
Volume I: Project 4
1

Robot Projects for RobotBASIC
Volume I: The Fundamentals

Copyright February 2014 by John Blankenship
All rights reserved

 Project 4: The Perimeter Sensors

In Project 1, the robot was moved around using the commands rForward and rTurn.
Unfortunately, if the robot was commanded to move too far, it could run into an object
and cause a collision with the real robot or an error with the simulator. Robots typically
have sensors that allow them to examine the world around them. They might, for
example, use a compass to know what direction they are facing or a ranging sensor to
measure the distance to objects in its path.

Humans have many sensors too. Vision and an extensive sense of touch allow us to
detect and identify objects. Expensive robots can have these abilities too, but don’t
expect most educational robots to sense things as well as a human, although some
expensive research-based robots can outperform humans at selective tasks.
RobotBASIC’s simulated robot, as well as the RB-9, have numerous sensors that allow
them to react to external situations in an appropriate manner. With proper programming,
for example, a RobotBASIC robot can navigate through a cluttered room to find a
doorway – without human intervention. Later projects will explore such situations, but
for now we need to examine the fundamental principles of how sensors can be used to
influence a robot’s behavior.

Perimeter Proximity Sensors
In this project, we will examine perimeter sensors – that is sensors that detect objects
around the perimeter of the robot (around its edges). The simulated robot actually has
two types of perimeter sensors, but in this project, we will only examine the feel sensors.

There are five feel sensors around the front half of the robot as shown in Figure 4.1. The
triangular regions extending from the robot in the figure indicate the areas where objects
can be detected.

Volume I: Project 4
2

Figure 4.1: The robot has five perimeter proximity sensors.

These sensors can be read with the function rFeel(). Functions, in programming, have
a value and we can extract that value and store it in the variable x as shown below.

x = rFeel()

Making Decisions
As we have seen in previous projects we can then use IF statements to test the value of a
variable to determine what action we might want the robot to take. If the value of x is
zero, then no objects are detected. When x is greater than zero, the value can be used to
determine which of the five sensors are triggered. For this project, we are going to keep
things simple and not worry about which sensors are seeing objects. Instead, we will just
react if any of the sensors are triggered. The following code fragment, for example, will
turn the robot around (180 degrees) if it detects an object in front of it (with any of the
proximity sensors).

x = rFeel()
if x>0 then rTurn 180

We can use this principle to control our robot’s movement. Let’s look at a simple
example to demonstrate this point. We can make the simulated robot move forward 50
pixels with the statement:

rForward 50

The problem with the above statement is that the robot will try to move the entire
distance without checking to see if any obstacles are in its way. The following code
fragment will cause the robot to try to move 50 pixels, but if an object is encountered
before the distance has been transversed, the robot will stop.

Volume I: Project 4
3

for n = 1 to 50
 rForward 1
 x = rFeel()
 if x then break
next

If the loop continues till the end, the rForward command will be executed 50 times
(once for each time through the loop). If, however, the sensors detect something, the
IF-THEN structure will execute the break statement which will terminate the loop
early with the program’s execution continuing with the first statement following the
next. It is worth mentioning that you can test the value of a function itself instead of
storing its value in a variable. The fragment below does exactly the same thing as the
previous one. Note: The IF-THEN structure is a simplified version of the IF that will
execute the statement (on the same line) following the THEN only if the IF condition is
true. In computer programming, any non-zero value represents a true condition so we
can just use if rFeel() instead of saying if rFeel()>0, but either version is
acceptable.

for n = 1 to 50
 rForward 1
 if rFeel() then break
next

We can use other types of loops to perform other actions.
Both of the fragments below, for example, will continue to
move the robot forward until it encounters a wall or other
object.

repeat
 rForward 1
until rFeel()>0

while rFeel(0) = 0
 rForward 1
wend

Notice that one of these fragments will keep the robot moving until something is detected
and the other moves the robot while nothing is detected. This may seem like a subtle
difference but having a variety of looping structures often allows the programmer to
organize the code in a more logical manner. If you want to try some of these fragment
examples, do not forget to rLocate the robot at the beginning of your program.

Volume I: Project 4
4

We can use these principles to make the robot roam randomly around the screen and
avoid objects that might cause a collision error. Look at the code in Figure 4.2. Note: the
IF statement will be true if any of the rFeel sensors see an object because rFeel
function will have a non-zero value. This statement would work equally well if you
substituted either of the commented out options

rLocate 400,300
while true
 rForward 1
 if rFeel() then rTurn 180
 // both of the options below will also work
 // one tests for greater than 0, the other not equal to 0
 //if rFeel()>0 then rTurn 180
 //if rFeel()<>0 then rTurn 180
wend

Figure 4.2: This program makes the robot turn away from obstacles it encounters.

If you run the program in Figure 4.2, you might not be very impressed. The robot does
indeed avoid objects, but since it always turns exactly 180 the action is very boring.
You could make the program a little more interesting by making the robot turn only 140.
Modify the program and see which of the two options you like best. You could even
utilize RobotBASIC’s ability to generate a random number and make the robot turn a
random number of degrees. Substituting the statement below, for example, will cause the
robot to turn some random amount between 140 and 220 degrees.

if rFeel() then rTurn (140 + random(80))

We can use commands like Line, Circle and Rectangle to create obstacles on the
screen for the simulated robot to detect and avoid (in addition to the walls). These
objects should be created at the beginning of the program before the robot is initialized.
Modify the program in Figure 4.2 in this way and run it to verify that the robot performs
appropriately. The modified program does give the robot a small amount of intelligence
since it can avoid objects on its own. You will find though, that if you create an
extremely cluttered environment, that the robot might make some mistakes and collide
with an object or wall. In future projects we will examine ways to give the robot more
information by letting it determine which sensors are actually being triggered. This will
allow the robot respond more appropriately to objects within its environment. For
example, if the robot detects an object only on its left, it might make sense to turn to its
right.

A Roaming Real Robot
The program in Figure 4.2 can also be used to control the real robot by modifying it as
shown in Figure 4.3. Notice that a couple of subroutines have been added to make the

Volume I: Project 4
5

program more organized and easier to read. Using subroutines in this manner is not a
requirement, but it is highly recommended.

#include “RB-9.bas”
gosub InitRROScommands

Real = TRUE // set to FALSE to use simulator
PortNum = 5 // set this variable to your Bluetooth Port
Number

if Real
 gosub InitializeRealRobot
else
 gosub InitializeSimulator
endif
gosub Roam
end

InitializeSimulator:
 // draw objects in your room here (add more)
 circle 150,200,300,300,BLACK,BLACK
 rLocate 400,300
return

Roam:
 while true
 rForward 1
 if rFeel()>0 then rTurn 180
 wend
return

Figure 4.3: This version of Figure 4.2 can control either the real or
simulated robot depending on the value of the variable Real.

Technical Information
The perimeter proximity sensors for rFeel() are implemented on the real robot with
ultrasonic waves (sound waves slightly above the human hearing range). Recall that five
ultrasonic sensors are mounted around the front half of the RB-9 robot as discussed in
Project 3 which explained how they can measure the distance to objects.

Sometimes we need a way to quickly check to see if objects are close the robot and we
don’t want to take the time to read all five of the ranging sensors and analyze their values.
The RROS system inside the RB-9 robot constantly gathers the ranging data and

Volume I: Project 4
6

automatically transfers a summary of that information back to RobotBASIC every time
your program tries to move the robot with an rTurn or an rForward statement.
RobotBASIC provides that information to the user with the rFeel() statement, making
it easy to determine when objects are close to the robot. Future projects will explain how
to determine exactly which of the five sensors are seeing an object. In order to keep
things simple for now though, we will just assume that any non-zero value means that at
least one of the sensors has detected an object within range.

Limitations
It is possible for an ultrasonic wave to be absorbed by soft objects (such as a stuffed
animal) or to be reflected away from the robot (instead of back toward it), if the surface
of the object is not perpendicular to the wave’s direction. These situations can sometimes
cause faulty readings. If the robot is constantly monitoring the sensors though, then even
if one reading is faulty the next reading may be fine. This means that a robot will usually
respond properly as long as it moves only small amounts before obtaining new data from
its sensors. Future projects will examine these problems in more detail and offer a
variety of solutions.

Suggestions for Study
Try all the programs in this Project and modify them as you see fit. You might, for
example, try making the robot turn different amounts and explain why you prefer one
over another. If you have a RobotBASIC robot available, test your ideas with it to verify
that it behaves in a similar manner to the simulation.

There is a special form of the rFeel() statement called rDfeel(). The D stands for
debugging, as this command can sometimes help you determine why a program is not
performing as you expect. The operation of the debugging version is very similar to the
original function, but the simulation will draw very faint lines showing you the area being
viewed by each sensor. When you use rDfeel(), you must provide a color like this:

rDfeel(RED)

The sensor lines will be drawn in the specified color, and that color will automatically be
viewed as an Invisible color so that it does not appear to be an obstacle to the robot.
Substitute the new command into your simulator programs and verify that the robot turns
whenever an obstacle comes within range of the sensors. Notice that the robot moves
slower when using the new command as it must perform a lot of calculations to draw the
lines. For that reason, you should generally use rFeel() to read the proximity sensors.
Future projects will explore the use of rDfeel() in more detail.

