused

int main(int argc, char* argv[])

{

 int Age, BirthYear;

 char Name[40];

 cout << "What is your name:";

 cin >> Name;

 cout << "Whatyear were you born:";

 cin >> BirthYear;

 cout << "Hello " << Name;

 Age = (1970+ time(NULL)/3600.0/24.0/365.0)-BirthYear;

 cout << "\nYou are " << Age << " years old";

 getch();

 return 0;

}

Program 2: Notice the almost total lack of correlation to Pseudo Code 1.

2- Advancement In Surmountable Stages:

RobotBASIC provides syntax that allows students to accomplish impressive results at any level of

complexity along the learning curve while they are gaining more experience and sophistication.

Imagine if you had a vehicle that can be a tricycle while you are learning to ride and a bicycle when you

are more capable. However, when the time comes where you need more power the very same vehicle is

capable of performing as a motorcycle. RobotBASIC is such a versatile vehicle for the purpose of

programming.

2.1- Free And Strict Variable Typing

It is a lot easier for students to appreciate the concept of variables without the restriction of having to

declare their types. Notice how RB’s flexibility allowed Program 1 to be simpler and better correlated to

Pseudo Code 1. This is due to the lack of the restrictive and irrelevant (at this stage) requirement for

variable type declarations before the variables can be used. The student is able to just use variables and

RB takes care of assigning them a type according to what is being stored in them.

This is only logical. A variable is a storage space for holding data. It will only serve to confuse beginners

to have to declare the type of variables when they are yet becoming familiar with the concept of

variables. Since it is a storage place then just use it to store data. Why restrict it by declaring what is to be

stored in it before using it.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 4 of 20

Consider the following For-loop in RB:

For I=1 to 20

 J = I*3

Next

This is simple, intuitive, convenient, and much less typing than having to declare the variables I and J as

integers before using them. After all, isn’t it obvious that they need to be integers? Why can’t the

language just take care of assigning them types as required? Well, that is exactly what RB does.

Nonetheless, strict variable typing can help in reducing runtime errors and in forcing organizational

skills. Once students are more experienced with the whole concept of variables and data types and have

programmed a few simple programs, they are more able to cope with the restrictions and inflexibility of

strict variable typing in return for more control over a program.

Can RB meet this level of programming? Definitely it can. With the command Declare RB reverts to

becoming a strict variable typing system and will impose the requirement that variables should be

declared before they can be used and that they should always be assigned an appropriate value type

according to their declaration.

Consider Program 1. What do you think would happen if when running the program the user gave a

string instead of a number for the BirthYear? Would the program fail? When?

The answer is yes, it will fail, but not when the user enters the inappropriate data type. It will fail on the

line that calculates the age since it assumes the value BirthYear is a valid numerical value. Why did it not

fail upon the entry of the wrong value type? The reason is that because strict variable typing has not been

activated the variable BirthYear would take on the type of the data entered by the user of the program.

RB provides many ways for creating programs that are more tolerant of user input and therefore avoid

errors caused by incorrect data entry. Nevertheless, this is an appropriate juncture for the introduction to

variable typing. Add the following line at the top of the code in Program 1:

Declare Name="", BirthYear=0, Age=0

This will force RB to start performing strict variable typing and also will create the variable Name as a

string type and assign it an initial value of an empty string and also the variables BirthYear and Age as

integers with initial values of 0.

Will the program still fail when a user enters a string instead of a number for the birth year? When? Yes,

it still fails, but it will fail when the user tries to enter a string for the BirthYear. So what is the

advantage? It is a small one. Now the error is generated when the user enters the wrong value and not

much later in the program where it may be harder to figure out why there is an error and what caused it.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 5 of 20

In fact, for the purposes of Program 1, a more appropriate data type for BirthYear would be a string. This

allows a user to enter anything but then the program can use one of RB’s functions to detect the type of

entered data and convert it to a number. This makes the program more immune to wrong data entry.

Consider the following modified program:

Declare Name "", BirthYear "", Age 0

Input "What is your name: ",Name

Input "What year were you born: ",BirthYear

if IsNumber(BirthYear)

 Age = Year(Now())-ToNumber(BirthYear)

 Print "Hello ",Name

 Print "You are ",Age," years old"

else

 Print "Hello ",Name

 Print "You did not enter a numeric BirthYear"

endif

End

Program 3: The Blue lines are improvements to Program 1.

2.2- Various Levels Of User Interfacing Methodologies

Another area of programming where RB can serve at various levels of sophistication is in User

Interfacing. As has been observed above the commands Input and Print are extremely intuitive and easy

to use. The beginner programmer can use them to be able to write useful programs that interact with the

user. With these commands there are no extraneous aspects that only serve to complicate the initial

learning process.

However, with RB you can create progressively more complex user interfacing programs from the very

simple to the visually pleasing but programmatically complex Graphical User Interfacing (GUI) style of

programs.

With the InlineInputMode on directive and the Print, Input and Waitkey commands, RB programs

will perform standard user interfacing in the style of console programs, much like the days of old before

graphics were viable. Add this line at the top of Program 3 above and see how it changes the behavior of

the user interaction:

InlineInputMode On

Without the InlineInputMode directive RB will perform at an intermediate level of user interfacing

where the Print command still outputs to the console (old style) but Input and WaitKey perform their

actions in the control panel (bottom of the screen) that utilizes an automated and simple to use GUI style

interfacing.

As programming requirements become more demanding the programmer can make use of the more

involved, yet not too complicated facilities of RB such as GetKey, GetKeyE, KeyDn(), ReadMouse,

JoyStick, JoyStickE, xyString, xyText, Sound and PlayWav.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 6 of 20

For the ultimate in sophistication RB provides numerous GUI elements that are powerful to use but in

RB are not too hard to understand and utilize unlike most other languages.

With FilePrompt(), FileSave(), DirPrompt(), StrInput(), MsgBox(), TextBox(), StrongBox(),

ErrMsg() and xyInput() the programmer can create with one line of code a myriad of different types of

powerful and sophisticated GUI dialog boxes that would require numerous lines of code in other

languages not to mention the complexity of setting them up in the first place.

The following two lines program prompts the user for a text file name and then reads the specified file (if

any) and creates a dialog box that allows the user to browse the text as shown in Figure 1. The lines of

code below are the entire program. Imagine what it would take to do the same with other languages.

FN = FilePrompt("*.Txt")

if FN != "" then TextBox(FN,"When finished Push OK or Cancel")

Program 4: Two Lines Program that performs a powerful action.

Figure 1: GUI Dialog Boxes created by Program 4.

RobotBASIC also provides extremely easy to program constructs for implementing and utilizing Push

Buttons, Edit Boxes, Check Boxes, Radio Buttons, Memo Boxes, Spinners, Sliders and much more. See

the Graphical User Interfacing section in the RobotBASIC help file.

2.3- Examples Of Progressive Sophistication

As an example for how RB can be used in a progressively more sophisticated but yet extremely

understandable and easily surmountable manner, we will apply further modifications to Program 3. You

have already seen how it is an advance over Program 2 as far as using variables is concerned. Now we

will see how the program can be made to be progressively more complex as far as User Interfacing is

concerned.

http://www.robotbasic.org/resources/RobotBASIC_HelpFile.pdf

Teaching Beginner And Advanced Programming With RobotBASIC

Page 7 of 20

Program 5, utilizes RB’s easy to use dialog boxes (bolded text) to obtain input from the user and to

display the results. Figure 2 shows the possible resultant dialogs.

Name = StrInput(,"What is your name:")

BirthYear = StrInput(,"What year were you born:")

if IsNumber(BirthYear)

 Age = Year(Now())-ToNumber(BirthYear)

 msg = "Hello "+Name+crlf()+"You are "+Age+" years old"

 ErrMsg(msg,"RobotBASIC",MB_OK|MB_INFORMATION)

else

 msg = "Hello "+Name+crlf()+"You did not enter a correct BirthYear"

 ErrMsg(msg,"RobotBASIC",MB_OK|MB_ERROR)

endif

End

Program 5: One level of improvement to Program 3 by using GUI Dialog Boxes.

Figure 2: Dialogs resulting from running Program 5.

Dialog Boxes can be useful, easy and quick to use. Nevertheless this style of user interfacing has

limitations. To illustrate yet another step of sophistication we will use Push Buttons and Edit Boxes.

Program 6 is at the intermediate level, utilizing much of RB’s power but yet is not overly complicated.

Notice how creating Edit Boxes and Push Buttons is not inordinately more complicated than using Input

or dialog boxes but yet provides a lot more sophistication.

The reason that using such a powerful construct is so simple is because, again, RB provides progressive

steps of complexity. Notice that there was no need whatsoever to use Event Driven programming to

handle the push buttons. Does RB provide for Event Driven programming too? Yes it does. This is a very

advanced concept and we will discuss it among other more advanced concepts later. But, consider how

RB has made it possible to utilize an advanced tool with a surmountable step in complexity.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 8 of 20

ClearScr gray

xyText 55,10,"What is your name:", ,10,fs_Bold,,gray

xyText 8,40,"What year were you born:", ,10,fs_Bold,,gray

AddEdit "Name",200,8,200 \ AddEdit "BirthYear",200,38,80

AddButton "Calculate",100,80,100

while true

 if LastButton() == "" then continue

 if IsNumber(GetEdit("BirthYear"))

 Age = Year(Now())-ToNumber(GetEdit("BirthYear"))

 msg = "Hello "+GetEdit("Name")+crlf()+"You are "+Age+" years old"

 Icon= MB_INFORMATION

 else

 msg = "Hello "+GetEdit("Name")+crlf() \

 +"You did not enter a correct BirthYear"

 Icon = MB_ERROR

 endif

 ErrMsg(msg,"RobotBASIC...",MB_OK|Icon)

wend

Program 6: Another advance over Program 3 by using GUI components. Also the program

is shown, as it would appear in the RobotBASIC IDE, with syntax highlighting.

Figure 3: What Program 6 looks like when running.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 9 of 20

2.4- Various Levels Of Program Structuring

Another way RB facilitates progressive advancement is with program modularity. While students are

still at the initial stages, program formatting is not relevant or meaningful. Consider Pseudo Code 1.

There is nothing in it that pertains to program structuring. At this stage it is an altogether non-germane

concept. Thus, when students are shown Program 2 (C++ code) they would be quite confused as to all the

extraneous code that does not have any correlation to the pseudo code.

RobotBASIC allows for a free flowing program structure that enables the creation of code such as in

Program 1. Notice how there is no requirement whatsoever to create any type of modularity that would

have only served to puzzle the student.

This freedom is helpful in many situations. Consider for example the code in Program 4. Programming is

about achieving a task quickly and efficiently. With RB you can do so without any imposed requirements

and restrictions that do not pertain to the issues of algorithmic development.

Nevertheless, program structuring and modularity become necessary as projects grow in complexity. As

with user interfacing RB provides various levels of sophistication to serve programmers at any stage of

progression. Initially students learn to create lines of code to achieve a single task. Later, they should be

introduced to the concept of modular programming. It is a lot easier to do so with RB than with other

languages.

The GoSub statement combined with Labels provides an intermediate level for achieving modularity that

is easy to understand and does not entail hard to explain (initially) side effects. With GoSub subroutines

students do not have to contend with the concept of Local and Global variables. They can create code

just as they have been doing all along and then surround it with a Label and a Return statement (easy to

comprehend). Then they use these modules by calling them with the succinct GoSub statement.

Notice how the complication of local scoping is dispensed with at this particular stage. It would only

have introduced a level of complication that would not have any relevance to students. They do not need

to contend with understanding the concepts of by reference and by value parameter passing. All these

nuances are not something that would initially be relevant.

One of the most important aspects of education is to enable students to correlate their knowledge.

Correlation of newly introduced concepts to previously acquired knowledge helps cement the new

information and due to its relevance it is easier for students to appreciate the reasons for the new levels of

sophistication.

When students start creating more complicated programs and experience the issues and complications of

having only global variable scoping they would quickly and intuitively grasp the power that Call/Sub

subroutines provide. Explaining the concepts involved would be extremely easy since by then they would

have a reason and a case study that comes from their own experience rather than from a contrived

meaningless dry example in a classroom session.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 10 of 20

Therefore, again, RobotBASIC provides student with the flexibility to enable growth in sophistication in

surmountable steps while at every stage only concepts significant to achieving the tasks at the current

level are required.

2.5- Examples Of Progressive Program Structuring

Lets consider how progressive program structuring can be applied in practice. Consider the following

Pseudo code to teach students how to swap the values of two variables.

Assign 10 to A and 40 to B

Store value of A in a temporary variable

Put value of B in A then the value in the temporary variable into B

Print A then B

Pseudo code 2: Swapping two variables.

Here is the RB program that implements Pseudo Code 2.

A = 10 \ B = 40

Temp = A \ A = B \ B = Temp

Print A;B

Program 7: Swapping two variables.

Notice how RB’s free structure enables a simple and quick implementation and allows it to be almost a

1-to-1 correlation. Notice how the student can concentrate on the algorithm rather than on distracting

nuances that serve no purpose while in the process of trying out the algorithmic logic.

Later modularity is introduced in a simple and easy step. Students will have no difficulty in appreciating

the relationship between Programs 8 and 7. Also they can easily grasp the concept of modularity and the

need for it without having to contend with additional concepts before they are required.

Main:

 A = 10 \ B = 40 \ GoSub SwapAndPrint

 A = 20 \ B = "test" \ GoSub SwapAndPrint

 A = 4 \ B = 7.5 \ GoSub SwapAndPrint

End

//----------------------------

SwapAndPrint:

 Temp = A \ A = B \ B = Temp

 Print A;B

Return

Program 8: Swapping two variables using GoSub subroutines.

For many projects using GoSub subroutines would suffice. Nevertheless, students would soon run into

the limitations of global variable clashing and having to assign variables before the call is made to the

subroutine. Learning how to overcome these limitations is in itself a valuable knowledge that many

computing courses fail to teach. This is why many programmers nowadays are not able to program in

Assembly (see later for more about this).

Teaching Beginner And Advanced Programming With RobotBASIC

Page 11 of 20

At this point students would have a practical appreciation for the power and convenience of Call/Sub

subroutines. They would quickly and naturally grasp the concepts of local scoping and by value

parameter passing since they have experienced the need for them through practice in real situations.

So when the students see the code in Program 9 a teacher would have very little difficulty explaining the

related concepts.

Main:

 Call SwapAndPrint(10, 40) //notice two integers

 Call SwapAndPrint(20, "test") //string and integer

 Call SwapAndPrint(4, 7.5) //integer and float

End

//----------------------------

Sub SwapAndPrint(A,B)

 Temp = A \ A = B \ B = Temp

 Print A;B

Return

Program 9: Swapping two variables using Call/Sub subroutines.

Program 9 demonstrates yet another instance of RB’s power and flexibility. The way RB handles

variables allows for the subroutine to work with the parameters being of any type and even of different

types. In any other language you would have quite a difficult time writing a program that carries out

the actions of Program 9.

Parameter passing by reference is another concept that is best explained when a real practical need for it

arises. Here is the swapping routine implemented with by reference parameter passing just to show how

it is done in RB.

Main:

 A = 10 \ B = "test"

 Call SwapThem(A, B) \ Print A;B

End

//----------------------------

Sub SwapThem(&VarA,&VarB)

 Temp = VarA \ VarA = VarB \ VarB = Temp

Return

Program 10: By Reference Parameters in Call/Sub subroutines.

Programs 7 to 10 have all been artificial (yet educational) exercises. In RobotBASIC there is

absolutely no need to write a subroutine to swap variables, since there is a command that would do it for

you painlessly.

A = 10 \ B = "test"

Swap A,B \ Print A;B

Program 11: Swapping two variables using RB’s Swap command.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 12 of 20

3- Learning With RobotBASIC Is More Enjoyable:

As you have seen in the previous sections, RB has many advantages for teaching programming in the

traditional way using normal examples. However, RB also has another advantage that should be a

compelling incentive for using RB.

In most languages doing anything with graphics or simulations is not possible at the initial learning stages

due to the complexity required to achieve them. Thus, a student is obliged to try out boring, dry, and in

many ways contrived code examples illustrating the concepts being learned.

Traditionally, when teaching Looping, a teacher is restricted to doing things such as printing out numbers

or using simple text input and output. Imagine how much more entertaining, visually exciting and

practical it would be to teach looping using a Simulated Robot, or an Animated Graphic.

Which do you think is a more exciting example for using a While-Loop, Program 12 or Program 13?

Moreover, consider which is more complicated?

x = 0

while x < 20

 x++ \ print x

Wend

Program 12: Traditional Looping

Example

rLocate 400,300

while !RBumper()

 rForward 1

wend

Program 13: Looping Example

Using RB’s inbuilt Robot Simulator

Since RB has an inbuilt robot simulator, you can make use of this motivational and enjoyable tool to

make teaching looping and other programming constructs much more relevant and meaningful than with

the dry and contrived traditional method of printing out number sequences.

Creating animated graphics with RB is amazingly simple that using it at the initial learning stages is very

viable besides introducing a level of visual stimulation that serves to grip the students’ attention and to

raise their level of interest in the subject being taught.

Flip on \ Linewidth 5

for i=10 to 500

 CircleWH i,i,50,50,red

 flip \ clearscr

next

Program 14: Looping Using Graphics and Animation.

Program 14 uses RB’s powerful, yet simple to use, commands to animate a circle on the screen while

teaching the principles of For-Loops. Since using the graphical commands in RB does not in any way

impose additional complexity, it is possible to use them to make a For-Loop more exciting but even

further, more relevant.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 13 of 20

4- Attainable Advanced Programming:

RobotBASIC is replete with commands and functions that make it possible to accomplish projects that

would be quite difficult for an average programmer to achieve with most languages. With few lines of code

a novice programmer can create projects that would be extremely difficult to do with other languages even

for an accomplished programmer. With most of these facilities the commands are as easy to use as Print

and Input, but yet provide computing power that would require months and hundred of lines of code to

achieve otherwise, not to mention the necessary advanced skills.

4.1- Multimedia

With RB you can play video and audio clips in numerous formats (mp3, wav, midi, avi, mpeg, wmv and

much more) with programmatic control over the playback. You can also record audio. Additionally, for

the purposes of gaming, you can play multiple audio sounds simultaneously. Watch this video to see

RB’s multimedia in action.

4.2- Bitmap and Graphics Animation

With a comprehensive Bitmap and Screen manipulation set of commands you can create professional

looking games and simulations. Some of the bitmap commands allow you to manipulate images in ways

that would require highly advanced programming skills. Try out some of the games on this web page.

Also watch this video for an online tutorial on how to do animation with RB.

Figure 4: Sample Games

http://www.youtube.com/watch?v=mCHS7-WligU
http://www.robotbasic.org/11.html
http://www.youtube.com/watch?v=EULYbnAxJu0

Teaching Beginner And Advanced Programming With RobotBASIC

Page 14 of 20

4.3- Robot Simulator

The inbuilt Robot Simulator allows for experimenting with numerous robotic projects. With

instrumentation such as line sensors, infrared sensors, bumpers, GPS, compass and much more you can

simulate projects that would cost thousands if they were to be attempted with a real physical robot, not to

mention the frustration caused by damages due to lack of experience while learning.

See this online tutorial for how to use the robot simulator. Also, there are two books that teach how to

use the robot simulator in RB, Robot Programmers Bonanza, and Robots In The Classroom. Also

RobotBASIC Projects For Beginners is a very good book for young students and novices.

Additionally watch this video to see the robot simulator in action. See this one for a more general

discussion on the simulator. This impressive video will be of interest as well.

4.4- TWAIN Device Capture

With RB you can interface with Cameras, Scanners, Web Cams and much more, to acquire images that

later can be manipulated to do things such as color recognition, object detection, movement detection and

much more. Watch this video for an example project that utilizes a Web Cam to make a puppet appear to

be alive.

4.5- Hardware Interfacing

RB makes it extremely simple to achieve projects that involve interfacing a PC with external electronics

hardware to design control projects. With Parallel port, Serial Port and USB port commands you can

communicate with Microcontrollers, Digital I/O controllers, Servo Motor Controllers, Serial devices, and

much more. You can also use Bluetooth and Zigbee wireless devices to create remote control projects.

See this PDF document for more details (also this and this). Also watch this video to see how RB can be

used to control a Space Station Model.

Figure 5: Sample Hardware Control Project

http://www.youtube.com/watch?v=27Gt3IgdcMc
http://www.robotbasic.org/3.html
http://www.robotbasic.org/10.html
http://www.robotbasic.org/10.html
http://www.youtube.com/watch?v=i5JT4WdMofQ
http://www.youtube.com/watch?v=0wL4mGo17bM
http://www.youtube.com/watch?v=0wL4mGo17bM
http://www.youtube.com/watch?v=Q94WKdn3uF8
http://www.youtube.com/watch?v=LwvspYFXJMM
http://www.youtube.com/watch?v=LwvspYFXJMM
http://www.robotbasic.org/resources/RobotBASIC_Serial_IO.pdf
http://www.robotbasic.org/resources/RobotBASIC_To_PropellerChip_Comms.pdf
http://www.robotbasic.org/resources/RobotBASIC_USBmicro_U4x1.pdf
http://www.youtube.com/watch?v=oxqlTaJy31M

Teaching Beginner And Advanced Programming With RobotBASIC

Page 15 of 20

4.6- Internet

Imagine what it would take to write programs that can communicate over the LAN, WAN or the Internet

using the SMTP, TCP or UDP protocols. With RB’s functions you can do so just as easily as sending

bytes over a serial connection. See this PDF document for more details.

4.7- Matrices

Matrix creation and utilization in RB is most powerful. You can do matrix operations such as inversion,

determinant calculation, sorting, and much more. You can read a bitmap or text file into a matrix. With

one command you can save an entire matrix to a disk file and read it back and much more. See the

RobotBASIC help file for the myriad of operations you can carry out with matrices. Also see Program 15

for code using matrices.

4.8- 3D Graphics

The Three Dimensional Graphics Engine in RB is simple to learn and use with sufficient power to create

impressive 3D-graphics projects. See this video for some examples. Also try playing with this Rubik’s

Cube program from our site. Additionally, examine Program 15 below.

Figure 6: An example of what can be achieved with RB’s 3D-Graphics Engine.

http://www.robotbasic.org/resources/RobotBASIC_Networking.pdf
http://www.robotbasic.org/resources/RobotBASIC_HelpFile.pdf
http://www.youtube.com/watch?v=VCZTkabhfyQ
http://www.robotbasic.org/resources/Rubiks_Cube.Exe
http://www.robotbasic.org/resources/Rubiks_Cube.Exe

Teaching Beginner And Advanced Programming With RobotBASIC

Page 16 of 20

Program 15 is an illustration of the power and simplicity of the RobotBASIC 3D-Graphics engine

combined with the Matrix functionality. It creates a 3D-Graphics Animation. Notice the Matrix

operations and consider the code size. See the output screen in Figure 7.

data Eye;120,pi(.25),pi(.35),1550,400,300 //rho,theta,phi,d,Cx,Cy

x = 20 \ data points;0,0,0,0,0, x,0,0,0,0, 0,x,0,0,0, 0,0,x,0,0

x = 15 \ data points;x,0,0,0,0, 0,x,0,0,0, x,x,0,0,0, x,x,x,0,0

dim Points[10,5] \ mCopy points,Points //make an array of vertices

flip on

while true

 ge3dto2da Points,Eye //calculated screen coordinates

 for i=1 to 3

 line Points[0,3],Points[0,4],Points[i,3],Points[i,4],2,0

 line Points[6,3],Points[6,4],Points[3+i,3],Points[3+i,4],1,red

 if i<3

 line Points[0,3],Points[0,4],Points[5+i,3],\

 Points[5+i,4],i,Blue+i

 endif

 next

 line Points[7,3],Points[7,4],Points[6,3],Points[6,4],1,green

 flip \ ClearScr \ Eye[1] = Eye[1]+.01

wend

Program 15: Matrices and 3D-Graphics Animation Program.

Figure 7: Screen output from Program 15. This is a snapshot; the program is an animation.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 17 of 20

5- Going Further:

- Since RobotBASIC is also a compiler, a programmer can create fully standalone executable programs

that require no installation and can run without requiring the RB IDE. This allows you to distribute

programs to clients and end users with a minimum of hassle.

- The #Include facility allows you to create libraries of subroutines to be used by other programmers. This

allows a teacher to create code for a classroom as an #Include library and the students would be able to

use it with minimal fuss. Additionally for the professional these libraries can even be saved as binary

files to help hide the code. Once compiled as part of a program the resultant executable will not require

the library any longer since it would be “included” in the main program.

- RobotBASIC has an extensive set of functions and commands to do File and Directory manipulation.

Along with the Low Level File I/O functions, you can do all sorts of data saving and manipulation. This

Low Level File I/O can be Direct or Sequential Access and ASCII or Binary.

- There are numerous commands and functions for manipulating the Clipboard to export and import data to

and from other programs. The data can be text or bitmap images.

- You can use the Spawn command to have RB run other programs. For example with one line of code you

can write a program that starts Internet Explorer and goes to a particular URL. Try this program.

spawn("C:\Program Files\Internet Explorer\iexplore.exe", "www.robotbasic.com",p_nowait)

- RobotBASIC’s syntax is quite malleable. You can use C++ style syntax instead of a normal BASIC

syntax.

 C++ style Standard BASIC style
if((a != b)&&(c == t)) or you can say if a <> b AND c = t

V++ V = V + 1

X += y X = X+ y

The C++ style can be helpful when students start transitioning to C++ or Java later in their careers.

- There are commands and function in RB that manipulate variables with indirection. This helps introduce

students to pointer-like manipulation of variables, in addition to being helpful in doing actions that

require some level of variable indirection. See vType(),varType(), varValue(), VarsList() and VarSet.

- In RB, handling input from users with the GUI components (e.g. Push Buttons, Check Boxes) can be

done without having to use Event Driven programming. However, the event driven model of

programming can provide power and abilities that are hard to achieve with the normal procedural model.

RB can also be programmed using the event driven model. With the On[control] statements (e.g.

OnButton or OnEdit) you can have RB jump to (and later return from) a designated handler subroutine

(either Call/Sub or GoSub ones) every time there is a push of button or a change in the text in an edit

box and so forth.

Teaching Beginner And Advanced Programming With RobotBASIC

Page 18 of 20

Other languages provide only the event driven model for handling GUI components. Since RB

provides the ability to process GUI components with both the normal procedural and the event driven

models, using GUI components can be introduced to and used by programmers at various levels of

experience.

In Program 16, notice how the Main module sits in an empty loop doing nothing. This is because all the

action is accomplished with the Event Handlers that are invoked when an action is taken with the GUI

components.

Main:

 GoSub Initialization

 while true

 //do nothing just wait for events to be handled

 wend

end

//~~~

Initialization:

 AddEdit "Edit1",60,10,80,0 \ AddCheckBox "Check1",170,10

 AddSlider "Slider1",280,10,200 \

 OnEdit eHandler \ OnCheckBox cHandler \ OnSlider sHandler

 OnAbort aHandler \ OnKey kHandler

Return

//~~~

Sub kHandler() //this is a Sub subrotuine with local variable scoping

 n = LastKey()

 if n == kc_Esc then gosub aHandler

 OnKey kHandler

Return

//~~~

Sub eHandler()

 n = lastedit()

 xystring 10,230,n,":",getedit(n),spaces(50)

 onedit eHandler

return

//~~~

cHandler:

 n = lastcheckbox()

 xystring 10,320,n,"=",getcheckbox(n);getcheckboxcaption(n)\

 ,spaces(50)

 oncheckbox cHandler

return

//~~~

Program 16: Event Handling Programming Style (continued).

Teaching Beginner And Advanced Programming With RobotBASIC

Page 19 of 20

sHandler:

 n = lastslider()

 xystring 10,350,n,"=",getsliderpos(n),spaces(50)

 onslider sHandler

return

//~~~

aHandler:

 an=ErrMsg("Do you want to abort?","Test",MB_YESNO|MB_QUESTION)

 if an==MB_YES then Exit

 onAbort aHandler

Return

Program 16 (continued): Event Handling Programming Style.

6- Wealth Of Resources On The RobotBASIC Web Site:

Visit www.RobotBASIC.Com for numerous resources that will help in learning and teaching RB. There

are six Lesson Plans (with online videos) ready to be used by an instructor. There are links to videos, links

to books about RB and many PDF documents (white papers).

In addition to the files needed to run RobotBASIC, the download Zip File has numerous demo programs,

games and utilities that you will find extremely useful.

Make sure to browse the many pages on the site and read the sample chapters (also this and this) of the

three books that you can use to help teach programming in general and robotics in particular.

7- RobotBASIC As An Assembly Language Trainer:

Using the native machine level language (Assembly) to program microcontrollers and microprocessors is

the most effective way of creating the smallest, most efficient and fastest programs for a particular device.

However, most programmers nowadays experience difficulty programming in Assembly languages. This is

quite fascinating, since in many ways assembly programming should in fact be simpler than using higher-

level languages. This dilemma is a puzzling phenomenon, until you consider the reasons.

When you consider what higher-level languages do for the programmer you begin to understand the

reasons behind the abovementioned dilemma. Variable scoping, subroutine parameter stacking, loop

stacking, and so forth are all constructs that eventually have to be implemented in Assembly languages.

However, since higher-level programmers never have to contend with that level of detail they have become

too isolated from the entailed nuances.

Many programmers have become lazy due to the conveniences that higher-level languages provide. Of

course, for the purposes of most projects, the higher-level languages provide a more efficient tool.

Nonetheless, they have served to atrophied the programming skills necessary for programming at the

machine level.

http://www.robotbasic.com/
http://www.robotbasic.org/resources/RB_LessonPlan_01.doc
http://www.youtube.com/watch?v=xLWNuBUq8Us
http://www.robotbasic.org/2.html
http://www.robotbasic.org/resources/SampleChapters.pdf
http://www.robotbasic.org/resources/Table+Of+Contents+Beginners.pdf
http://www.robotbasic.org/resources/Table+Of+Contents+Classroom.pdf

Teaching Beginner And Advanced Programming With RobotBASIC

Page 20 of 20

Programming structures such as For, While etc. are all beautiful and convenient as well as intuitive

constructs that help programming be closer to using natural languages. However, they are not available at

the machine level. Assembly language programming is limited to simple conditional checks with Jumps

(JNE, JZ etc.). There is no such thing as local and global scoping of variables, there are only memory

locations. There is no such thing as subroutines with parameter passing, there is only calling a memory

location with a return (some assemblers don’t even provide that).

In reality Assembly language programming is nothing but a series of simple comparisons with a JMP and a

Call/Ret construct. That is it. Some assemblers go a little further and allow for named memory locations,

which helps in making programs a little less cryptic and more tolerant to changes.

Therefore, when you consider all these limitations from which the higher-level language programmer is

shielded, you can easily understand the difficulty they experience when they have to program at the

Assembly level. Even if they were able to understand the concepts with which they’ve never had to

contend, they would still find it hindering to have to do themselves what the compiler has been doing for

them all this time.

Many, resort to using higher-level languages to program microcontrollers because they are incapable of

making the mental adjustment. Unfortunately, this means that they will never be able to create programs

for these devices at the most efficient and fastest possible level.

Furthermore, teaching assembly programming can be quite difficult. Operating systems for PCs nowadays

do not even allow it. Additionally, using a microcontroller with all the required connections and so forth

(as well as the costs) can be quite discouraging.

RobotBASIC has a solution. Why not use RB as an Assembler-Simulator. With RB it is still possible to

program with Goto (JMP) and simple If-Then-Goto statements (JNZ, JGE). Also the GoSub statement and

Labels are akin to the assembly Call/Ret constructs.

Therefore, if you limit students to using these constructs, you can utilize RB as if it were an assembly

language of sorts. Thus RB can act as a very convenient, simple, painless, and cost free Assembler-

Trainer.

Think about this. RB can be used in a manner that would be a progressive step towards preparing the

student to programming microcontrollers without the frustrations and cost involved.

This is a concept that may elude many people and may even be controversial. However, with a little

consideration and analysis, you will find that in fact using Goto and Gosub with simple If-Then-Goto

constructs is really all that Assembly languages are.

 RobotBASIC allows progressive advancements in surmountable steps from the very simple to the

quite sophisticated. This is a major advantage while teaching programming.

	Teaching Beginner And Advanced Programming With RobotBASIC
	 1- The Beginner Advantage:
	2- Advancement In Surmountable Stages:
	2.1- Free And Strict Variable Typing
	2.2- Various Levels Of User Interfacing Methodologies
	2.3- Examples Of Progressive Sophistication
	2.4- Various Levels Of Program Structuring
	2.5- Examples Of Progressive Program Structuring

	3- Learning With RobotBASIC Is More Enjoyable:
	4- Attainable Advanced Programming:
	4.1- Multimedia
	4.2- Bitmap and Graphics Animation
	4.3- Robot Simulator
	4.4- TWAIN Device Capture
	4.5- Hardware Interfacing
	4.6- Internet
	4.7- Matrices
	4.8- 3D Graphics

	5- Going Further:
	6- Wealth Of Resources On The RobotBASIC Web Site:
	7- RobotBASIC As An Assembly Language Trainer:

