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The Project
The field of control is a very challenging engineering discipline that can also be extremely 
satisfying once mastered. The aim of any control mechanism is to manipulate parameters of a 
system so as to achieve a desired state and to resist external disturbances that act to deviate the 
system from this desired state.  Additionally, the mechanism should allow an operator to 
command changes and to reposition the system accordingly in as an efficient manner as possible.

The way a control mechanism achieves the above goals is the objective of the designing 
engineer. The design process can be very mathematical and is normally quite complicated. 
However, the ultimate aim is to determine parameters for the control mechanism that will allow 
it to achieve the desired characteristics of the system response to external changes as well as 
commanded changes. These parameters can sometimes be determined by using trial and error if a 
scale or simulation model is available.

In some situations, no matter how rigorous the design process is, it will still be vital to model the 
system and test the design on the model before building the actual system. The modeling process 
can be one or both of two approaches:

1. Build a scale model of the system
This can be quite an involved engineering process. Considerations have to be made to the 
characteristics of the model and how they relate to the actual system. Any insight gained 
from the model will have to be considered in the light of this relationship.

2. Simulate the system on a computer
Simulating a system using a computer model is not an easy process and may even be a 
more involved engineering project than building a physical model. However, the final 
result can be more versatile and more amenable to modifications and experimentation 
than a physical model. Additionally, in some situations, the computer model can be more 
representative of the physical system than a scale model and can be readily used to train 
operators in the future.

As an illustration of all the above, we are going to design a computer simulation as well as a 
scale model of a Space Station and control them using a control system that will allow us to 
change the orientation (heading) of the station. The system will allow for manual as well as 
automatic control. 

Controlling A Real Space Station
A real Space Station in orbit would have numerous sub-systems. Each sub-system would have an 
independent microcontroller to monitor and command the sub-system’s various mechanisms 
(each of which may need a sub-microcontroller). All the microcontrollers would be networked to 



a master controller that receives information from the various sub-controllers and commands 
them.

The master controller is the point of interface between the Space Station and a control system 
that allows a human operator to command the station. The control system would have a user-
friendly interface that allows the operator to control the station using ergonomic controls and 
displays. The human interface system may be connected to the master controller directly or via a 
wireless link to facilitate controlling the station from an earth command center as well as from 
onboard the station.

The control system receives data from, and sends commands to the master controller. The master 
controller collects the requested data from the various sub-controllers and distributes the 
commands to the intended sub-controllers. This process goes on during the service life of the 
station (see Figure 1).

Figure 1: Control Hierarchy

Controlling the orientation (heading) of the station is not an easy matter. From Newton’s laws we 
know that when a force is applied to a mass the mass will experience acceleration. This 
acceleration will change the velocity of the mass. Once the force is removed the acceleration 
stops and therefore the change in velocity will also stop. However, in space there is no friction 
and whatever velocity the mass has when all forces desisted will remain. Therefore to stop the 
mass (zero velocity) an appropriate force has to be applied to decelerate the mass until it stops. 

Controlling the heading of a Space Station can be achieved using a pair of rockets in opposing 
orientations. One is fired to rotate the station for a certain duration. The other is then fired until 
the station stops. When, for how long, and at what burn-rate to fire the rockets so as to effect a 
particular heading change is the aim of the controller. Another consideration while controlling 
the heading is how to determine what the heading is. This can be done using a pair of stars, or a 
signal from earth, or even from other artificial satellites. 

The Scale Model Station
We are going to build a scale model of the Space Station and control it the way we would the 
real station. We will model the space station with a thin disk and fans (see Figure 2). However 
there are three major problems to consider:

1. Zero Gravity



No matter what we might be able to do down here on the surface of earth, we would not 
be able to effectively simulate zero gravity (at least for an effective period). Therefore we 
will need to support the disc in some manner to simulate a free-floating station.

2. Friction Free Movement
The rotation of the real station in space is frictionless. Since the model is supported by 
some mechanism, it will not be frictionless.

3. The Propulsion Mechanism
Obviously for our limited resources we will not be able to model a rocket system. To 
achieve propulsion on the model we will use electrical fans. Also since the model is not 
in a vacuum there will be an effect on the station due to air resistance.

Figure 2: Scale Model. Notice the fans on the left and right.

The Computer Simulated Station
In addition to the scale model, we are also going to design a computer simulation model of the 
station. The simulation will use mathematical formulas to calculate the force, acceleration and 
rotational speed of the station as well as the heading. The mathematical model will be used to 
calculate the response of the station in reaction to commanded rocket firings.

To simulate a real space station we will need the properties of the real station as parameters for 
the mathematical model. However, since we are going to use the control system to control the 
scale model as well as the simulated model, it would be nice if we had the simulated model’s 
parameters be the properties of the scale model rather than an actual full station. This way we 
can have some comparison between the two systems.

The Control System
The control system will interface with a human operator to receive commands as to what the 
desired heading is and will display information back that will indicate the pertinent parameters of 
the system.

The control system will constitute three sections:
1. User Interface



This will allow the user to specify various parameters and will display the current status 
of other parameters of the station. Some of the parameters may not be relevant in the case 
of controlling the scale model. The operator will be able to command heading changes as 
gradual or quantum steps.

2. Manual Control
This will allow the user to control the firing of the rockets to move the station manually. 
The operator is responsible for controlling the station’s heading. 

3. Automatic Control
This will control the firing of the rockets automatically to reposition the station to the 
commanded heading. 

The control system will be used to control the simulated as well as the scale model.  Thus there 
are four modes of operation:

1- Manually Controlling the scale model.
2- Manually Controlling the simulated (mathematical) model.
3- Automatically Controlling the scale model.
4- Automatically Controlling the simulated (mathematical) model.

Switching between the four options will be achieved by a user-friendly interface.

Figure 3: Control System (You can also see the elements of the simulated system)

Automatic Control
To automatically control the station (scale or simulated model) we will use a negative feed back 
control mechanism along with a PID (proportional, integral, differential) controller (see Figure 
4). 

In the case of this project the parameter under control is the heading of the station. Negative 
feedback will generate an error amount that is the difference between the desired heading and the 
actual heading. With the error value as an input, the PID controller will generate a firing rate for 



the rockets. A negative rate will produce counter-clockwise rotations and a positive rate will 
cause clock-wise rotations. The rate will control the fuel burn rate in the rockets (speed of the 
fans).

Figure 4: Negative Feed Back System.

PID means that the error amount will be considered in three ways:
1- The amount of error (Proportional).

The firing rate will be in proportion to the error amount. The further the current 
heading from the desired value, the higher the firing rate.

2- The accumulated error so far (Integral).
The firing rate will be in relation to the accumulation of the errors so far. The sum of 
the errors so far will affect the firing rate. The more the errors persist the more the 
rate of firing. In other words the firing rate depends on the history of the errors as 
well as their amount.

3- The rate of change of the error (Differential).
The rate of change of the error will affect the firing rate. In other words the rate of 
firing will depend on the speed with witch the station is approaching the desired 
value.

Measuring the error is a straightforward process. However, measuring the rate of change of the 
error and the accumulated sum of the errors is not so simple. Before the advent of fast and 
capable computers, a PID controller was achieved using Operational Amplifiers (Op-Amps) that 
where configured to create Amplifiers, Integrators and Differentiators. These functioned quite 
nicely and as long as there were appropriate transducers that could translate physical 
characteristics into voltage levels and actuators that could translate voltage levels into forces, 
these analog controllers were very effective and capable.

With the advent of fast and capable computers, microcontrollers, and dedicated digital systems, 
the field of Digital Control became a viable alternative to the analog systems. At first digital 
controllers were designed as a direct replacement for the analog systems, but soon the field of 
digital control took on a character all of its own. Now with digital control using computers we 
can implement more effective methods such as Adaptive Control, Fuzzy Control, and other 
sophisticated systems like neural networks.

The field of control dates back to the 19th century (not counting DaVinci and Archamedes). 
Mechanical control systems like the steam engine fly wheel where replaced with electrical 
(analog) systems in the 20th century. In the late 20th century digital control systems almost totally 
replaced analog systems. The body of knowledge developed by engineers for designing the 
mechanical and electrical systems is still fully relevant and indispensable for designing the 
digital systems. Engineers used techniques developed by mathematicians and engineers like 



Nyquist, Laplace, Fourier, Bode and many more to devise mathematical and graphical methods 
for analyzing a system to determine the parameters of the controller systems.

Considerations for things like the settling time, maximum overshoot, steady state error, 
dampening factor, and many more were the parameters that indicated and dictated the quality of 
the resulting systems. Engineers deployed methods like Zero-Pole plots, Bode plots, and many 
more graphical shortcuts to be able to solve the complicated differential equations that resulted 
from the mathematical analysis of the physics of the system. 

The final outcome of all the analysis is to determine the three parameters that affect the PID 
controller’s output. The three factors are Kp, Ki, Kd. These factors determine how the PID 
controller will make the system behave. Will the system will achieve the desired final value 
quickly or slowly. Will it oscillate then settle, continue oscillating at a constant level or will it be 
unstable and oscillate increasingly until it destroys itself. 

The time it takes and the way the system reaches the desired state is of importance as well as 
how it responds to external disturbances that may cause it to deviate from the desired state after 
it has settled. In the case of a space station, characteristics like the power available from the 
rockets, the number of rockets, the radius of the station, the mass distribution (shape) of the 
station, the maximum allowable g-forces, the maximum allowable error, and the allowable 
amount of oscillations are all factors that will affect how the system will respond and how we 
desire it to respond.

For digital control systems the rate of sampling of the system is of paramount importance. If our 
digital controller samples the heading values of the system slower than the rate of change of the 
heading then the controller will give erroneous values that can be misleading. This is called the 
Nyquist criterion. Simply stated, this criterion limits the minimum sampling rate the controller 
must have in relation to the maximum harmonic of the system.

In a digital controller we do not have a continuous measurement of the parameter we wish to 
measure. Rather we use an Analog to Digital Converter (ADC) that converts the level of the 
parameter to a digital value. ADCs are not able to follow the continuous variation of the value 
under measurement. Rather, they take a snap shot of the value at a regular rate called the 
sampling rate. From these regular snap shot values, you can approximate the analog values using 
various mathematical tools. The details are not of importance here. All that matters is to know 
the sampling rate. 

Imagine that the heading error is oscillating at such a rate that every 0.1 seconds the error is zero, 
but it is oscillating between two values above and below zero. If our controller sampled the error 
level every 0.1 seconds then it will always sample an error of zero and will think that the desired 
value has been reached and thus will react incorrectly. If the sampling rate was, say, every 0.01 
seconds then the controller will be able to catch intermediate error levels and thus react 
accordingly. 

The Nyquist criterion simply states that the minimum sampling rate must be no less than twice 
the frequency of the maximum harmonic of the system under consideration. So if there are 



changes in the value to be sampled that occur at the rate of 100 changes per second, then our 
controller must sample the value at a rate no less than 200 times per second (the more the better).

          
Figure 5a      Figure 5b

  
Figure 5c Figure 5d

    
Figure 5e Figure 5f

The plot in Figure 5a shows the heading of the station along a time scale after a heading change 
has been commanded. This type of plot is called the Step Response. You will notice that the 
system is quite good in arriving at the desired heading. It gets there quickly but overshoots a little 
before settling down to the desired value. This type of response may be unacceptable if 
overshooting is unacceptable. Also the amount of overshoot has to be considered. Another 
consideration is that even though the station responded very quickly, the accelerations that 
resulted (i.e. g-forces) were too large and the occupants of the station (humans and equipment) 
were subjected to intolerable g-forces.

Figure 5b shows another possible response. In this situation the station oscillates a little around 
the desired value with decreasing amplitude. This response is rarely acceptable.

Figure 5c is similar to Figure 5b except the oscillations never die out the oscillation will remain 
forever. Unless your aim is to create a joy ride in space this response would be unacceptable.  
Figure 5d is an example of an unstable system where the station will eventually be in deep 
trouble. 

Figure 5e shows a system that may be acceptable in certain situations, but is usually not the most 
desired response due to the long time it takes the system to eventually arrive at the desired 
setting. Figure 5f is usually the profile of the most ideal response. The response time is adequate 



and not too fast for physical comfort. Also there is no overshoot with the resulting sudden 
changes in headings.

Figures 5a to 5f were derived using the simulation. Had we not had the computer simulation it 
would have been hard to deduce the response profiles from the differential equations that 
describe the physics of the system. That is why traditional control systems design involved many 
graphical approximations and transformations like the Laplace and Fourier transforms along with 
Pole-Zero analysis and various other tricks of the trade to enable visualization of the responses 
you see in the figures. We are lucky to have the computational power that enables us to solve the 
differential equations using numerical analysis methods to be able to get a visual plot of the step 
response of the system.

Another advantage in using the computer to solve the formulas is that a solution for the best-
behaved system can be arrived at using trial and error in place of comprehensive analysis. Of 
course to be able to intuit a good trial and error guess you need experience in how the various 
parameters affect the results. Nevertheless, it is definitely easier for a less mathematically 
capable person to arrive at a solution. Additionally, due to the ease of changing parameters, you 
can experiment with many what-if situations and gain a lot of experience and insight that would 
be difficult to gain from the traditional (and cumbersome) analysis methods.

Next Month
Next month we will go into the details of how to implement the simulated station using 
mathematical formulas. Also we will show how to build a scale model with a master controller 
and control it using the same program that controlled the simulated model.



Digital PID Control Of A Space Station
Simulated and Scale Model

Part II
By John Blankenship And Samuel Mishal

Last month we analyzed the requirements for building a computer simulation as well as a scale 
model of a space station attitude control system. This month we are going to implement the 
project. The project consists of four parts. The Control Center PC based program, the Master 
Controller program, the Quadrature Encoder program and associated electronics, and finally the 
Motor Controller and its associated electronics. Additionally there is the building of the scale 
model’s mechanical system.

Implementing The Control System
The Control Center system will be written for an MS Windows based PC using a language called 
RobotBASIC that can be downloaded for free from www.RobotBASIC.com. The language is 
easy to use while having powerful graphical, mathematical, user interface, and serial 
communications tools that will be necessary for the successful completion of this project with 
ease.

The program will have the following tasks to achieve:
Allow the user to specify whether Automatic or Manual control is desired.
Allow the user to specify whether the control is to apply to the Scale Model or the Simulation 

Model
Allow the user to define the physical characteristics of the space station to be used for the 

mathematical simulation model.
Allow the user to specify the values for the PID controller as well as the sampling rate for use 

during automatic control.
Allow the user to specify the desired heading and to command step changes or gradual 

changes during automatic control.
Allow the user a means to commanding the firing rate of the rockets during manual control.
Display to the user the current values of the Heading, Rotational Speed, Rotational 

Acceleration, Firing Rate and other pertinent data that indicate the instantaneous state of the 
station.

Display a Graph of the system response along a time scale.
Generate a real-time animation of the system.
Manage the communications between the control system and the master controller on the 

scale model during control of the scale model.

The user interface is shown in Figure 3. All the elements detailed above are clearly visible. The 
program is listed in Figure 7 below.  The listing is not a complete one due to space. A full listing 
is available for download from www.RobotBASIC.com.  The listing in Figure 7 shows some of 
the control related subroutines. 



The subroutine CalcResponse is used during the automatic and manual control of the simulated 
model. It calculates the acceleration and speed from the burn rate (see below) then calculates the 
heading change. 

The CalcStationResponse subroutine is used during the automatic and manual control of the scale 
model it sends the burn rate to the master controller on the scale model and then receives a 
number that enables calculation of the heading (see later). Then it calculates the speed and 
acceleration from the heading change. 

To model the space station using a mathematical model, the following formulas are used:
■ Burn Rate (Kg/s)  x VCOF  (m/s) = Applied Force (Kgm/s2  or N)

- Burn Rate is the rate of fuel flow through the rockets.
- VCOF is a factor that gives a measure of the Velocity gained from burning one Kg of 

fuel per second. In other words this is an energy factor for the fuel.
- Multiplying these values gives the value of the force exerted by the rocket.

■ Force Applied (N) x Radius (m) = Torque (Nm)

■ Torque (Nm) ÷ J (Kgm2)  = Alpha (radians/s2)  (α = Rotational Acceleration)
    J is the rotational inertia. It depends on the shape and mass distribution of the 
    Station. If the station is a disc with mass M (kg) and radius R (m) then J = ½MR2

■ ∫α  = Omega (radians/s) (ω = Rotational speed)

■ ∫ω = Theta (radians)  (θ = Heading)

Thus to find out the current heading due to the commanded burn rate the block diagram in Figure 
6 will substitute the block for the Space Station in Figure 4 (last month). The block 1/S 
represents the Laplace transform of an integrator.

Figure 6: Substitute Block For the Simulation Model Of The Station.

To implement an integrator using digital systems we will use the formula:

Current Output = Previous Output + (Current Input + Previous Input) x T ÷ 2
Or 

Y = YZ1 + (X + XZ1) x T ÷ 2
Or 

Y = Y x Z-1 + (X + X x Z-1) x T ÷ 2

T is the sampling period (seconds). Basically this is the trapezoid rule for numerical integration. 
In the program listing you will notice that instead of saying current input and previous input we 
say Input and InputZ1. InputZ1 stands for Input x Z-1 which is the Z-Transform method of saying 
previous input. InputZ2 means Input x Z-2 which means the previous-previous input value. The 
Z-transform is the digital method of analyzing systems and is related to the Laplace-transform. 
Both transforms are mathematical tools to facilitate solving differential (difference) equation. 



The solutions will result in plots like the ones in Figure 5. These plots make it easy to visualize 
how the system will respond to commanded or disturbance changes.

Since this is a digital discrete system, inputs and outputs occur at discrete time intervals T 
seconds apart. The previous input is the input that occurred T seconds ago. Previous-Previous 
input is the input that occurred 2T seconds ago. These values are initialized at zero and are stored 
in variable in the program as time moves forward.

The program will use digital PID controller. The formula for the PID controller is:

PID_output = PID_output x Z-1+A0 x error+A1 x PID_error x Z-1+A2 x PID_error x Z-2

Where
A0 = Kp+(T x Ki ÷ 2)+(Kd ÷ T)  ,      A1 = -Kp+(T x Ki ÷ 2) – (2 x Kd ÷ T)  ,   A2 = Kd ÷T

For manual control, the PID block will be replaced with the burn rate value as commanded by 
the operator.

During the control (automatic or manual) of the scale model station the values for ω and α are 
calculated by numerically differentiating the change in θ once and twice. The formula for 
numerical differentiation is:

Output = (Input - Input x Z-1) ÷T   OR  Output = (Current Input – Previous Input) ÷ T

  Cx           = 205
  Cy           = 197
  GraphColor   = 13693056 
  IsSimulation = true
  CommPortNo   = 2
//============================================================
//============================================================
MainProgram:
  gosub SetUp
  gosub Instructions
  gosub MonitorInputs
  gosub FinishUp
End
//============================================================
//============================================================
CalcPID:
   PID_output = A0*error+A1*PID_errorZ1+A2*PID_errorZ2+PID_outputZ1
   PID_outputZ1 = PID_output
   PID_errorZ2 = PID_errorZ1
   PID_errorZ1 = error
   BurnRate = Limit(PID_output,-5,5)
Return
//============================================================
CalcError:
   error = desired -actual
   if abs(error) > Pi() then error = error - sign(error)*Pi(2)
Return
//============================================================
CalcResponse:
   //----Calc Theta, dTheta (W), ddTheta (Alpha)
   Torque = BurnRate*VCOF*Radius
   ddThetaZ1 = ddTheta
   dThetaZ1 = dTheta
   ThetaZ1 = Theta
   ddTheta = Torque/J
   dTheta = dThetaZ1+T/2*(ddTheta+ddThetaZ1)
   Theta = ThetaZ1+T/2*(dTheta+dThetaZ1)



   Alpha = ddTheta   W = dTheta
   actual = frac((iactual+Theta)/Pi(2))*Pi(2)
   if actual < 0 then actual = actual+Pi(2)
   aTheta = round(rtod(actual))
Return     
//=====================================================================
CalcStationResponse:
   if within(BurnRate,-0.3,0.3) then BurnRate = 0
   if BurnRate < 0
      CS_Speed =round(BurnRate/5.0*55-65)
   elseif BurnRate > 0
      CS_Speed =round(BurnRate/5.0*70+50)
   else
      CS_Speed = 0
   Endif
   CS_Sp = CS_Speed \ if CS_Speed < 0 then CS_Sp = abs(CS_Speed) | 128
   serout char(CS_Sp)
   serbytesin 2,CS_dAngle,CS_NoIn
   if CS_NoIn < 2 
      n=ErrMsg(Msgs[10],Msgs[0],MB_OK|MB_ERROR)
      GoSub StopStation
      CommsError = true
      return
   endif
   CS_HB = ascii(substring(CS_dAngle,1,1))
   CS_LB = ascii(substring(CS_dAngle,2,1))
   CS_dAngle = (CS_HB<<8)+CS_LB
   if CS_HB & 128
      CS_HB= ~CS_HB & 255 
      CS_LB = ~CS_LB & 255
      CS_dAngle = -((CS_HB<< 8)+CS_LB+1)
   endif   
   ddThetaZ1 = ddTheta
   dThetaZ1 = dTheta
   ThetaZ1 = Theta
   Theta = CS_dAngle*dtor(2.5)
   dTheta = (Theta-ThetaZ1)/T
   ddTheta = (dTheta-dThetaZ1)/T
   Alpha = ddTheta
   W = dTheta
   actual = frac(Theta/Pi(2))*Pi(2)
   if actual < 0 then actual = actual +pi(2)
   aTheta = round(rtod(actual))
Return     
//============================================================
CalcITAE:
   s_time = s_time+T
   ITAE_error = abs(error)*s_time
   ITAE = ITAE_outputZ1+T/2*(ITAE_error+ITAE_errorZ1)
   ITAE_errorZ1 = ITAE_error
   ITAE_outputZ1 = ITAE
Return          

Figure 7: Control Program Listing (most subroutines are not listed for brevity) 

Master Controller
The Central Control system on the PC will need to communicate with the Master Controller on 
the Scale Model of the space station. The PC system requires to know the current heading of the 
station and to command a burn rate (voltage level) for the rockets (fans).

The Master Controller’s job is to (Refer to Figure 8):
 Receive the burn rate (fan speeds and direction) value from the PC system.
 Command the Motors’ controller with this new speed and direction.
 Interrogate the Quadrature controller to obtain a value for the current quadrarture count.



 Send the count value to the PC system (the PC system will use this value to calculate a 
heading).

Figure 8: Master Controller Connections.

The Master controller will be a Basic Stamp 2 microcontroller (www.Parallax.com). The 
program to implement the above is written in PBasic and is shown in Figure 9. The BS2 is a very 
adequate controller for the tasks above. The only shortcoming of the BS2 is that it does not have 
a serial buffer and it does not implement serial communications with interrupts. So while it is 
sending or receiving it is incapable of doing other tasks. Also if an input is received while it is 
not listening the data will be lost. However, the BS2 is still very suitable if the PC program is 
written with consideration to these shortcomings. If you study the sequence of actions, the 
shortcomings are not a factor as long as the PC program does not send data until the BS2 is 
expecting it. Additionally the BS2 can be programmed using PBasic, which is easy to understand 
and use.

' {$STAMP BS2}
' {$PBASIC 2.5}
'=============    Variables         ==========================
'=============================================================
    ReceivePin    PIN 0
    SendPin       PIN 1
    MotorReset    PIN 2
    MotorPin      PIN 3
    QuadratureRx  PIN 15
    QuadratureSt  PIN 14
    QuadratureRSt PIN 13
    dAngle        VAR byte(2)
    MotorSpeed    VAR Byte
    Direction     VAR Nib
'=============================================================
Main:
  GOSUB Initialize
  DO
    SERIN ReceivePin,84,[MotorSpeed] 'receive motor speed and direction
    IF MotorSpeed = 255 THEN GOTO Main  'reset code is recieved
    GOSUB SetMotors  'command the motor speed
    GOSUB Quadrature ' interrogate the Quadrature controller
    SEROUT SendPin,84, [dAngle(1),dAngle(2)]  'Send the data back
  LOOP
END
'=============================================================
Initialize:
  QuadratureSt   = High
  QuadratureRst  = Low
  QuadratureRst  = High 'Reset Quadrature
  LOW MotorReset
 HIGH MotorReset  'reset motor
  PAUSE 100
  SEROUT MotorPin,84,[$80,0,0,0] 'motor 0 brake



  PAUSE 20  MotorSpeed  = 0
  Direction = 0
  dAngle = 0
RETURN
'=============================================================
SetMotors:
  IF MotorSpeed.BIT7 = 1 THEN
     SEROUT MotorPin,84,[$80,0,0,MotorSpeed & 127] 'backwards (ccw)
  ELSEIF MotorSpeed = 0 THEN
     SEROUT MotorPin,84,[$80,0,0,0] 'brake
  ELSE
     SEROUT MotorPin,84,[$80,0,1,MotorSpeed & 127] 'forward (cw)
  ENDIF
RETURN
'=============================================================
Quadrature:
    QuadratureSt = Low  'tell the quadrature controller to send data
    QuadratureSt = High 
    SERIN QuadratureRx,84,[dAngle\2]  'receive the data
Return

Figure 9: Master Controller Program for the BS2

Motors Controller 
The scale model has two fans that will be used to model the rockets for controlling the rotation of 
the space station. The fans are powered by DC motors. To control these motors we need:

A controller to generate the PWM (pulse wave modulation) signals required to control the 
speed of the motors. 

Opto-Isolation to isolate the Motors’ power supply from the microcontroller’s supply.
Darlington power transistors to be able to sink sufficient current to drive the motors.

For the PWM controller we will use the Pololu module(www.Parallax.com). This module can be 
commanded using asynchronous serial communication. It is able to drive two separate motors. 
We will use it in the single motor mode because of the way we are going to design the driving 
circuitry.

The circuit diagram is shown in Figure 10. The Master Controller will send the serial data to the 
Pololu commanding the desired direction and speed of the motor. The Pololu sets the two lines 
that go to the opto-isolators and sets either the left or the right isolator to be on and off at the 
PWM rate. The isolator will in turn activate the darlington transistor to drive the motor with the 
PWM rate which sets the fan on at the desired speed.

Rarely do motors have the exact same characteristics. Different motors will have different 
minimum starting voltage and different speeds for the same voltage. Thus you will need to tune 
the driving circuitry so that the motors have roughly the same starting voltage and roughly the 
same speeds. This can be achieved via the variable resistors that control the level of the base 
voltage applied to the darlington transistor. Also the PC based control system will send voltage 
values that are corrected to form a minimum starting voltage that may not be zero and is different 
for each fan.



Figure 10: Motors Control System

Quadrature System
The quadrature controller has been described in a previous article and is exactly the same as 
described there. The master controller in this project will use the control lines (see Figure 11) to 
ask for the quadrature states transition count and then send that value to the PC controller. The 
value is then used to calculate the stations heading as shown in the CalcStationResponse
subroutine (lines after SerBytesIn command)

Figure 11: Quadrature Encoding System

Using The System
Figure 3 (last month) shows the user interface of the PC based Control Center. The user can 
select whether this is a simulated system or not. If it is simulated then all the control action 
(manual or automatic) will be used to control the simulated model. If it is not a simulated system 
then the control actions (automatic or manual) will be sent to the master controller on the 
physical model to control the fan speeds and to read the quadrature encoder from the scale 
model. 

In the manual mode the user will command the direction and firing force of the fans. For ease of 
control the firing force can be only full or half force. This can be done using the arrow keys or 
the mouse buttons. For half force the PageUp and PageDown keys are used. During manual 
control the heading, speed and acceleration of the model are calculated and shown. Also the 
screen animation and graphs are maintained up to date.



In the automatic mode the system takes over and calculates the firing rate using the PID 
controller. The user commands the desired heading by clicking on the desired heading field and 
entering a heading value or by pressing the mouse on the arrows next to the field. This allows for 
gradual or step heading changes (see Figures 12 and 13). If during the automatic control of the 
physical model you (by hand) change the heading of the station the control system will act to 
restore the heading to the value indicated in the desired heading field (see Figure 14).

A field called ITAE is calculated during the manual as well as the automatic control (simulated 
or scale model). This value is the integral over time of the absolute value of the error multiplied 
by time and is an indicator of the effectiveness of the control. The larger the number the less 
effective the control has been. This number can be used while fine-tuning the PID parameters to 
compare which combination is best. Also it can be used to compare manual control against 
automatic control and also to compare two manual controllers against each other. So you can 
actually use the system as a kind of game to see who can control the station best.

Shortcomings And Improvements
As you can see from Figures 12 and 13 the scale model behaves in a very similar manner to the 
simulation model. The scale model has some jerkiness in the plot, but this is due to the fact that 
the model is far from being ideal. It is far from being frictionless. The wheel is not well balanced 
despite some pains to make it so. The support frame of the wheel and the wheel’s imbalance also 
created areas where the wheel would prefer to settle and thus creating unsymmetrical forces that 
had to be overcome by the already unsymmetrical fans

The delays in starting (see Figure 13 seconds 0, 4.5 and 10) and too early stopping (see Figure 13 
seconds 0.5, 5.5, and 11.5) of the wheel in the scale model are due to the fact that static friction 
is higher than dynamic friction. Also friction causes the station to stop quickly when forces are 
removed.

Figure 12: Automatic control of the simulated model station. Notice the step and gradual 
commanded heading changes.

Figure 13: Automatic control of the scale model station. Notice the step and gradual 
commanded heading changes.



Figure 14: Disturbance rejection during automatic control of the scale model station.

The digital PID controller (CalcPID subroutine) works real well. Notice how on the simulated 
station the actual heading follows the gradually changing desired heading. Also on the scale 
model the following is quite acceptable given the delays due to friction. Also notice how in 
Figure 14 the disturbance was rejected quite nicely.

The physical properties (J, VCOF, and R) were calculated for the scale model. So the simulation 
model would simulate the scale model not a real full sized station. R was measured, and J was 
calculated by weighing the wheel and assuming that the wheel is a disc. VCOF was an educated 
guess. 

Final Thoughts
Notice how the Kp, Ki and Kd values work well for both the simulated and physical models. 
These values were not what was calculated using the mathematical tools and formulas. The 
calculated values produced a system that responded as in Figure 5b (last month). The values 
shown in Figure 3 (last month) are close to the calculated values but have been changed by trial 
and error using the scale model until an acceptable response was obtained. The simulated model 
also responded well. Compare the responses in Figures 12 and 13 to the ideal response in Figure 
5f (last month). 

This project is quite an involved one. There are programs for the PC and for two separate BS2 
controllers (master and quadrature). Also there is a lot of electronic circuitry. The Control Center 
system (PC) is a very involved program but was not really difficult to create. The principles of 
digital control boil down to adding and multiplying in the end. There is no real hard math.

The PC system is what you would expect from a professional system. There are ergonomic 
displays of the status of the system as well as ergonomic controls to allow the user to change the 
parameters and the state of the system in an intuitive manner.


